Assessment of single-vessel cerebral blood velocity by phase contrast fMRI

Chen, Xuming and Jiang, Yuanyuan and Choi, Sangcheon and Pohmann, Rolf and Scheffler, Klaus and Kleinfeld, David and Yu, Xin and Das, Aniruddha (2021) Assessment of single-vessel cerebral blood velocity by phase contrast fMRI. PLOS Biology, 19 (9). e3000923. ISSN 1545-7885

[thumbnail of journal.pbio.3000923.pdf] Text
journal.pbio.3000923.pdf - Published Version

Download (2MB)

Abstract

Current approaches to high-field functional MRI (fMRI) provide 2 means to map hemodynamics at the level of single vessels in the brain. One is through changes in deoxyhemoglobin in venules, i.e., blood oxygenation level–dependent (BOLD) fMRI, while the second is through changes in arteriole diameter, i.e., cerebral blood volume (CBV) fMRI. Here, we introduce cerebral blood flow–related velocity-based fMRI, denoted CBFv-fMRI, which uses high-resolution phase contrast (PC) MRI to form velocity measurements of flow. We use CBFv-fMRI in measure changes in blood velocity in single penetrating microvessels across rat parietal cortex. In contrast to the venule-dominated BOLD and arteriole-dominated CBV fMRI signals, CBFv-fMRI is comparable from both arterioles and venules. A single fMRI platform is used to map changes in blood pO2 (BOLD), volume (CBV), and velocity (CBFv). This combined high-resolution single-vessel fMRI mapping scheme enables vessel-specific hemodynamic mapping in animal models of normal and diseased states and further has translational potential to map vascular dementia in diseased or injured human brains with ultra–high-field fMRI.

Item Type: Article
Subjects: Scholar Eprints > Biological Science
Depositing User: Managing Editor
Date Deposited: 14 Mar 2023 08:19
Last Modified: 22 Oct 2024 04:20
URI: http://repository.stmscientificarchives.com/id/eprint/1040

Actions (login required)

View Item
View Item