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ABSTRACT

The reflection carried out in this manuscript concerns the construction of prototypes of hybrid
solitary waves, solutions of the (2+1)-dimensional complex Ginzburg-Landau equation. The
principle of construction consists in injecting into the equation to be solved an ansatz that one
would like solution, and that its analytical sequence results from a combination of the analytical
sequences of the classical solitary waves.
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Then, the constraints imposed by the resolution allow to extract exact or approximate solution. As
part of this work, the solution function to be constructed from the start is made up of a combination
of four analytical sequences of solitary waves of the kink and pulse type. To this end, we have
obtained, using a rigorous mathematical approach, important results whose graphic exploitations
have made it possible to better characterize them.

Keywords: Hybridization of solitary wave solutions; (2+1)-dimensional complex Ginzburg-Landau
equation; Bogning-Djeumen Tchaho-Kofané method; analytical sequences of the classical
solitary waves.

1 INTRODUCTION

In everyday life, human beings as well as other
living beings in the universe face the expression
of many nonlinear phenomena [1-3; 4; 5],
which at times, are detrimental to their well-
being. To preserve themselves against this,
many researchers in mathematical physics, in
their commitments to understand and explain
these nonlinear and dispersive phenomena, try
to design nonlinear and dispersive evolution
equations [2; 6-11] that can make it possible
to describe the observed phenomena. One
of the major particularities of the proposed
mathematical models is that they admit an
infinity of solutions, the most robust of which
are solitary waves or solitons. These solitary
wave solutions are either exact, approximate
or forced; thus justifying the important role that
these models play in soliton theory [12-14]. The
formulation of many nonlinear and dispersive
evolution equations makes solving them very
complicated. Faced with these complications,
a good number of effective direct methods [14]
to obtain the exact solutions of these models
have been proposed, in particular the homoclinic
test technique [15-17], Exp-function method [18],
the F-expansion method [19], the extended tanh-
function method [20; 21], and so on. Hybrid
solutions [22-24] formed by an assembly of
analytical sequences of the classical solitary
waves are very difficult to obtain. These last two
decades have seen the birth of other techniques
for solving some of the proposed models, which,
apart from exact solutions, also offer approximate
or forced solutions with several solitons, such as
the Bogning-Djeumen Tchaho-Kofané method
(BDKm) [25-30] extended to the implicit Bogning
functions(iB-functions) [29-32]. Therefore, it is
for adduce an adequate response to this lack
of supply the literature with these other forms

of multi-solitary wave solutions that this work is
registers.

The aim of this work is to propose new
exact, approximate or forced complex solitary
wave solutions of the (2+1)-dimensional complex
Ginzburg-Landau equation (2D CGLE) by the
use of the BDKm extended to the iB-functions.
This work is organized as follows: Section
2 is responsible for presenting the studied
model while Section 3 briefly displays the
implementation of the BDKm extended to iB-
functions. Section 4 is dedicated to the obtained
analytical and graphical results. Section 5 deals
with the discussions while Section 6 articulates
the conclusion and the outlook.

2 THE USED MATHEMATI-
CAL MODEL

A class of the Schrödinger equation with a
nonlinear term is the well-known Ginzburg-
Landau equation[33]. This equation is one
of the most important nonlinear equations in
physics[1]. Various forms of the Ginzburg-
Landau equation are used to describe
a wide variety of phenomena ranging
from nonlinear waves to liquid in physics
(case of hydrodynamic instabilities) through
superconductivity, superfluidity and Bose-
Einstein condensation. Strengthened by it all,
the mathematical model on which we have set
our sights is the (2+1)-dimensional complex
Ginzburg-Landau equation which takes the
following form[17; 34-38]

iΦt +
1

2
Φxx +

1

2
(α− iG)Φyy + (1− iλ)|Φ|2Φ = iγΦ.

