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Abstract 

 
We aim at tackling the problem of inadequate specification of a Markov manpower model in this paper, by 

formulating a procedure for validating the inclusion or non-inclusion of some transition parameters in the 

model. The mover-stayer principle and its extensions are employed to incorporate hidden classes in the model 

to achieve more homogeneity and this is compared with the model without the hidden classes, which is more 

parsimonious, using Likelihood ratio statistic, Akaike Information Criterion and Bayesian Information 

Criterion. The illustration shows a case of manpower data where, up to a certain level of hidden states, 

homogeneity is more important than parsimony. 

 

 
Keywords: Statistical manpower planning; hidden Markov model; homogeneity; parsimony. 

Original Research Article 



 

 
 

 

Ossai et al.; Asian J. Prob. Stat., vol. 20, no. 4, pp. 82-93, 2022; Article no.AJPAS.94133 
 

 

 
83 

 

1 Introduction  
 

The use of Markov chain in functional modelling of manpower systems, which has its foundation on the work 

by Seal [1], is supported by the structural configuration of manpower systems dynamics. A manpower system is 

modelled in Markov framework as several aggregates of members of the system, where each aggregate of 

members is taken as a class or state of the Markov chain with interstate transitions of members and transitions to 

external environment governed by some probability laws. For a Markov manpower model to be adequately 

formulated, in terms of giving reliable estimates of the population parameters, members of each class have to be 

as homogeneous as possible with respect to state transitions [2-5]. If this is not the case then the problem of 

heterogeneity sets in. The general method of tackling the problem of heterogeneity to achieve homogeneity in 

the personnel classes of a manpower system is by the process of disaggregation [6,3]. In the case of observable 

heterogeneity [7], where personnel classes can be ascertained on the basis of observable data, disaggregation 

involves external subdivision of classes of the system to achieve the desired homogeneous personnel groupings. 

In the case of hidden heterogeneity [4,8], where personnel classes can no longer be completely ascertained on 

the basis of observable data, disaggregation involves internal subdivision of classes of the system to achieve the 

desired homogeneous personnel groupings.  

 

In all cases, diaggregation involves the inclusion of more classes of members of manpower systems and 

therefore more parameters in the model. It is therefore opposed to the principle of parsimony, which advocates 

the inclusion of adequate minimum number of parameters in a model [9]. In other words, an attempt to achieve a 

better model with respect to class homogeneity in a manpower system may end up yielding a model less 

parsimonious than the original model. Yet, the need to ensure the consideration of these properties in building a 

manpower model has been emphasized by researchers in this area. For instance, Guerry and De Feyter [10] 

emphasize that dividing the personnel of a manpower system into more subgroups may result to a more 

homogeneous manpower model, but with additional problem in parameter estimation; Bartholomew et al. [2],  

De Feyter [3],  Guerry [4] and  Udom and Ebedoro [8], on the other hand, emphasize that lack of class 

homogeneity in manpower models may lead to unreliable parameter estimates. In manpower planning, the side 

of the argument to be taken calls for validation of manpower models based on model performance with respect 

to class homogeneity and parsimony in parameter inclusion. This paper, therefore, focuses on investigating the 

comparative importance of the properties of homogeneity and  parsimony in a manpower model under Markov 

framework.  

 

Ugwuowo and McClean [7], Guerry [4] and Udom and Ebedoro [8] all identify two types of heterogeneity in 

manpower systems as observable and hidden heterogeneity. Observable heterogeneity occurs where an 

observable class of manpower personnel includes members that differ significantly with respect to probabilities 

of inter-class transitions. As stated above, the problem of observable heterogeneity can be tackled by splitting 

the class to include those with similar transition patterns in the same sub-class. In Markov manpower modelling 

the states of the Markov chain are from the onset chosen, according to the observed manpower flow data for a 

given manpower system, to reflect homogeneity. On the other hand, the sources of hidden heterogeneity, such as 

innate traits of individual personnel, are not apparent from mere observation of manpower data. The problem of 

hidden heterogeneity is, therefore, handled differently. To tackle the problem of hidden heterogeneity in 

manpower models, Guerry [4] and Udom and Ebedoro [8] use the mover-stayer principle introduced by Blumen 

et al. [11] and its extensions by Spilerman [12] to incorporate sub-classes within the observable classes of the 

manpower system. Each hidden sub-class, within each observable class, holds manpower personnel 

homogeneous with respect to hidden sources of heterogeneity and hence probability of transiting to other 

observable classes. Guerry [4] includes two sub-classes for ‘movers’ and ‘stayers’ in each observable classes, 

where movers are identified by higher probability of transiting to other observable classes than the stayers. 

