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Abstract

This paper proposes a multiple criteria group decision making with individual preferences

(MCGDM-IP) to address the robot selection problem (RSP). Four objective criteria elicitation

approaches, namely, Shannon entropy approach, CRITIC approach, distance-based

approach, and ideal-point approach, are proposed to indicate individual decision makers. A

preliminary group decision matrix is therefore formulated. Both preferential differences rep-

resenting the preference degrees among different robots, and preferential priorities repre-

senting the favorite ranking of robots for each individual decision maker, are analyzed to

propose a revised group decision matrix. A satisfaction index is developed to manifest the

merits of the proposed MCGDM-IP. An illustrative example using the data drawn from previ-

ous literature is conducted to indicate the effectiveness and validity of MCGDM-IP. The

results demonstrate that the MCGDM-IP could generate a more satisfactory scheme to

evaluate and select industrial robots, with an improvement of group satisfactory level as

2.12%.

1. Introduction

The worldwide manufacturing industry is confronting with great challenges such as changing

trends in consumer choices, aging society, shortage of resources and skilled workers, and

demand for local pro- ductions. The solutions to these challenges could be delivered by using

flexible industrial robot-based automation. Starting from 2010, the demand for industrial

robots has been expanded considerably because of the continued technical innovation in

industrial robots and ongoing trend toward automation. In 2018, global robot installations

increase by 6% to 422,271 units, worth USD 16.5 billion [1]. As the crucial part of intelligenti-

zation and digitalization of the manufacturing industry, industrial robots are programmable,

automated, and capable of movement on three or more axes. Specific applications of robots

include assembly, disassembly, welding, painting, pick and place for printed circuit boards,

packaging and labeling, palletizing, product inspection, and testing; all applications
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accomplished with high speed, endurance, and precision. Because there are a vast amount of

industrial robots with miscellaneous features, capabilities, and specifications in the market, the

decision maker in particular needs to select the most appropriate robots in consideration of

both financial and technical factors, for the purpose of enabling manufacturing enterprises to

produce high-quality products in a cost-effective manner [2]. This indicates that the multiple

criteria decision making (MCDM) could be an effective instrument to solve the robot selection

problem (RSP). Koulouriotis and Ketipi present an elaborative, extensive, and aggregate

review of various MCDM methods for addressing the RSP, and perform a comparative analy-

sis among them, respectively [3,4].

Robot selection usually spends a large capital expenditure and entails knowledge from sev-

eral persons with diverse functional backgrounds within a company. Therefore, the robot

selection decision is typically made by a committee or a group of experts, instead of by a single

person [5,6] Such groups might be composed of top management teams, board of directors,

and/or financial officers. Individual decisions are usually featured with a high level of variabil-

ity, which naturally occurs when the decision making entity is made up of several individuals,

as in the case of decision making by management teams [7]. Therefore, the problem boils

down to how one could combine the individual opinions to realize a preferred decision [8]

Since different individuals may often have their own views/judgments, how individual opin-

ions should be integrated as a group-level decision has meaningful insights for organizational

decision and the related performance [9]. However, choosing the appropriate method to

aggregate opinions is not an easy task, as there are various aggregation schemes and which one

is the best may be contingent upon many elements.

Recently, the family of multiple criteria group decision making (MCGDM) methods has

received substantial attentions in solving RSP. Specifically, the MCGDM involves a set of feasi-

ble alternatives that are evaluated based on multiple, conflicting and non-commensurate crite-

ria by a group of individuals. Choudhury et al. [10] develop a multi-agent system (MAS) based

negotiation model to address an advanced technology selection problem with multi-person,

multi-criteria and multi-preference. Ja- ganathan et al. [11] give an integrated fuzzy AHP

based group decision support system to facilitate the evaluation and selection of new

manufacturing technologies in the presence of intangible attributes and uncertainty. Chuu

[12,13] proposes a MCGDM model using fuzzy multiple attributes analysis to assess the suit-

ability of manufacturing technology. A new fusion method of fuzzy information is proposed to

manage information evaluated in different linguistic scales (multi-granularity linguistic term

sets) and numerical scales. Rashid et al. [14] devise a method to aggregate the opinions of sev-

eral decision makers on different criteria, regarding a set of alternatives, where the judgment

of the decision makers are represented by generalized interval-valued trapezoidal fuzzy num-

bers. Keshavarz Ghorabaee M [15] presents a MCGDM approach for robot selection in the

context of type-2 fuzzy sets, in which a method based on VIKOR with interval type-2 fuzzy

numbers is developed. The stability of proposed approach is analyzed by using seven sets of

criteria weights and the Spearman correlation coefficient. Fu et al. [16] identify various deci-

sion makers (DMs) by different weight determination methods, and propose to use the sto-

chastic multicriteria acceptability analysis for group decision making (SMAA- 2) to facilitate

the industrial robot evaluation and selection. Ali and Rashid employ a group best-worst

method for robot selection [17].