(2.1)

Herein, Φ is a complex valued function and
α,G, λ, γ are constants real parameters. Eq.(1)
was used in[35] to construct new exact wave
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solutions including homoclinic wave, kink wave
and soliton solutions by the aid of the auxiliary
function method, generalized Hirota method and
the ansatz function technique under the certain
constraint conditions of coefficients in equation,
respectively. Then, its was also used in[36] to
obtain new exact periodic and blow up solutions
via the homogeneous balance principle and
general Jacobi elliptic-function method, and when

α = λ = 0, It takes, the name of real
equation of Ginzburg-Landau. Recently in[37], an
investigation was carried out in order to formulate
new shape of the chirped soliton solutions for this
equation as well as a study of the modulation
instability gain spectrum under the effect of the
power incident and the transverse wave number
using the linear stability technic. Let us now,
glance off the method to be used for the following.

3 BRIEF PRESENTATION OF THE USED METHOD
The BDKm [25-29; 39-49] extended to iB-functions [29-32] and used within the framework of this
work applies to some partial differential equation types in which coexist the nonlinear terms and the
dispersive terms (and others) under the form:

X(Φ,Φt,Φxy,Φxzt,Φty,Φyz,Φttz,Φxxx, ..., |Φ|2, (Φ|Φ|2)t, ...) = 0, (3.1)

where Φ(x, y, z, t) is an unknown function to be determined,X is some function of Φ and its derivatives
with respect to x, y, z, t and includes the highest order derivatives and the nonlinear terms. Most often,
we use the change of variables Φ(x, t) = Ω(ξ), ξ =

∑p
k=0 αkxk. In the case where Φ is a function of

x, y, z and t, ξ becomes ξ = x+ y + z − νt, where ν is the wave speed. In this context, eq.(2) gives
rise to the ordinary differential equation(ODE) below:

XODE(Ω,Ω
′
,Ω
′′
, ...,Ω

′
|Ω|2, ...) = 0, (3.2)

where Ω
′
, Ω
′′

represent respectively the first and second derivatives of the envelope Ω with respect
to ξ. Then, the solution we are looking for can be expressed under contracted form

Ω(ξ) =
∑
ij

µijJj,i(ηξ) , (3.3)

where η is a real constant, µij are the unknown constants to be determined and Jn,m(αx) is the
iB-function whose explicit hyperbolic form is written as:

Jn,m(

p∑
i=0

αixi) =
sinhm(

∑p
i=0 αixi)

coshn(
∑p
i=0, αixi)

. (3.4)

where αi, (i = 0; 1; 2; ...; p) are the parameters associated to the independent variables xi, (i =
0; 1; 2; ...; p), m and n are powers of both terms of eq.(5). For more details, see [29-32]. Thus,
inserting eq.(4) into (3) gives rise to the main equation of ranges

∑
ijn

An(µij , η, ν)Jn,0(ηξ) +
∑
ijm

Bm(µij , η, ν)Jm,1(ηξ) +
∑
ijk

Ck(µij , η, ν)J−k,0(ηξ) +
∑
ijl

Dl(µij , η, ν)J−l,1(ηξ)

+
∑
ij

E(µij , η, ν)J0,0(ηξ) = 0,
(3.5)

where i, j, k, l are positive natural integers and n,m the real numbers[29-32]. It can be noted here
that eq.(6) is the one from which all the possible analyzes result. The identification of coefficients
An(µij , η, ν), Bm(µij , η, ν), Ck(µij , η, ν), Dl(µij , η, ν), E(µij , η, ν) at zero makes it possible to obtain
the ranges of equations whose the resolutions could allow to obtain the expressions of the unknown
coefficients µij . It is important to point out here that, the resolution of these series of equations often
leads to exact solutions[29; 42; 47; 49] for certain models and according to the form of the considered
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ansatz while, for other models and according to the form of the chosen ansatz , it (resolution) leads
to approximate or forced solutions. In the case of approximate or forced solutions, the priority in the
order of resolution is given to those from the highest clues of Jn,0(ηξ), then to those of the highest
clues of Jm,1(ηξ). But, otherwise we go to those from the coefficients of lowest clues of J−k,0(ηξ) and
J−l,1(ηξ). Here, the priority makes reference to the serie that permits to obtain good results or merely
that tends more to the sought exact solution. Very often, equation series obtained by identifying at
zero the coefficient of Jn,0(ηξ) gives satisfaction. For more understanding, one can refer to [25-30;
39-49].