Following the work by Spilerman [12], who introduced the inclusion of more than two states in the mover-

stayer principle, Udom and Ebedoro [8] include three sub-classes for ‘movers’, ‘mediocres’ and ‘stayers’ in 

each observable classes of a manpower system, where movers are identified by highest probability of transiting 

to other observable classes, followed by mediocres  and then the stayers. In this paper we include four sub-

classes for ‘high movers’, ‘movers’, ‘mediocres’ and ‘stayers’ in each observable classes, and five sub-classes 

for ‘high movers’, ‘movers’, ‘above mediocres’, ‘mediocres’ and ‘stayers’ in each observable classes where, in 

each of the two cases, high movers are identified by highest probability of transiting to other observable classes, 

followed in order by the other categories. In this way we establish up to five different hidden Markov model 

(HMM) types  for the manpower system: HMM1, HMM2, HMM3, HMM4 and HMM5 corresponding to 1, 2, 3, 

4 and 5 hidden sub-classes per observable class respectively, where a HMM is a bivariate stochastic process 
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          with      being an unobserved Markov chain in the states of the observable process     , with the 

distribution of    depending on   [8]. We note that HMM1 corresponds to the classical Markov manpower 

model where there is no observable class subdivision for latent heterogeneity. Also, by the foregoing discussion, 

HMM1 is more parsimonious and less homogeneous than the rest of the models; HMM2 is more parsimonious 

and less homogeneous than HMM3, HMM4 and HMM5; HMM3 is more parsimonious and less homogeneous 

than HMM4 and HMM5;  and HMM4 is more parsimonious and less homogeneous than HMM5.  

 

Hidden Markov models have been widely applied in other areas of research such as time series, econometrics, 

finance, biology and psychology [13-16].  Its application in the area of statistical manpower planning has, 

however, been scanty, just about those cited in this paper. Yet, it seems to be a promising model for unraveling 

some intricate features of manpower systems dynamics.     

 

The foregoing discussions highlight the problem of whether a Markov manpower model is adequately specified 

or not, considering the tranistion parameters included in the HMM.  We seek  to tackle this problem in this 

paper by formulating a procedure for statistical validation of the inclusion or non-inclusion of some transition 

parameters of the model. The manpower hidden Markov model of type HMM   , where    can take values 1, 2, 

3, 4 and 5, is first formulated, as a multinomial hidden Markov model [4,8], on the basis of which the       

described above are established for comparison. The parameters of the models are estimated using the 

Expectation-Maximization (EM) algorithm [17,18], and the performance of the models on the same manpower 

data compared using appropriate statistical tests. In this way the property that is more important in Markov 

manpower modelling, whether homogeneity or parsimony, can be inferred.  

 

2 Formulation of the Manpower Model of Type HMM     
 

Let there be k observable classes of personnel, observable on the basis of available data, in a manpower system. 

All manpower personnel in each of the k classes are assumed to have transition patterns, across other classes, 

with the same probability distribution. Let these classes be denoted by            Additionally, let     represent 

the class of those who leave the system to the outside environment (wastage class). In other words, the rate at 

which all members of   , for example, move independently to any of the other k classes,              is 

assumed to be affected the same way by the observable sources of heterogeneity.  

 

In a general simple Markov manpower model [19], the dynamics of the manpower flows are governed by a 

recruitment vector R, a sub-stochastic transition matrix P and a wastage vector W, such that the evolution of the 

manpower stock vector,     , at time t can be expressed in terms of the immediate past stock vector and these 

model parameters as  
 

                                                                                                                            (2.1) 
 

In (2.1),                      and        is the number of workers in     at time  ;   
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and     is the transition probability of moving from    to   ; 

 

                     ,        is the wastage probability of moving from    to     ; 
 

                      ,        is the probability of making a recruitment into    at t.  
 

The model in (2.1) is required for analysis if all the goals of statistical manpower planning, which are 

description, prediction or forecasting and control of manpower structure, are to be achieved. Since the two types 

of heterogeneity  in manpower models concern only the promotion and wastage flows, the points of focus in 

building the hidden Markov models of interest in the current work are the elements of P and W.  
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Let a stochastic process whose states are the classes of the manpower system,          , be defined as     . 

