
Communications and Network, 2013, 5, 434-437 
http://dx.doi.org/10.4236/cn.2013.53B2080 Published Online September 2013 (http://www.scirp.org/journal/cn) 

Copyright © 2013 SciRes.                                                                                   CN 

SDN-Based Switch Implementation  
on Network Processors 

Yunchun Li, Guodong Wang 
School of Computer Science and Engineering, BeiHang University, Beijing, China 

Email: wangguodong2350@126.com 
 

Received June 2013 
 

ABSTRACT 
Virtualization is the key technology of cloud computing. Network virtualization plays an important role in this field. Its 
performance is very relevant to network virtualizing. Nowadays its implementations are mainly based on the idea of 
Software Define Network (SDN). Open vSwitch is a sort of software virtual switch, which conforms to the OpenFlow 
protocol standard. It is basically deployed in the Linux kernel hypervisor. This leads to its performance relatively poor 
because of the limited system resource. In turn, the packet process throughput is very low. In this paper, we present a 
Cavium-based Open vSwitch implementation. The Cavium platform features with multi cores and couples of hard ac- 
celerators. It supports zero-copy of packets and handles packet more quickly. We also carry some experiments on the 
platform. It indicates that we can use it in the enterprise network or campus network as convergence layer and core 
layer device. 
 
Keywords: SDN; Open vSwitch; Network Processors; OpenFlow 

1. Introduction 
Software Defined Network (SDN) is the main approach 
to achieve network virtualization. The idea was origi- 
nated at Stanford University Ethane items. The Open 
Flow [1] protocol is a new standard that provides pro- 
gramming interface on switch or routers. With the new 
protocol, the control and data planes are decoupled, net- 
work intelligence and state are logically centralized, and 
underlying network infrastructure is abstracted from the 
applications. This enables enterprises to build highly scal- 
able, flexible networks that readily adapt to changing 
business needs. 

Open vSwitch [2] is developed by Nicira Network and 
has been widely used because of its great scalability and 
programmability. Enterprises and carriers can gain un-
precedented programmability, automation, and network 
control. Open vSwitch is deployed in the linux kernel. 
The kernel bridge is replaced by the kernel module of 
Open vSwitch. It supports a variety of standard manage- 
ment interfaces, such as NetFlow, sFlow, CLI and so on. 
And there has been the optimization on the PC platform 
[4]. But its performance is relatively slow because of the 
cpu overload. In fact, the performance experiments have 
been done in [5]. Stanford implements the switching ref- 
erence on NetFPGA by offloading packet processing from 
host CPU to NIC [6]. 

The Cavium [3] network processor provides two run- 
time modes: SE-S and SE-UM. SE-S mode can achieve 
better performance based on data plane hardware units, 
without context switching overhead.  

In this paper, we propose to implement the Open vSwitch 
based on Cavium network processor. We port the kernel 
module to network processor platform and improve the 
throughput significantly. 

The paper is organized as follows. First, Network Pro- 
cessor platform and Open vSwitch are introduced, fol-
lowed by the Cavium switch design and implementation. 
After experiments, the design finally reaches the goal. 

2. Open vSwitch Principle of Work 
Open vSwitch supports the OpenFlow protocol, which 
forms the bridge between controller and switch. The com- 
munication model is shown in Figure 1. 

While Open vSwitch can be used as stand-alone switch- 
ing equipment for packet forwarding, the main mode of 
operation is switching packets by the command of re- 
mote controller. It configures and manages the switch 
through OpenFlow, and it also provides programming 
interface to users for enforcing flow rules, modifying 
flow table and so on. The basic infrastructure is shown in 
Figure 2. 

Open vSwitch can run in user space, after loading the  

http://dx.doi.org/10.4236/cn.2013.53B2080�


Y. C. LI, G. D. WANG 

Copyright © 2013 SciRes.                                                                                   CN 

435 

 
Figure 1. Communication model. 