Almost all of the existing RSP MCGDM models in particular follow the rationale that the

group opinions for an alternative should be a weighted sum of the individual member’s opin-

ions for the alternatives, and the essence of MCGDM is therefore to elicit the weights based

upon the interpersonal comparison of opinions and upon the power or relative importance of

each individual in the group [18]. In this sense, the individual decision makers in the group
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expect to have better commitments and thereby further implement the consentaneous decision

[19]. However, in the case that some DMs have specific preferences about certain alternatives,

the extant RSP MCGDM models fail to characterize the group preferences among alternatives

from the practical viewpoint. This could give rise to a dilemma when some DMs have extreme

preferences about certain alternatives, the group opinion aggregated by the weighted sum

scheme might not precisely reveal their substantial attention to the problem, and consequently

result in a scenario with poor commitments from group members. The research questions of

this work are summarized as follows. First, what is the MCGDM framework for the RSP? Sec-

ond, how to analyze the preference structure of the RSP? Third, how to measure the effective-

ness of our method? In this regard, the primary goal of this work is to propose a MCGDM

method with individual preferences (MCGDM-IP) to effectively and rationally aggregate indi-

vidual opinions in consideration of their corresponding individual preferences. Furthermore,

in accordance with Huang et al. [20] and Fu et al. [21], this paper explores the individual pref-

erences from the aspects of both the preferential differences and preferential priorities for indi-

vidual DMs’ assessments of alternatives in a decision group. Specifically, the preferential

differences indicate the preference degrees among different alternatives, and the preferential

priorities denote the favorite ranking of the alternatives for each individual DM.

In general, the proposed MCGDM-IP for industrial robot selection is proceeded in three

stages. First, different individual DMs are identified by proposing several weight elicitation

methods that determine weights corresponding to robot selection criteria. The developed pro-

cedures, however, tend to generate different weights for the same RSP. On the other hand, in a

RSP with multiple DMs, achieving consensus about exact weights might not be easy [22]. This

in a sense reveals the preference heterogeneities among different DMs. A decision group with

a preliminary decision matrix is therefore formulated, the elements of which are the perfor-

mance results of alternatives evaluated by individual DMs. Second, the preferential differences

among alternatives and preferential priorities of individual DMs are analyzed to produce a

revised decision matrix, according to which the final group opinion is derived by aggregating

the individual opinions to evaluate and select the robots. Third, a satisfaction index that

reflects the satisfaction status of a group decision associated with each individual DM is con-

structed to manifest the merits of MCGDM-IP.

In comparison with the existing MCGDM models for industrial robot selection, the pro-

posed MCGDM-IP has the following prominent features. First, each individual DM objec-

tively derives the criteria weights based on the evaluation dataset itself. This can effectively

reduce the decision bias and to some extent improve the decision quality. Second, the prefer-

ential differences among various robots and preferential priorities for each individual DM are

analyzed to obtain a revised group decision matrix, and thereby to enhance the commitment

among group members. Third, the satisfaction status of individual DMs and group are sepa-

rately and comprehensively measured to demonstrate the feasibility and superiority of

MCGDM-IP.

The rest of this study is organized as below. In Section 2, we propose the MCGDM-IP for

resolving the RSP, followed by a numerical illustration in Section 3. This study is concluded in

Section 4 by discussing the limitations of proposed method and suggestions for future

research.

2. Method

Assume that m robots are assessed and selected in terms of n criteria. Each criterion can be

either subjective or objective. Subjective criteria are commonly qualitative in nature, and could

be converted to numerical values by linguistic modeling schemes, and objective criteria could
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be numerically described and measured, such as load capacity, velocity, repeatability, and cost,

among others. Let xij, i = 1,2,. . .,m, j = 1,2,. . .,n represent the performance of robot i with

respect to criterion j. In accordance with the observation that robot selection decision is typi-

cally made by a group of individual DMs, this study proposes a novel MCGDM-IP to address

the RSP. The general framework of MCGDM-IP is presented as below.

According to Fig 1, the proposed MCGDM-IP in general is composed of three main stages:

identification of individual DMs and implementation of standard criteria weight elicitation

process for each individual DM, aggregation of individual opinions with preferential differ-

ences and preferential priorities, and construction of a satisfaction index, which are explicitly

elaborated in the following subsections.

2.1 Individual decision making

A variety of MCDM methods employ weights to describe the relative significance of different

criteria. Many weight determination methods have been proposed for finding the actual

weights of a DM [22]. Often different DMs may suggest different criteria weights for the same

problem. Similar to Yu and Lai [23] and Fu et al. [16], the individual DMs are reasonably rep-

resented by different criteria weight determination approaches in this paper. For robot selec-

tion decision, an individual DM may represent a department such as Production or Finance.