4 RESULTS
This part of the work deals with the construction of the solitary wave solutions of eq.(1) using the
BDKm extended to the iB-function. The BDKm, by its implementation, made it possible to organize
the obtained results in three large sections: the production of ranges of equations, the resolution of
obtained ranges of equations and the graphical representations of some obtained solutions in order
to better agree with theoretical predictions.

4.1 Production of the Range Equations
The range equations production is a tedious exercise which, in part, depends on a judicious choice
of the analytical form of the solution to be constructed as well as a good mastery of the properties of
iB-functions. So, consider the solution to be constructed in the compact form as being

Φ(x, y, t) = Ψ[ξ(x, y, t)]eiφ(x,y,t), (4.1)

with ξ(x, y, t) = x+y−νt, φ(x, y, t) = −kx− sy+ωt and where k, s ω are the real wave parameters,
ν the wave speed. Substituting eq.(7) into (1) yields to the travelling wave equation which describes
the dynamics of the amplitude Ψ below

[ω +
1

2
k
2

+
1

2
αs

2
+ i(γ −

1

2
Gs

2
)]Ψ + [Gs + i(αs + k + ν)]Ψξ + [

1

2
iG−

1

2
(1 + α)]Ψξξ + (iλ− 1)|Ψ|2Ψ = 0. (4.2)

The solution to be constructed is written in the form

Ψ(ξ) = A1J2,1(ηξ) + iB1J1,1(ηξ) +A2J3,1(ηξ) + iB2J2,2(ηξ), (4.3)

where A1, B1, A2 and B2 are real constants to be determined, η, the inverse of the width at half-
height, of each component of the choosen ansatz and i, an imaginary such that i2 = −1. In eq.(9),
the respective coefficient terms A1 and A2 are hybrid solitary waves[22-24] while the respective
coefficient terms B1 and B2 are the well known classic solitons under the names: Kink and Dark.
Thereafter, the consideration of eq.(9) into (8) provides the main equation of ranges in the following
contracted form

8∑
s=0

Ps(A1, B1, A2, B2, η, G, k, s, λ, γ, α, ω, ν)Js,0(ηξ) +
9∑
j=1

Qj(A1, B1, A2, B2, η, G, k, s, λ, γ, α, ω, ν)Jj,1(ηξ)

+ i[
8∑

s′=0

P
′
s′ (A1, B1, A2, B2, η, G, k, s, λ, γ, α, ω, ν)Js′,0(ηξ) +

9∑
j′=1

Q
′
j′ (A1, B1, A2, B2, η, G, k, s, λ, γ, α, ω, ν)Jj′,1(ηξ)] = 0.

(4.4)

Underscore herein that eq.(10) presents two ranges of equations, each consisting of two subranges
coming from real and imaginary parts respectively: Ps = 0, P ′s′ = 0 and Qj = 0, Q′j′ = 0.By
explaining these equations, we obtain four subranges of equations of unknowns A1, B1, A2, B2 and
apportioned as follows
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4.1.1 First range of equations

