Application of Machine Learning Algorithms to Predict Body Condition Score from Liveweight Records of Mature Romney Ewes

Semakula, Jimmy and Corner-Thomas, Rene A. and Morris, Stephen T. and Blair, Hugh T. and Kenyon, Paul R. (2021) Application of Machine Learning Algorithms to Predict Body Condition Score from Liveweight Records of Mature Romney Ewes. Agriculture, 11 (2). p. 162. ISSN 2077-0472

[thumbnail of agriculture-11-00162-v2.pdf] Text
agriculture-11-00162-v2.pdf - Published Version

Download (1MB)

Abstract

Body condition score (BCS) in sheep (Ovis aries) is a widely used subjective measure of the degree of soft tissue coverage. Body condition score and liveweight are statistically related in ewes; therefore, it was hypothesized that BCS could be accurately predicted from liveweight using machine learning models. Individual ewe liveweight and body condition score data at each stage of the annual cycle (pre-breeding, pregnancy diagnosis, pre-lambing and weaning) at 43 to 54 months of age were used. Nine machine learning (ML) algorithms (ordinal logistic regression, multinomial regression, linear discriminant analysis, classification and regression tree, random forest, k-nearest neighbors, support vector machine, neural networks and gradient boosting decision trees) were applied to predict BCS from a ewe’s current and previous liveweight record. A three class BCS (1.0–2.0, 2.5–3.5, >3.5) scale was used due to high-class imbalance in the five-scale BCS data. The results showed that using ML to predict ewe BCS at 43 to 54 months of age from current and previous liveweight could be achieved with high accuracy (>85%) across all stages of the annual cycle. The gradient boosting decision tree algorithm (XGB) was the most efficient for BCS prediction regardless of season. All models had balanced specificity and sensitivity. The findings suggest that there is potential for predicting ewe BCS from liveweight using classification machine learning algorithms.

Item Type: Article
Subjects: Scholar Eprints > Agricultural and Food Science
Depositing User: Managing Editor
Date Deposited: 25 Jan 2023 05:18
Last Modified: 03 Sep 2024 05:49
URI: http://repository.stmscientificarchives.com/id/eprint/352

Actions (login required)

View Item
View Item