The individual DM would presumably reflect the preferences of the department. Production,

for example, may believe that the performance characteristics of the candidate robots, such as

Fig 1. The general framework of MCGDM-IP.

https://doi.org/10.1371/journal.pone.0259354.g001
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velocity and programming flexibility, are more important, but Finance may believe price or

cost is a more important criterion.

In this paper, we propose to identify individual DMs using several objective criteria weight

determination approaches, namely, Shannon entropy approach, CRITIC approach, distance-

based approach, and ideal-point approach [16]. The main advantage of these objective

approaches is the reduction of decision bias by means of ignoring the subjective judgments of

the individual DMs [24]. Objective criteria weight elicitation approaches are usually applicable

when individual DMs disagree on the precise values of criteria weights [23] More specifically,

the rationale behind objective criteria weight elicitation approaches is that the importance

level of a criterion is a function of the information conveyed by this criterion, relative to a

whole set of alternatives. For the sake of alleviating the negative effect of data magnitude and

making the comparison across different individual DMs feasible, xij, i = 1,2,. . .,m, j = 1,2,. . .,n
are normalized by means of

yij ¼
xij
Xm

i¼1

xij

; for benefit � type criteria;

yij ¼
1
.
xij

Xm

i¼1

1
.
xij

for cost � type criteria;

8
>>>>>>>>>><

>>>>>>>>>>:

ð1Þ

Individual DM k determines the weight associated with each criterion wk
j , j = 1,2,. . .,n to

maximize the overall performance of robot i, i = 1,2,. . .,m;

vik ¼
Xn

j¼1

yijw
k
j ; i ¼ 1; 2; . . . ;m ð2Þ

In line with the observation that robot selection decision is particularly made by a manage-

ment committee within a company, and different individual DMs usually elicit different

weights for the same problem, this study adopts the following four objective criteria weight

determination approaches that reveal problem complexity and decision responsibility.

2.1.1 Shannon entropy approach. Shannon entropy approach has been extensively

employed and integrated (for example, the combination of the CoCoCo and the Shannon

entropy to elicit criteria weights in MCDM literature [25]. The rationale of Shannon entropy

approach is that the larger the degree of diversity within a criterion dataset, the higher the

weight with respect to that criterion. In other words, the smaller the entropy associated with a

criterion, the larger the discriminating power of that criterion in ranking alternatives. There-

fore, the working process of Shannon entropy approach that determine the criteria weights is

introduced below:

i. Normalizing the input data using (1).

ii. Computing the Shannon entropy for each criterion j, ej ¼ � ½lnðmÞ
� 1
�
Xn

i¼1

yijlnðyijÞ,

j = 1,2,. . .,n.

iii. Calculating the degree of discriminability for each criterion j, dj = 1−ej, j = 1,2,. . .,n.

iv. Deriving the criteria weights with respect to each criterion j, wj ¼
dj

Xn

j¼1

dj
, j = 1,2,. . .,n.
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v. Optimizing the overall performance of robots using (2).

2.1.2. CRITIC approach. The CRITIC approach elicits objective criteria weights based on

the quantification of two fundamental notions of MCDM: the contrast intensity and the con-

flicting character of the evaluation criteria [26], which is further modified by Mališa Žižović
[27]. The working procedure of CRITIC approach is presented as follows:

i. Normalizing the input data using (1).

ii. Computing the standard deviation for criterion j, σj, which quantifies the contrast intensity

of the related criterion. In this regard, σj could be recognized as a measure of the value of

criterion j to the decision making process.

iii. Constructing a symmetric matrix, with n×n dimension and a generic element rjk. Specifi-

cally, rjk is the linear correlation coefficient between criteria j and k. The more discordant

of the scores of the alternatives in criteria j and k, the smaller the value rjk. Therefore,
Xn

k¼1

ð1 � rjkÞ, represents a measure of the conflict caused by criterion j with respect to the

decision situation involving the rest of criteria.

iv. Calculating the amount of information. Information embedded in MCDM problems con-

sists of contrast intensity and conflict of the decision criteria. The amount of information Ij
thus could be decided by quantifying two expressions using a multiplicative aggregation

formula: Ij ¼ sj �
Xn

k¼1

ð1 � rjkÞ.

v. Determining the criteria weights with respect to each criterion j, wj ¼
Ij

Xn

j¼1

Ij
, j = 1,2,. . .,n.

The large the value Ij, the more information reflected by the corresponding criterion j and

the higher its relative importance for the decision making process.

vi. Optimizing the overall performance of robots using (2).

2.1.3 Distance-based approach. The mechanism of distance-based approach is to mini-

mize the discrepancy between self- and peer- evaluation outcomes. This discrepancy could be

understood as the information redundancy or noisy generated in the evaluation procedure,

which will be reduced or eliminated to produce reasonable evaluation outcomes Fu et al [28].