- From the real part:

the term in J8,0(ηξ),

−λA2
2B2 = 0, (4.5)

the term in J7,0(ηξ),

−2λA1A2B2 = 0, (4.6)

the term in J6,0(ηξ),

B2[λ(2A2
2 +B2

2)− λA2
1] = 0, (4.7)

the term in J5,0(ηξ),

A1B2(4λA2 − 2B1) = 0, (4.8)

the term in J4,0(ηξ),

B2[2λA2
1 + 3A2B1 − 3λ(B2

1 +B2
2))− λA2

2 − 3η2G] + 3ηGsA2 = 0, (4.9)

the term in J3,0(ηξ),

A1[B2(4B1 − 2λA2) + 2ηGs] = 0, (4.10)

the term in J2,0(ηξ),

B2[3λ(2B2
1 +B2

2)− λA2
1 −A2B1 + 2η2G+ γ − 1

2
Gs2]− [2ηGsA2 + η(αs+ k + ν)B1] = 0, (4.11)

the term in J1,0(ηξ),

−A1(2B1B2 + ηGs) = 0, (4.12)

the term in J0,0(ηξ),

B2[−λ(3B2
1 +B2

2)− γ +
1

2
Gs2] = 0, (4.13)

- From the imaginary part:

the term in J8,0(ηξ),

−A2
2B2 = 0, (4.14)

the term in J7,0(ηξ),

−2A1A2B2 = 0, (4.15)

the term in J6,0(ηξ),

B2(2A2
2 +B2

2 −A2
1] = 0, (4.16)

the term in J5,0(ηξ),

A1B2(2λB1 + 4A2) = 0, (4.17)

5
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the term in J4,0(ηξ),

B2[2A2
1 − 3λA2B1 − (3B2

1 + 3B2
2 +A2

2)− 3η2(1 + α)] + 3η(αs+ k + ν)A2 = 0, (4.18)

the term in J3,0(ηξ),

A1[−B2(2A2 + 4λB1) + 2η(αs+ k + ν)] = 0, (4.19)

the term in J2,0(ηξ),

B2[6B2
1 + 3B2

2 −A2
1 + λA2B1 + 2η2(1 + α)− ω − 1

2
k2 − 1

2
αs2] + ηGsB1 − 2η(αs+ k + ν)A2 = 0,

(4.20)

the term in J1,0(ηξ),

A1[2λB1B2 − η(αs+ k + ν)] = 0, (4.21)

the term in J0,0(ηξ),

B2(−3B2
1 −B2

2 + ω +
1

2
k2 +

1

2
αs2) = 0, (4.22)

4.1.2 Second range of equations

- From the real part:

the term in J9,1(ηξ),

A3
2 = 0, (4.23)

the term in J8,1(ηξ),

3A2
2A1 = 0, (4.24)

the term in J7,1(ηξ),

A2[3A2
1 − (A2

2 +B2
2) + λA2B2] = 0, (4.25)

the term in J6,1(ηξ),

A1[A2
1 − (3A2

2 +B2
2) + 2λA2B1] = 0, (4.26)

the term in J5,1(ηξ),

λB1(A2
1 −A2

2 − 3B2
2) +A2[B2

1 +B2
2 − 3A2

1 + 6η2(1 + α)] = 0, (4.27)

the term in J4,1(ηξ),

A1[B2
1 +B2

2 −A2
1 − 2λA2B1 + 3η2(1 + α)] = 0, (4.28)

the term in J3,1(ηξ),

B1[λ(B
2
1 + 6B

2
2)− λA2

1 + η
2
G]− A2(B

2
1 + B

2
2) + A2[ω +

1

2
k
2

+
1

2
αs

2 − 2η
2
(1 + α)]− 2η(αs + k + ν)B2 = 0, (4.29)

the term in J2,1(ηξ),

A1[−(B2
1 +B2

2) + ω + +
1

2
k2 +

1

2
αs2 − 1

2
η2(1 + α)] = 0, (4.30)
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the term in J1,1(ηξ),