Then      possesses the first order Markov property such that   

 

                         

 

for   = 1,… , k; j = 1,… , k+1                                                                                                               (2.2)  

 
     is actually a Markov chain with one absorbing state,     . This means that no personnel moves back to any 

of the k classes,          , after leaving to the outside environment (wastage). For the hidden classes, let each of 

the k observable classes,               , be subdivided into    sub-classes,   
            . The value of    

and what each sub-class stands for in the models, as discussed in section 1, are as follows: 

 

For HMM5 :    = 5,   
  = high movers class,   

  = movers class,   
  = above mediocres class,   

  = mediocres 

class,   
  = stayers class; for HMM4:    = 4,   

  = high movers class,   
  = movers class,   

  = mediocres class, 

  
  = stayers class; for HMM3:    = 3,   

  = movers class,   
  = mediocres class,   

  = stayers class; for HMM2: 

   = 2,   
  = movers class,   

  = stayers class; for HMM1:    = 1,   
  = observable class. Let the ordering 

relationships ‘is less homogeneous than’ be denoted by    and ‘is less parsimonious than’ by   . Then, from 

the foregoing, as far as the models are valid,  

 

HMM1    HMM2    HMM3    HMM4    HMM5 and HMM5    HMM4    HMM3    HMM2    

HMM1  

 

Let    
   be the underlying Markov chain within each observable class                having its states as the 

   sub-classes,   
            . The transition probabilities of the underlying Markov chain    

   within    can 

be given as  

 

   
        

    
    

      
   ;             .                                                                               (2.3) 

 

The transition probability matrix of    
   is the       matrix  
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The dependence of the distribution of    on    is expressed in the conditional probability of personnel transition 

from any state   
            , within    to another observable class    given by  

 

   
                    

      
                

      
                                                         (2.4) 

 

Let the observed manpower flow from    to each of                  from time period   to     be denoted 

by       . When           the manpower flow is promotion or demotion; when       the manpower flow 

is wastage. For the observable class    and a given  , the random events of making the number of transitions 

                            are exhaustive (and exclusive) for all such transitions from    . Conditional on the 

hidden Markov chain being on any of the sub-classes    
      

  , the probability of each of these events 

corresponds to    
  (             so that     

    
     . In other words, at time   and conditional on   

   

   
 , the probability distribution of any random vector   

  whose realization is a vector of these observed and 

exhaustive manpower flow numbers                                     is multinomial. In other words, given 

  
            

   , 

 

the conditional probability          
      

          
    

    is  
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3 Estimation of the Model Parameters 
 

One major procedure in hidden Markov models is the estimation of model parameters. In the case of HMM1, 

where the classes are the observable classes               , and with                 
     , maximum 

likelihood estimation (MLE) method gives the estimator of the model parameter     as ( see, for instance, [4]). 

 

     
        

     

       
     

                                                                                                                                                             

 

Some other procedures are used for estimating the parameters of HMM’s where latent classes exist in the 

models. One of such procedures is the EM algorithm. Both Guerry [4] and Udom and Ebedoro [8] have used 

this algorithm in Markov manpower models. Guerry [4] used it for the case of two hidden states while Udom 

and Ebedoro [8] extended it to the case of three hidden states but in a hierarchical manpower system. The use of 

the algorithm for the case of HMM   is, therefore, a straightforward extension by including    hidden states.   

 

Consider the estimation of the parameters    
 ,          

 and    
  (            ;          ;            ) of 

HMM   . These parameters can be assembled in matrices :        
 ),              

 ) and        
  . The EM 

re-estimation algorithm is executed in two steps: the Expectation step and the Maximization step. The 

Expectation step utilizes the forward and the backward probabilities   
         

              
  

        
      

   and   
           

                
           

      
    satisfying, for the forward 

probabilities 

 

  
      

  
            

                                                                          

   
        

      
          

                                       
                                                         

 

and for the backward probabilities 

 

  
      

                                                                                                         

   
        

      
            

                               
                                         

 

The term   
  in (3.2) will turn out to be the initial probability distribution of one of the two probability 

components of the re-estimation formulas. One of these two components expresses the probability of the hidden 

process   
  being in state   

  at t, given that the sequence of the observed data is   
              

       ; 

this is represented as   
         

      
    