In this sense, the smaller the discrepancy, the more consistent between self- and peer-assess-

ment outcomes, the better the assessment approach. yij indicates the performance of alterna-

tive i with respect to criterion j, and is therefore defined as the self-evaluation outcome. From

the veiwpoint of alternative i, the arithmetic average of all yij, namely �yi ¼ 1

n

Xn

j¼1

yij, i = 1,2,. . .,

m, is regarded as the peer-evaluation outcome.

The discrepancy between self- and peer-evaluation outcomes could be depicted by the

Euclidean distance function. Naturally, each alternative seeks to minimize the corresponding

discrepancy as:

fi ¼ min
Xn

j¼1

ðyij � �yiÞ
2w2

j

h i
ð3Þ
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s:t:
Xn

j¼1

wj ¼ 1 ð4Þ

From the systematic viewpoint, a multiple-objective programming model is provided to

optimize the performance results of all alternatives:

( f1 ¼ min
Xn

j¼1

½ðy1j � �y1Þ
2w2

j �

f2 ¼ min
Xn

j¼1

½ðy2j � �y2Þ
2w2

j �

..

.

fm ¼ min
Xn

j¼1

½ðymj � �ymÞ
2w2

j �

s:t:
Xn

j¼1

wj ¼ 1

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

A single-objective programming model is then proposed using linear equal weighted sum-

mation method:

F ¼ min
Xm

i¼1

Xn

j¼1

ðyij � �yiÞ
2w2

j

h i

s:t:
Xn

j¼1

wj ¼ 1

8
>>>>><

>>>>>:

ð6Þ

A Lagrange function is constructed to solve the quadratic programming model (6):

L ¼ min
Xm

i¼1

Xn

j¼1

ðyij � �yiÞ
2w2

j

h i
þ l

Xn

j¼1

wj � 1

 !

ð7Þ

The Hessian matrix of L with respect to wj is

H ¼

@2L
@w2

1

@2L
@w1@w2

� � �
@2L

@w1@wn

@2L
@w2@w1

@2L
@w2

2

� � �
@2L

@w2@wn

..

. ..
. ..

. ..
.

@2L
@wn@w1

@2L
@wn@w2

� � �
@2L
@w2

n

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

;

in which the diagonal elements are positive, and the others are zero. Therefore, the Hessian

theorem indicates that the Lagrange function L has a minimum value. By solving

@L
@l
¼ 0

@L
@wj
¼ 0

8
>>><

>>>:

,
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we obtain the optimal solutions to the single-objective programming model (6) as:

wj ¼
1

Xn

j¼1

Xm

i¼1

ðyij � �yiÞ
2

" #� 1

�
Xm

i¼1

ðyij � �yiÞ
2

ð8Þ

Then the overall performance of robots is optimized using (2).

2.1.4 Ideal-point approach. The ideal-point approach attempts to make all alternatives as

close to the ideal point as possible [24]. This approach is intuitively appealing because all alter-

natives always seek to maximize their performance and therefore to be selected. Similar to Ma

et al. [24], we construct a weighted decision matrix [Yij]m×n, where Yij = wjyij. Therefore, the

ideal-point is defined as Y� ¼ fY�
1
;Y�

2
; . . . ;Y�ng, in which

Y�j ¼ max
i
fYijg ¼ max

i
fwjyijg ¼ max

i
fyijgwj ¼ y�j wj ð9Þ

and y�j ¼ maxifyijg is the ideal value associated with criterion j. The ideal-point could be either

virtual or real and is in particular regarded as the target to achieve.

The difference between alternative i and ideal-point could be quantified by using the

Euclidean distance function below:

Di ¼
Xn

j¼1

ðYij � Y�j Þ
2

ð10Þ

¼
Xn

j¼1

ðyij � y�j Þ
2w2

j

h i
ð11Þ

From a systematic standpoint, a multiple-objective programming model is proposed to

optimize the performance of all alternatives:

( g1 ¼ min
Xn

j¼1

½ðy1j � y�j Þ
2w2

j �

g2 ¼ min
Xn

j¼1

½ðy2j � y�j Þ
2w2

j �

..

.

gm ¼ min
Xn

j¼1

½ðymj � y�j Þ
2w2

j �

s:t:
Xn

j¼1

wj ¼ 1

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

ð12Þ

Performing the analogous process of distance-based approach, the optimal solutions to

model (12) are derived as:

wj ¼
1

Xn

j¼1

Xm

i¼1

ðyij � y�j Þ
2

" #� 1

�
Xm

i¼1

ðyij � y�j Þ
2

ð13Þ

Then the overall performance of robots is optimized using (2).
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2.2 Aggregation of individual opinions with individual preferences

Consider a general scenario with m alternatives being assessed by p DMs, and vik, i = 1,2,. . .,m
represent the performance results of alternative i, i = 1,2,. . .,m evaluated by individual DM k,

k = 1,2,. . .,p. In the presence of different criteria weights determined by different individual

DMs, there exist various evaluation results for alternatives. An m×p preference decision matrix

is therefore proposed as follows:

Vm�p ¼

v11 � � � v1k � � � v1p

..