B1[−λ(B2
1 + 2B2

2)− γ +
1

2
Gs2) = 0, (4.31)

- From the imaginary part:

the term in J9,1(ηξ),

−λA3
2 = 0, (4.32)

the term in J8,1(ηξ),

−3λA2
2A1 = 0, (4.33)

the term in J7,1(ηξ),

A2[λ(A2
2 +B2

2 − 3A2
1) +A2B1] = 0, (4.34)

the term in J6,1(ηξ),

A1[2A2B1 + λ(3A2
2 +B2

2 −A2
1)] = 0, (4.35)

the term in J5,1(ηξ),

A2[3λA2
1 − λ(B2

1 +B2
2)− 6η2G] +B1[A2

1 − (A2
2 + 3B2

2)] = 0, (4.36)

the term in J4,1(ηξ),

A1[λA2
1 − λ(B2

1 +B2
2)− 2A2B1 − 3η2G] = 0, (4.37)

the term in J3,1(ηξ),

A2[λ(B2
1 +B2

2) + γ − 1

2
Gs2 + 2η2G] +B1[B2

1 + 6B2
2 −A2

1 + η2(1 + α)] + 2ηGsB2 = 0, (4.38)

the term in J2,1(ηξ),

A1[λ(B2
1 +B2

2) + γ − 1

2
Gs2 +

1

2
η2G] = 0, (4.39)

the term in J1,1(ηξ),

B1[−(B2
1 + 2B2

2) + ω +
1

2
k2 +

1

2
αs2] = 0, (4.40)

4.2 Resolution of the Range Equations after Analysing

In view of the structure of the above ranges of equations , we realize that one can has: A1 = 0, B1 =
0, A2 = 0, B2 = 0, λ = 0, γ = 0, s = 0 or G = 0. Therefore, we are interested in cases which lead to
non-trivial solutions. Thus, two types of solutions are resulting (A and B).
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A: Solutions type I: case A1 = 0, B1 6= 0, A2 6= 0, B2 6= 0, λ 6= 0

In the case of these Solutions type I, only the equations of the first range suffice for the determination
of the approximate solutions that we seek to construct. This being, eqs.(12), (14), (16), (18), (21),
(23), (25) and (27) are verified while eqs.(11), (13) , (20) and (22) suggest that we take A2 = B2 = 0.
Which supposes that, the contribution of these last four equations is negligible at these orders of
clues of the corresponding iB-functions. Moreover, eqs. (15), (17) and (19) lead respectively to

B2[3A2B1 − 3λ(B2
1 +B2

2)− λA2
2 − 3η2G] + 3ηGsA2 = 0, (4.41)

B2[3λ(2B2
1 +B2

2)−A2B1 + 2η2G+ γ − 1

2
Gs2]− [2ηGsA2 + η(αs+ k + ν)B1)] = 0, (4.42)

and

1

2
Gs2 − γ − λ(3B2

1 +B2
2) = 0, (4.43)

while eqs.(24), (26) and (28) successively give

B2[−3λA2B1 − (3B2
1 + 3B2

2 +A2
2)− 3η2(1 + α)] + 3η(αs+ k + ν)A2 = 0, (4.44)

B2[6B2
1 + 3B2

2 + λA2B1 + 2η2(1 + α)− ω − 1

2
k2 − 1

2
αs2] + ηGsB1 − 2η(αs+ k + ν)A2 = 0,

(4.45)

and

−3B2
1 −B2

2 + ω +
1

2
k2 +

1

2
αs2 = 0. (4.46)

Then, combining eqs.(49) and (52) leads to the following constraint

ω =
1

2
(
G

λ
− α)s2 − γ

λ
− 1

2
k2. (4.47)

Firstly, combining eqs.(47) and (50), it comes

B1 =
m1B2 +m2A2

m3B2A2
, (4.48)

where m1 = η2[G+λ(1+α)],m2 = η[λ(αs+k+ν)−Gs],m3 = 1−λ2 with λ 6= ±1 and m3B2A2 6= 0.
Secondly, taking into account eq.(48) in (51) provides another expression of coefficient B1 in the form

B1 =
n1B2 + n2A2

n3B2A2 + n4
, (4.49)

where, considering eq.(53): n1 = 2η2[G−(1+α)λ] et n2 = 2ηλ(αs+k+ν)−2ηGs, n3 = 1+λ2, n4 =
ηλGs+η(αs+k+ ν) with n3B2A2 +n4 6= 0. Since the coefficient B1 is unique, the equality B1 = B1

highlights the quadratic equation with two unknowns B2 and A2 below

(n1m3 − n3m1)A2B
2
2 + (n2m3 − n3m2)B2A

2
2 − n4m1B2 − n4m2A2 = 0. (4.50)