 

 
Figure 2. Open vSwitch infrastructure. 

 
kernel module packets can be processed in the kernel and 
transmitted directly, which is more efficient. As Above 
figure shows, datapath module is responsible for the loo- 
kup and port management. These operations command is 
passed to the datapath through dpif provider. It is devel- 
oped using netlink communication. The interaction mod- 
el is shown in Figure 3. 

3. Architecture Design 
The system is divided into data plane and control plane. 
Data plane runs in SE-S mode on the platform. It pro- 
vides the process of table looking up and forwarding 
packets directly. Control plane is to pass the non-match 
packets to controller through OpenFlow and notify the 
datapath the command from controller at the same time. 
This works in SE-UM mode. The architecture is shown 
in Figure 4. 

The control path consists of configuration, secure chan-
nel and message passing. Configuration is responsible for 
configuring connection to controller, MAC learning, VLAN 
etc. Secure channel process the non-match packet and  

 
Figure 3. The interaction between kernel and userspace. 

 

 
Figure 4. The system architecture. 

 
handle it to controller. The message passing module is 
designed to send the command to forward path. It facili- 
tates the procedure of making rules from secure channel 
to datapath. This module is implemented by the share 
memory provided by the Cavium platform. 

The forward path includes management of flow table 
and port. Flow table module operates the flow table such 
as updating entry and inserting entry into flow table. Port 
module manages the ports on platform. It enables the 
control plane to configure the port and reports the statis-
tical information on it. Data processing module provides 
the interface between the port and the control plane. 

The procedure of datapath is show in Figure 5. There 
are several actions for the target packets: port output, add 
VLAN field, send to controller and so on. When the pack-
et passes through the port, the port records the informa- 
tion. In addition, we compute the checksum of packet 
header and inspect the MTU of frame. 

4. Open vSwitch Implementation on Cavium 
4.1. Zero Copy 
Original OVS (Open vSwitch) exchange message through 
netlink [7] message between user space and kernel space. 
When a packet did not match with the flow table, data-
path call the ovs_dp_upcall function to copy the packet 
to user space. During the procedure,  
skb_copy_and_csum_dev function would take a pretty 
long time. 



Y. C. LI, G. D. WANG 

Copyright © 2013 SciRes.                                                                                   CN 

436 

 
Figure 5. Procedure of incoming packet. 

 
In order to reduce the process time, we take advantage 

of the platform SSO unit. It defines the packet as a work, 
which is scheduled in multiple work queues. Every work 
contains a group info. The group info represents which 
core the work should be processed on. The core process 
the packet based on the priority of work. Thus we define 
two different group numbers for the data plane and con- 
trol plane respectively. For a non-match work, we assign 
the group number for control plane. This way reduces the 
copying time and improves the throughput. The packet 
process step is shown in Figure 6. 

4.2. Communication in Share Memory 
Cavium platform belongs to SMP architecture. Both SE- 
UM and SE-S are able to access the physical memory 
directly in the same address space.  
Cvmx_bootmem_alloc_named function allocates a name 
block of memory from the free list. We use this block as 
the message queue. Control plane puts the message into 
it and data plane gets the message from it. The message 
format is shown below: 

struct sw_cvmx_msg{ 
   uint8_t cmd;  //command 
   uint32_t size; //size of data 
   void * data;  //message data 
}; 
The data field stores data according to the message 

command. There are three different types:  
dpif_cvmx_datapath, dpif_cvmx_vport and  
dpif_cvmx_flow. 

The control path procedure is as follows: 
do{ 
wqe = get_work (non-match work); 
if (wqe == NULL) continue; 
else 
      pass the work to controller; 
parse openflow message from controller; 
assemble the sw_cvmx_msg; 

put the message into queue; 
}while (running); 
The data path procedure is as follows: 
do{ 
wqe = get_work(); 
if (match packet) 
      action operation; 
else 
      assign the group number to control plane 
if (has message in queue) 
      get message from queue; 
}while (running); 

4.3. Port and flow Table 
Port is responsible for forwarding and receiving the 
packets. IPD/PIP unit on the platform manage the ports 
through API (such as cvmx_helper_get_ipd_port). In the 
system we implement the operation for the RGMII inter-
face. Port info is defined in the vport_cvmx structure. 