. ..
. ..

. ..
. ..

.

v21 � � � vik � � � vip

..

. ..
. ..

. ..
. ..

.

vm1 � � � vmk � � � vmp

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð14Þ

In line with Huang et al [20], we analyze the individual preferences from the standpoints of

preferential differences and preferential priorities to enhance the commitments among group

members.

Because the second moment (variance or standard deviation) reflects the dispersion of a

sample in statistics, we employ the second moment of the performance results evaluated by an

individual DM for all robots, to measure the dispersion of an individual DM’s preferences. We

therefore calculate the standard deviation with respect to the individual DM k, k = 1,2,. . .,p as

below:

sk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

ðvik � �vkÞ
2

m � 1

v
u
u
u
t

; k ¼ 1; 2; . . . ; p ð15Þ

in which �vk denotes the mean of the performance outcomes of all robots assessed by individual

DM k. Since each individual DM has her/his own characteristic preference distribution among

different robots, σk is thus employed to evaluate the dispersion degree of their preferences on

all robots. A larger σk indicates that individual DM k has a better capability to decisively distin-

guish her/his preferences among different robots. In this regard, considering various decisive-

ness of different individual DMs in a group, the performance outcomes evaluated by each

individual DM should be adjusted for aggregation. According to Huang et al [20]. σk could be

recognized as the second moment adjusting factor of preferential difference for individual DM

k, and is therefore utilized as a power term to adjust vik, i = 1,2,. . .,m, k = 1,2,. . .,p. Such an

adjustment is aimed at extending the range of vik with larger preferential difference to enhance

the influence of such an individual DM on the final decision. The revised expression of vik is:

vð1Þik ¼
v1� sk
ik if vik � �vk

v1=ð1� skÞ
ik if vik < �vk

(

ð16Þ

where the performance outcome larger than the average would turn into even larger, and the

performance outcome smaller than the average would turn into even smaller. This impact

would increase as the preferential difference increases.

In addition, individual DMs may sometimes manifest strong unwillingness or willingness

for her/his relatively unfavorable or favorable robots. Since the third moment measures the

skewness of a sample in statistics, it is employed to quantify the strength of an individual DM’s

PLOS ONE Industrial robot selection using a multiple criteria group decision making method with individual preferences

PLOS ONE | https://doi.org/10.1371/journal.pone.0259354 December 16, 2021 9 / 18

https://doi.org/10.1371/journal.pone.0259354


willingness to adopt favorable robots, which is presented as:

gk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
ðm � 1Þðm � 2Þ

Xm

i¼1

vik � �vk
sk

� �3
 !

3

v
u
u
t k ¼ 1; 2; . . . ; p ð17Þ

The preference aggregation in a decision group may be influenced by the skewness of pref-

erences among robots for an individual DM. An individual DM with a left-skewed pattern of

performance outcomes among robots gives high performance outcomes to most robots and

low performance out- comes to a relatively small proportion of robots. This indicates that this

individual DM may have similar preferences for most robots that she/he favors, but would be

extremely uncomfortable if any of those robots that she/he does not favor is adopted. Since the

third moment could be either positive or negative, we make an adjustment to meet the require-

ments in aggregation process. Specifically, if the third moments for all individual DMs are pos-

itive, they could be standardized as gNORk ¼
gk

Xp

k¼1

gk

. Otherwise, if there is one or more negative

third moments, we define gk ¼ min
l
fglg, for all γl<0, g0k ¼ jgkj, and g0t ¼ gt þ ðg

0
k � gkÞ, for all

t6¼k, then the third moments could be standardized as gNORk ¼
g0k

Xp

k¼1

g0k

. According to Huang et al

[20], the cumulative distribution function (CDF) of an exponential distribution is employed to

formulate the adjustment that combines the second and third moments for preferential differ-

ences. Therefore, the revised group decision matrix is depicted as:

vð2Þik ¼
vð1Þik þ 1 � vð1Þik

� �

gNORk ½1 � expð� vik � �vkÞ�; if vik � �vk

vð1Þik � vð1Þik gNORk ½1 � expð� vik � �vkÞ�; if vik < �vk

8
><

>:
ð18Þ

Next, we untangle the preferential priorities in the group decision matrix. Individual DMs

are particulary aware of whether their most preferred nation is adopted, and then the second

preferred, the third, and so on. This psychological effect may influence the group decision pro-

cess and should be considered with respect to the compromise among individual DMs. Fur-

thermore, it is also significant to consider the plurality of votes. The preferential priorities of

robot i are defined as: di ¼

Xp

k¼1

yik

Xm

i¼1

Xp

k¼1

yik

, in which yik ¼
m
�ik

, and θik and ϕik represent the priority

coefficient and preferential ranking of robot i for individual DM k, respectively. By doing so,

the preferential priorities of the robots with higher ranking will be exponentially increasing.