              
         . The second component expresses the 

probability of the hidden process   
  being in state   

  at t, and then moving to state   
  in the next transition 

given that the sequence of the observed data is   
              

       ; this is represented as   
     

    
      

      
      

    
              

         . The two components   
     and    

     are then 

expressible in terms of the forward and backward probabilities as 
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Next, we consider the likelihood of manpower flows from               being a specified sequence of 

observations. For              the joint likelihood of having    
              

        is given by   
  

    
              

                  , where    is the initial distribution vector of   
 ,             . Hence, 

 

  
      

              
                   

 
Which gives 

 

   
        

    
         

         
       

    
      

    
          

       
          

    
         (3.6)  

 
Equation (3.6) can be resolved to obtain the expected log-likelihood as   

 

      
     

       

   

     

  
        

          
 

   

     

   

     

 

     

     
       

   

     

 

     

        
                                

 

The final step is to maximize (3.7) with respect to   
 ,    

  and         
 . By the method of Lagrange multipliers 

(3.7) is maximized taking the three ditinct parts saparetly with the respective constraints on the parameters to 

obtain the following formulas. 

 

  
    

                                                                                                                                                            

 

   
  

    
     

   

     
     

   
   

   

                                                                                                                  

 

   
  

   
     

         

   
     

        
                                                                                           

 
The above re-estimation algorithm is an iterative procedure which, given any sequence of observations of a 

manpower system,                , begins by choosing initial values for the parameters   
 ,    

  and     
 . These, 

by (2.5), are used to realize the corresponding initial values for         
 . The estimation formulas are 

implemented during each iteration to obtain current estimates of the parameters. The process terminates at the 

convergence of the parameter estimates, when (3.7) is maximized.         

 

4 Comparison of Manpower Models of Type HMM      
 
In this section, the statistics that form the bases upon which manpower models of type HMM     can be 

compared are presented. Three such statistics that have been used in comparing Markov manpower models are 

Likelihood ratio statistic (  ), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

[4,8]. These are standard statistical tests widely applied in other areas of research [20,21,22]. The likelihood 

ratio test compares the adequacy of two models HMMl and HMMm on the basis of    distributed as 

 

          
     

     

     
 
                                                                                                                                  

 
In (4.1),       and       are the likelihood of HMMl and HMMm respectively.   is the degrees of freedom 

of the chi square distribution. The    test is used to test the hypothesis that the two models fit the data equally 

well; this is rejected if       
 
    . The rejection of the hypothesis of equality of good fit implies that HMMm 

fits the data better than HMMl.   is computed as 
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The degrees of fredom,  , is computed for each pair of HMM’s compared. For example, to compare HMM1 and 

HMM2, each of the k classes of the HMM1 contributes           free parameters, which altogether, for 

the k classes, gives    free parameters from HMM1. For the HMM2, each                has two hidden 

classes and    osbserved destination classes for any transition  from    giving             free 

parameters of the transition probabilities. The transitions within the hidden classes and the initial states 

respectively give        and       free parameters. Therefore each                contributes      

free parameters, giving altogether         free parameters from HMM2. Then                  
    In this way   is computed for all models compared in this paper. 

 

The AIC and BIC are defined as follows [8].  

 

                                                                                                                                                          
 

B                                                                                                                                                     
 

In (4.2) and (4.3) P and H are the number of parameters in the model,     , fitted and the number of 

observations respectively. The model that has the smallest values of AIC and BIC is selected as the one with the 

best fit. AIC and BIC are used in this paper for further confirmation of the results from the    test.  

 

4.1 Numerical illustration 
 

The foregoing developments are illustrated with a university senior academic manpower flow data presented in 

Table 1. In the data only the observed flow data of senior academic employees comprising senior lecturers, 

readers and professors with classes   ,    and   respectively are presented, which, from the nature of the 

manpower system, represent the cadres where hidden heterogeneity in manpower flows is assumed to be more 

pronounced.    corresponds to     , the class of those who leave the system through wastage. The manpower 

data covers 8 time periods,            In Table 1, the first entry, 807, for example, corresponds to 

       which gives the number of senior lecturers who remained in the same rank after the first time period; 

         ,            and so on. The EM re-estimation algorithm is employed on the data, using 

depmixS4 R package, to estimate the transition probabilities for the five model types. The transition probability 

matrices       ,   ,    and    are for HMM1, HMM2, HMM3, HMM4 and HMM5 respectively. The results in 

Table 2 are calculated based on the results from the re-estimation algorithm and the statistical test formulas for 

  , AIC and BIC statistics.      