Since each of the two coefficients must be real, it is necessary to fix one or the other coefficient in R∗

in order to reduce the eq.(56) to a quadratic equation with one unknown. Note also that this equation
constitutes the fulcrum equation from which all the analyzes will be articulated with regard to these
type I solutions for λ 6= 0. This Solution Type I gives rise to two large families of analytical solutions
of eq.(1).

8
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4.2.1 First large family of analytical solutions: Case: A1 = 0, B1 6= 0, A2 =
β, β ∈ R∗, B2 6= 0, λ 6= 0

Under these conditions, eq.(56) becomes

θB2
2 + µB2 + δ = 0, (4.51)

where θ = (n1m3−n3m1)β, µ = (n2m3−n3m2)β2−n4m1 and δ = −n4m2β. Eq.(57) is a quadratic
equation with one unknown B2 which gives rise to four families, three of which come from special
cases.

4.2.1.1 Family I of solutions: Particular case I: θ 6= 0, µ 6= 0, δ = 0

For δ = 0⇐⇒ n4 = 0 or m2 = 0, we obtain two subfamilies of solutions.

4.2.1.1.1 Subfamily I of family I of solutions: case: A2 = β, β ∈ R∗, n4 = 0,m2 6=
0

When n4 = 0 ⇐⇒ ν = −λGs − αs − k, only the quantities n2 and m2 of the amplitudes B1 and
B2 are modified and become respectively: n′2 = −2ηGs(1 + λ2) and m′2 = −3ηGs(1 + λ2). Thus,
equations (55) and (57) yield respectively

B1 =
n′2
n3

1

B2
+

n1

n3β
, (4.52)

and

B2 =
n3m

′
2 − n′2m3

n1m3 − n3m1
β. (4.53)

This being so, we obtain subfamily I of Family I of Solutions type I in the form

Φ(x, y, t) = {βJ3,1[η(x+ y − νt)] + i[
n′2
n3

1

B2
+

n1

n3β
J1,1[η(x+ y − νt)]

+
n3m

′
2 − n′2m3

n1m3 − n3m1
βJ2,2[η(x+ y − νt)]}ei(−kx−sy+ωt),

(4.54)

where B2 is given by eq.(59) with n3 6= 0 and n1m3 6= n3m1. Eq.(60) indicates that, for given values
of n3,m

′
2, n
′
2,m3, n1 and m1, the amplitudes B2 is a linear fonction of A2 = β, β ∈ R∗.

4.2.1.1.2 Subfamily II of family I of solutions: case: A2 = β, β ∈ R∗, n4 6=
0,m2 = 0

When m2 = 0⇐⇒ ν = Gs
λ
−αs− k, only the coefficients n2 and n4, considering ν, are modified and

correspond to, respectively : n2 = 0 and n′4 = Gs
λ

(1 + λ2). Thus, eqs.(55) and (57) successively give

B1 =
n1B2

n3βB2 + n′4
, (4.55)

and

B2 =
n′4m1

(n1m3 − n3m1)

1

β
, (4.56)

9
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where (n1m3 − n3m1)β 6= 0, n3βB2 + n′4 6= 0 with B2 given by eq.(62). So, we obtain the subfamily
II of Family I of Solutions type I as

Φ(x, y, t) = {βJ3,1[η(x + y − νt)] + i[
n1B2

n3βB2 + n′4
J1,1[η(x + y − νt)] +

n′4m1

(n1m3 − n3m1)

1

β
]J2,2[η(x + y − νt)]}ei(−kx−sy+ωt),

(4.57)

where (n1m3 − n3m1)β 6= 0, n3βB2 + n′4 6= 0 with B2 given by eq.(62). Eq.(62) indicates that, for
this subfamily of solutions, the coefficients B2 and A2 = β, β ∈ R∗, have antagonistic actions: when
B2 is high A2 is low vice versa.