Traditionally, a flow is defined based on 5-tuple: src IP, 
dst IP, protocol, src port and dst port. However, OpenFlow 
represents a flow the 12-tuple. Flow entry is defined in 
the sw_cvmx_flow structure. 

5. Experimental Evaluation 
5.1. Experiment Setup 
It shows that NP-based Open vSwitch realization is in-
deed better than the PC platform. We carry on the expe-
riment on Cavium CN5860 and x86platform. The setting 
is shown in Figure 7. 

We use the SmartBits [8] as the test tool. There are 
two gigabit ports on the tool. One of them is used to send 
packet to DUT (Device Under Test), the other port is 
responsible for receiving packets from DUT output port. 

 

 
Figure 6. Packet process step. 

 

 
Figure 7. Experiment model. 



Y. C. LI, G. D. WANG 

Copyright © 2013 SciRes.                                                                                   CN 

437 

5.2. Experimetal Scenario 
To investigate the performance and scalability aspects of 
the system, we mainly carry out two experiments as fol- 
lows: 

We generate UDP packets of different sizes (64, 500, 
1500 bytes) to test the throughput. The result is shown in 
Table 1. 

We measure the throughput in different cores sepa-
rately (1, 3, 6, 12 cores) to test the scalability. And the 
result is shown in Table 2. 

We can make several observations on the results. The 
NP-based switch performs better than the PC-based switch 
when forwarding the packets. The data-copying overhead 
is reduced by using the share memory. And as the core 
number increases, the performance is definitely improved 
as well. 

6. Summaries 
This paper proposed and implemented the NP-based OVS, 
porting the datapath from kernel space to SE-S mode. 
The test shows that we improve the performance signifi-
cantly by utilizing the multi-core processors. However, 
this article only implements the exact match in the flow 
table lookup operation. The wildcard match will be car- 
ried out in the future work. 

 

 
Table 1. Throughput. 

 

 
Table 2. Throughput on different cores. 

REFERENCES 
[1] N. McKeown, T. Anderson and H. Balakrishnan, “Open- 

Flow: Enabling Innovation in Campus Networks,” Com- 
puter Communication Review (ACM SIGCOMM), Vol. 38, 
No. 2, 2008, pp. 69-74. 

[2] K.-K. Yap, T.-Y. Huang, et al. “Towards Software- 
Friendly Networks,” Proceedings of the first ACM Asia- 
Pacific Workshop on Workshop on Systems, 2010, pp. 
49-54. 

[3] The Cavium Website. http://www.cavium.com 
[4] V. Tanyingyong, M. Hidell and P. Sjodin, “Using Hard-

ware Classification to Improve PC-Based OpenFlow Swi- 
tching,” IEEE 12th International Conference on High 
Performance Switching and Routing, 2011. 

[5] A. Bianco, R. Birke, L. Giraudo and M. Palacin, “Open-
flow Switching: Data Plane Performance,” IEEE Interna-
tional Conference on Communications (ICC), 2010, pp. 
1-5. 

[6] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, 
and N. McKeown, “Implementing an OpenFlow Switch 
on the Netfpga Platform,” ANCS: Proceedings of the 4th 
ACM/IEEE Symposium on Architectures for Networking 
and Communications Systems, 2008, pp.1-9. 

[7] W. Klaus, “Linux Network Architecture: Design and Im- 
plementation of Network Protocols in the Linux Kernel,” 
1972. 

[8] SmartBits_Overview_detail_20051008.pdf 
http://www.spirent.cn/Products/Smartbits 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