Ultimately, the performance outcomes considering both preferential differences and prefer-

ential priorities are modified as:

vð3Þik ¼
vð1Þik þ 1 � vð1Þik

� �

dig
NOR
k ½1 � expð� vik � �vkÞ�; if vik � �vk

vð1Þik ð1 � diÞgNORk ½1 � expð� vik � �vkÞ�; if vik < �vk

8
><

>:
ð19Þ

In this regard, the preference decision matrix Vm×p is consequently revised as ½vð3Þik �m�p. In

accordance with the “same decision power” assumption in group decision systems proposed
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by Huang et al [20], the discriminative performance of robot i is thus obtained by taking the

arithmetic mean value of its performance results across the p individual DMs:

vi ¼

Xp

k¼1

vð3Þik

p
; i ¼ 1; 2; . . . ;m ð20Þ

which are capable of capturing the preferential differences among various robots and preferen-

tial priorities for each individual DM.

2.3 A satisfaction index

To justify the effectiveness of our MCGDM-IP, this study proposes a satisfaction index to measure

and compare the degrees of satisfaction between MCGDM-IP (vi) and individual DM (vik). The dif-

ference between the performance results of a robot evaluated by decision group and an individual

DM is an appropriate yardstick to measure the satisfaction degree, and is thus defined as below:

φik ¼ jvik � vij: ð21Þ

The mentioned satisfactory difference could be normalized as c
NOR
ik ¼

φik
Xp

k¼1

φik

, which has a

conceptual understanding as the distance. In other words, the larger the satisfactory difference,

the more unsatisfactory the alternative.

In addition to the satisfactory difference, the differences between the rankings derived

according to vi and any of other robots may also have a notable influence on the satisfactory

levels of robots. Similarly, the difference of preferential rankings is defined as

Bik ¼ jrik � rij ð22Þ

where ρik denotes the preferential ranking of robot i assessed by individual DM k, and ρi repre-

sents the preferential ranking of robot i with respect to vi.
Finally, according to Siskos et al [29], the above two satisfactory aspects could be integrated

to build the satisfaction index for individual DM k as:

pk ¼ 1 �
1

m

Xp

k¼1

½ðc
NOR
ik Þ

Bikvi� ð23Þ

In line with the exiting literature [19,20,30], the arithmetic average of πk, k = 1,2,. . .,p is uti-

lized to indicate the comprehensive satisfactory levels for all individual DMs

3. Numerical illustration

In this section, the proposed MCGDM-IP is applied to solve a RSP with the consideration of

five criteria: Cost, Handling coefficient, Load capacity, 1/Repeatability and Velocity:

• cost, i.e., the robot’s catalogue price;

• handling coefficient, i.e., diameter, elevation, basic rotation, roll, pitch, and yaw;

• load capacity, i.e., the robot’s maximum transportable weight;

• repeatability, i.e., the measure of the accuracy with which the robot permits the end effector

to return to a specific point;

• velocity, i.e., the end effector’s maximum attainable speed.
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This case has been extensively investigated using various Data Envelopment Analysis

(DEA) models [31–33]. The input data for robot selection are listed in the Table 1 below.

In this work, four individual DMs are identified using Shannon entropy approach, CRITIC

approach, distance-based approach, and ideal-point approach. The criteria weights are

reported and compared in Table 2 and Fig 2 below. Both Shannon entropy approach and

CRITIC approach assign the largest and smallest weights to Load capacity and Handling coef-

ficient, respectively. Interestingly, both distance-based approach and ideal-point approach

consider Handling coefficient as the most important criterion, and Load capacity and Repeat-

ability as the least important criteria, respectively. These discrepancies among criteria weights

could be caused by different knowledge and expectations of individual DMs, and thus make

the implementation of MCRSP extremely difficult.

By means of the obtained criteria weights, the robot performance results evaluated by four

individual DMs are presented in Table 3 below. It is observed that Shannon entropy approach,

CRITIC approach, distance-based approach, and ideal-point approach rank R11, R12, R2, and

R1 at the top, respectively, and simultaneously rank R4 at the bottom. This reveals the result

heterogeneity in a decision group, and in a sense necessitates the MCGDM for RSP. In addi-

tion, the second moment σk, third moment γk and preferential priority δi are also reported in

Table 3. It is noticed that the second moment of Shannon entropy approach (σ1 = 0.1081) is

largest. This implies that Shannon entropy approach may have the most preferential difference

among these robots and therefore could discriminate most decisively. Furthermore, the third

moments of Shannon entropy approach and CRITIC approach are positive, and those of dis-

tance-based approach and ideal-point approach are negative. This reveals that distance-based

approach and ideal-point approach have analogical skew-to-left preferential pat- terns, and

would be uncomfortable if their relatively disagreeable robots are adopted, particularly for

ideal-point approach with the largest skewness as γ4 = -0.5908. In addition, the preferential

Table 1. Input data for robot selection.