 

Table 1. A university senior academic manpower flow data 

 

                 

        

    

     

    

   5 

   6 

     

     

807 

801 

788 

794 

820 

815 

826 

840 

50 

102 

81 

32 

72 

42 

61 

55 

40 

20 

18 

34 

27 

36 

30 

45 

25 

34 

20 

41 

37 

52 

45 

30 

        

     

    

    

    5 

   6 

     

    

0 

0 

0 

0 

0 

0 

0 

0 

182 

201 

194 

198 

211 

190 

185 

205  

31 

30 

28 

30 

35 

21 

42 

37 

10 

10 

12 

12 

21 

15 

26 

28 

        

    

     

0 

0 

0 

0 

0 

0 

560 

534 

521 

56 

50 

54 
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   5 

   6 

     

    

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

550 

578 

570 

540 

548 

46 

32 

64 

93 

71 

 





1 2 3 4

1

5 2

3

0.859   0.063    0.031    0.047

0.858   0.075    0.028  0.039

0.871   0.055   0.045   0.029

0.852   0.098   0.020   0.029

0.872   0.040   0.038   0.050

  0   0.746   0.151   0.103

0   0.841   0.0

C C C C

C

P C

C



93   0.066

0  0.828   0.123   0.049

0   0.790   0.131   0.079

0   0.824   0.131   0.045

  0       0   0.853  0.147

0       0     0.892   0.108

0       0    0.910   0.090

0       0    0.948  0.052

0       0    0.923   0.0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77

     





1 2 3 4

1

4 2

3

0.881   0.036    0.038    0.046

0.852   0.098    0.020  0.029

0.864   0.062   0.037   0.036

0.862   0.044   0.038   0.055

  0   0.826   0.127   0.047

0   0.841   0.093   0.066

0  0.746   0.151   0

C C C C

C

P C

C

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.103

0   0.790   0.131   0.079

  0       0   0.913  0.087

0       0     0.948   0.052

0       0    0.853   0.147

0       0    0.892  0.108
 







1 2 3 4

1

3 2

3

0.854   0.090    0.023    0.032

0.867   0.058    0.040  0.035

0.872   0.040   0.038   0.050

  0   0.825   0.127   0.048

0  0.746   0.151   0.103

0   0.817   0.115   0.068

  0  

C C C C

C

P C

C

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     0   0.928  0.072

0       0     0.869   0.131

0       0    0.905   0.095
       




 







1 2 3 4

1

2 2

3

0.868   0.051    0.039    0.041

0.854   0.090    0.023  0.032

  0   0.822   0.122   0.056

0  0.747   0.150   0.103

  0       0   0.874  0.126

0       0     0.918   0.082

C C C C

C

P C

C








 
 
 
 
 
 

  

 
 

  
 
 

1 2 3 4

1

1 2

3

0.863   0.066    0.033    0.038

  0   0.801   0.130   0.069

  0       0   0.904  0.096

C C C C

C

P C

C
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Table 2. Results of model comparison tests 

 

Compared 

models 

Log likelihood    AIC 

 

BIC 

 

Model with better fit 

on the basis of   , 

AIC and  BIC 

HMM1 vs 

HMM2 

-207.16303 

(-167.61626) 

79.0935 438.3261 

(383.2325) 

438.1133 

(382.8070) 

HMM2 

HMM1 vs 

HMM3 

-207.16303 

(-157.02183) 

100.2824 438.3261 

(386.0437) 

438.1133 

(385.4054) 

HMM3 

HMM1 vs 

HMM4 

-207.16303 

(-148.68615) 

116.9538 438.3261 

(393.3723) 

438.1133 

(392.5213) 

HMM4 

HMM1 vs 

HMM5 

-207.16303 

(-138.29987) 

137.7263 438.3261 

(396.5997) 

438.1133 

(395.5360) 

HMM5 

HMM2 vs 

HMM3 

-167.61626 

(-157.02183) 

21.1889 383.2325 

(386.0437) 

382.8070 

(385.4054) 

Equal 

HMM3 vs 

HMM4 

-157.02183 

(-148.68615) 

16.6714 386.0437 

(393.3723) 

385.4054 

(392.5213) 

Equal 

HMM4 vs 

HMM5 

-148.68615 

(-138.29987) 