Robot Cost (USD) Handling coefficient Load capacity (kg) 1/Repeatability (mm) Velocity (m/s)

R1 100,000 0.995 85 1.7 3.00

R2 75,000 0.933 45 2.5 3.60

R3 56,250 0.875 18 5.0 2.20

R4 28,125 0.409 16 1.7 1.50

R5 46,875 0.818 20 5.0 1.10

R6 78,125 0.664 60 2.5 1.35

R7 87,500 0.880 90 2.0 1.40

R8 56,250 0.633 10 8.0 2.50

R9 56,250 0.653 25 4.0 2.50

R10 87,500 0.747 100 2.0 2.50

R11 68,750 0.880 100 4.0 1.50

R12 43,750 0.633 70 5.0 3.00

https://doi.org/10.1371/journal.pone.0259354.t001

Table 2. Criteria weights.

Individual DM Cost (USD) Handling coefficient Load capacity (kg) 1/Repeatability (mm) Velocity (m/s)

Shannon entropy 0.1389 0.0479 0.4396 0.2458 0.1277

CRITIC 0.2229 0.0931 0.3039 0.2360 0.1441

Distance 0.1105 0.4944 0.0608 0.0944 0.2399

Ideal-point 0.0694 0.6393 0.0765 0.0518 0.1629

https://doi.org/10.1371/journal.pone.0259354.t002
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priority of R11 is largest (δ11 = 0.1638). This demonstrates that R11 is most preferred in ranking

for the group. In consideration of the different rankings from different individual DMs, ranking

R11 at the top seems to be a more probable compromise among different individual DMs.

In accordance with the derived values of second moment σk, third moment γk and preferen-

tial priority δi, the revised group decision matrix is obtained and presented in the following

Table 4. In comparison with the original group decision matrix, majority of the performance

results have been adjusted to reflect the individual preferences of individual DMs.

Fig 2. Criteria weights.

https://doi.org/10.1371/journal.pone.0259354.g002

Table 3. Robot performance results.

Robot Shannon entropy CRITIC Distance Ideal-point Preferential priority δi
R1 0.0947 0.0871 0.0986 0.1040 0.1571

R2 0.0766 0.0787 0.1005 0.1007 0.1439

R3 0.0680 0.0760 0.0897 0.0891 0.0593

R4 0.0540 0.0677 0.0602 0.0539 0.0269

R5 0.0661 0.0741 0.0786 0.0797 0.0344

R6 0.0741 0.0702 0.0664 0.0694 0.0320

R7 0.0924 0.0827 0.0796 0.0874 0.0557

R8 0.0797 0.0877 0.0851 0.0767 0.0559

R9 0.0675 0.0733 0.0789 0.0751 0.0331

R10 0.1039 0.0922 0.0834 0.0861 0.0786

R11 0.1132 0.1023 0.0875 0.0927 0.1638

R12 0.1098 0.1081 0.0916 0.0851 0.1592

Second moment σk 0.0191 0.0127 0.0118 0.0137

Third moment γk 0.2673 0.7732 -0.5347 -0.5908

https://doi.org/10.1371/journal.pone.0259354.t003
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Additionally, the discriminative performance results of robots using the MCGDM-IP are

derived using the Eq (20) and presented in Table 4 as well, according to which a complete

ranking among robots is easily obtained to support robot selection. Therefore, the rankings

obtained from the proposed MCGDM-IP and individual DMs are compared in the following

Table 5. Table 5 demonstrates that different individual DMs provide different rankings of

robots. This is mainly originated from different weight determination rationales. Different

weight elicitation methods, when the same input dataset is employed, generate different and

potentially conflicting rankings.

In the following, the merits of the proposed MCGDM-IP are manifested in terms of analyz-

ing the satisfaction index. As one of the most widely-employed method for real-life group deci-

sion problems, the simple additive weighting (SAW) method is known as a common

aggregation method for group decisions [20]. In this regard, we calculate the satisfactory levels

of each individual DM when using both SAW method and our MCGDM-IP, which are

reported in Table 6 below. It is shown that the proposed MCGDM-IP could significantly

increase the satisfactory levels of all decision makers.

In addition, the satisfactory level of the decision group is increased by
0:9956� 0:9749

0:9749
� 100% ¼ 2:12%. Therefore, our MCGDM-IP is more satisfactory than the SAW

Table 4. Revised group decision matrix.

Robot Shannon entropy CRITIC Distance Ideal-point MCGDM-IP

R1 0.099421 0.090318 0.101491 0.107436 0.099667

R2 0.000124 0.000180 0.103371 0.104037 0.051928

R3 0.000107 0.000184 0.092362 0.092192 0.046211

R4 0.000070 0.000151 0.000039 0.000029 0.000072

R5 0.000104 0.000180 0.000067 0.000063 0.000103

R6 0.000131 0.000161 0.000048 0.000048 0.000097

R7 0.096814 0.000219 0.000067 0.090430 0.046883

R8 0.000148 0.090573 0.087679 0.000057 0.044614

R9 0.000108 0.000176 0.000068 0.000056 0.000102

R10 0.108729 0.095222 0.085961 0.089151 0.094766

R11 0.118419 0.105774 0.090165 0.095886 0.102561

R12 0.114961 0.111756 0.094376 0.088147 0.102310

https://doi.org/10.1371/journal.pone.0259354.t004

Table 5. Ranking comparisons.