20.7726 393.3723 

(396.5997) 

392.5213 

(395.5360) 

Equal 

(Note: The Value in bracket is for the second model in each case) 

 

5 Results and Discussion  
 

It can be observed in the estimated transition probabilities in the transition probability matrices in section 4.1 

that all the hidden Markov model types are realized from the data. For instance, in    five distinct probabilities 

of moving from each class to the other classes can be distinguished, which represent the transition probabilities 

from the five hidden classes within each of the observable classes. For example, in    (HMM5) moving from    

(senior lecturer) to    (reader) has values (arranged in descending order of magnitude)             , 

            ,             ,              and             corresponding to the probabilities of high 

movers, movers, above mediocres, mediocres and stayers making this transition respectively. In    (HMM4) the 

same movement from    to   has four values (arranged in descending order of magnitude)             , 

            ,             and              corresponding to the probabilities of high movers, movers, 

mediocres and stayers making this transition respectively. Similarly, in    (HMM3) the same movement from 

   to   has three values (arranged in descending order of magnitude)            ,              

and             corresponding to the probabilities of movers,  mediocres and stayers making this transition 

respectively. In    (HMM2) the same movement from    to    is made by movers and stayers with probabilities 

             and              respectively. In   (HMM1), however, the same movement from    to    is 

made with a single probability             . These results and their interpretations are based on the 

properties of the models presented in sections 1 and 2 and the estimation formulas in section 3. For instance, in 

HMM5 the elements of the transition probability matrix    used as example under this section correspond to the 

estimates of    
  in sections 2 and 3 as follows:    

              ,    
              ,    

         

     ,    
               and    

              . In all these estimates,      ,    ,   2 but 

         , meaning that the etimates are the five probability values of moving from the five hidden states 

(         ) within the senior lecturer class (   ) to reader class (  2), all under HMM5 (     ). Also, 

   
      

      
      

      
 . This agrees with the  specifications in sections 1, 2 and 3 that the high movers 

have the highest probability of  making any transition to other classes, followed in order by the movers, above 

mediocres, mediocres and stayers. Similar discussion can be made for all the parameters in all the five HMM 

types. It can be observed, based on the estimates of the transition probabilities in       ,   ,    and   , that all 

the five HMM types exist for the data considered. Based on this the validation of the models to check the 

significance of the parameters included in them can be carried out. This is done by using the comparison tests 

presented in section 4.     

 

In the model comparisons, the three tests based on   , AIC and BIC statistics lead to the same conclusion in 

each case (see Table 2). For example, in comparing the performance of HMM1 versus HMM2 (HMM1 vs 

HMM2)                  
            , AIC and BIC for HMM1 have values 438.3261 and 438.1133 

respectively, which are greater than the corresponding values of AIC and BIC for HMM2 obtained as 383.2325 
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and 382.8070 in Table 2. With this HMM2 is shown to have a better fit to the data than HMM1. In comparing 

the performance of HMM2 versus HMM3                  
             AIC and BIC for HMM2 have 

values 383.2325 and 382.8070 respectively, which are less than 386.0437 and 385.4054, the corresponding 

values of AIC and BIC for HMM3. This shows that HMM2 and HMM3 perform equally in their fit to the data. 

Other comparisons are similarly made. Table 2 shows the results of the model comparisons. It can be seen in 

Table 2 that all the four models, HMM2, HMM3, HMM4 and HMM5, which are more homogeneous than 

HMM1, are significantly better than HMM1 which is more parsimonious but less homogeneous. However, after 

HMM2 all other models of higher homogeneity are only as good as the preceding model in the ladder of 

homogeneity. 

 

6 Conclusion 
 
In this paper, it has been shown how a seemingly simple Markov manpower system, with personnel classes 

arising from observable data only, can be transformed to a system with both observable and hidden personnel 

classes through hidden Markov model approach. This produces Markov manpower models that are more 

homogeneous with respect to personnel inter-class transitions.       

 
It has also been demonstrated that homogeneity can be considered a more important property than parsimony in 

Markov manpower models. However, there is a point in the level of homogeneity (number of hidden classes 

allowed) beyond which there is no more gain in adding more hidden classes to achieve homogeneity. It may be 

possible to define this point in the level of homogeneity beyond which there is no more gain in adding more 

hidden classes. This may also be data dependent; this is left out for further research.                                 
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