Robot Entropy CRITIC Distance Ideal-point GDM-IP

R1 4 5 2 1 3

R2 7 7 1 2 5

R3 9 8 4 4 7

R4 12 12 12 12 12

R5 11 9 10 8 9

R6 8 11 11 11 11

R7 5 6 8 5 6

R8 6 4 6 9 8

R9 10 10 9 10 10

R10 3 3 7 6 4

R11 1 2 5 3 1

R12 2 1 3 7 2

https://doi.org/10.1371/journal.pone.0259354.t005
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method in solving the group decision problem. That is to say, the MCGDM-IP could give rise

to a more satisfactory scheme to evaluate and select industrial robots.

Next, we compare the rankings of the proposed MCGDM-IP with previous DEA methods

[32,33] and present in Table 7 below. It is apparent that the different methods produce differ-

ent rankings among robots, which can effectively provide robot selection schemes. In general,

the best and worst performers in the proposed MCGDM-IP are R11 and R4, respectively,

while those in DEA methods are R12 and R6, respectively. Noteworthy that the most remark-

able differences are associated with R4 and R10. The difference between the proposed

MCGDM-IP and DEA methods are originated from distinct rationales for performance

evaluation.

4. Conclusions

This study proposes a MCGDM method with individual preferences (MCGDM-IP) to effec-

tively and rationally evaluate and select industrial robots. Shannon entropy approach, CRITIC

approach, distance-based approach, and ideal-point approach, are employed to elicit criteria

weights in an objective manner and therefore to represent individual DMs. The individual

preferences from the aspects of both the preferential differences and preferential priorities for

individual DMs’ assessments of alter- natives in a decision group are explored. Specifically, the

preferential differences denote the preference degrees among different alternatives, and the

preferential priorities represent the favorite ranking of the alternatives for each individual DM.

A satisfaction index is proposed to manifest the merits of our MCGDM-IP. An illustrative

example using the data drawn from the previous studies to indicate the effectiveness and valid-

ity of the proposed MCGDM-IP, in conjunction with the comparison with the results obtained

from DEA models. The MCGDM-IP is capable of generating a complete ranking of robots for

Table 6. Satisfaction index.

SAW MCGDM-IP Difference

Shannon entropy approach 0.9697 0.9828 +0.0131

CRITIC approach 0.9606 0.9998 +0.0392

Distance-based approach 0.9870 0.9998 +0.0128

Ideal-point approach 0.9822 0.9999 +0.0177

Decision group 0.9749 0.9956 +0.0207

https://doi.org/10.1371/journal.pone.0259354.t006

Table 7. Ranking comparisons with other methods.

Robot Karsak and Ahiska (2005) Chu et al. (2020) MCGDM-IP

R1 8 9 3

R2 6 6 5

R3 5 4 6

R4 4 5 12

R5 3 2 9

R6 12 12 11

R7 7 8 7

R8 11 10 8

R9 10 7 10

R10 9 11 4

R11 2 3 1

R12 1 1 2

https://doi.org/10.1371/journal.pone.0259354.t007
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evaluation and selection, with the improvements of both individual and group satisfactory

levels.

The novelties of this study are summarized as follows. First, each individual DM objectively

derives the criteria weights based upon the evaluation dataset itself. This could effectively

reduce the decision bias and to some extent enhance the decision quality. Second, the prefer-

ential differences among various robots and preferential priorities for each individual DM are

analyzed to obtain a revised group decision matrix, and thereby to enhance the commitment

among group members. Third, the satisfaction status of individual DMs and group are sepa-

rately and comprehensively measured to demonstrate the feasibility and superiority of

MCGDM-IP.

There exist several limitations that deserve further investigation in future research. First,

only objective criteria weight elicitation approaches are utilized to denote individual DMs in

our paper, for example, the TOPSIS and fuzzy TOPSIS [34]. In spite of the prominent advan-

tages, the personal experience and subjective judgement of individual DMs are also signifi-

cantly importance in decision process. Therefore, future research should develop subjective-

objective integrated criteria weight elicitation approaches to denote the individual DMs. Sec-

ond, the second and third moments in statistics are employed to describe the preferential dif-

ferences in this study. Future research should make the adjustments using other meaningful

and useful approaches. Third, the exponential distribution is used to adjust the decision matrix

by integrating the second and third moments. Future research should untangle the feasibility

of other distributions. Fourth, the deterministic situation is investigated in this study, with cer-

tain input data and preference. Future research should consider the uncertain circumstance

with uncertain input data and preference [34,35].
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