4.2.1.2 Family II of solutions: Particular case II: θ 6= 0, µ = 0, δ 6= 0

For µ = 0, we obtain the expression of coefficient A2 = β, β ∈ R∗ under the form

β = ±
√

n4m1

n2m3 − n3m2
, (4.58)

where (n2m3 − n3m2)n4m1 � 0. So, B1 is given by eq.(55), and eq.(57) gives

B2 = ±
√

n4m2

(n1m3 − n3m1)
, (4.59)

where n4m2(n1m3 − n3m1) � 0 with B2. Then, we obtain the Family II of Solutions Type I below

Φ(x, y, t) = {±
√

n4m1

n2m3 − n3m2
J3,1[η(x+ y − νt)] + i[

n1B2 + n2β

n3βB2 + n4
J1,1[η(x+ y − νt)]

±
√

n4m2

n1m3 − n3m1
J2,2[η(x+ y − νt)]]}ei(−kx−sy+ωt),

(4.60)

where B2 is given by eq.(65) with constraint of eq.(53), n4m2(n1m3 − n3m1) � 0 and n4m1(n2m3 −
n3m2) � 0. Notice herein that, coefficients B2 and A2 = β, β ∈ R∗ are independent of each other
unlike the two previous cases.

4.2.1.3 Family III of solutions: Particular case III: θ = 0, µ 6= 0, δ 6= 0

When θ = 0⇐⇒ n1m3 = n3m1, we obtain from this equivalency that

G =
λ3 − 3λ

3λ2 − 1
(1 + α), (4.61)

with λ 6= ±
√

3
3

. Thus, B1 is given by eq.(55) with A2 = β, β ∈ R∗, and then, eq.(57) delivers

B2 =
n4m2β

(n2m3 − n3m2)β2 − n4m1
. (4.62)

We obtain the Family III of Solutions Type I as below

Φ(x, y, t) = {βJ3,1[η(x+ y − νt)] + i[
n1B2 + n2β

n3βB2 + n4
J1,1[η(x+ y − νt)]

+
n4m2β

(n2m3 − n3m2)β2 − n4m1
J2,2[η(x+ y − νt)]]}ei(−kx−sy+ωt),

(4.63)

where B2 is given by eq.(68) with n3βB2 +n4 6= 0, (n2m3−n3m2)β2−n4m1 6= 0. In the case of this
family III of the Solutions Type I , the coefficient B2 is a rational fraction of the function n4m2β by
the function (n2m3 − n3m2)β2 − n4m1 of variable A2 = β, β ∈ R∗ .

10
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4.2.1.4 Family IV of solutions: general case : θ 6= 0, µ 6= 0, δ 6= 0

Under these conditions, eq.(57) has for discriminant4 = µ2−4θδ = (n2m3−n3m2)2β4+[4n4m2(n1m3−
n3m1) − 2n4m1(n2m3 − n3m2)]β2 + n2

4m
2
1. Thus, for 4 ≥ 0, eq.(57) admits two distinct solutions

below

B2 =
(n3m2 − n2m3)β2 + n4m1 ±

√
4

2(n1m3 − n3m1)β
. (4.64)

So, we obtain the expression of the Family IV of Solutions Type I as follows

Φ(x, y, t) = {βJ3,1[η(x+ y − νt)] + i[
n1B2 + n2β

n3βB2 + n4
J1,1[η(x+ y − νt)]

+
(n3m2 − n2m3)β2 + n4m1 ±

√
4

2(n1m3 − n3m1)β
J2,2[η(x+ y − νt)]]}ei(−kx−sy+ωt),

(4.65)

with n1m3 6= n3m1 and n3βB2 + n4 6= 0. 4 is a bisquare polynomial in β which must frame the
choice of acceptable values of A2 = β, β ∈ R∗ during the propagation tests in approved laboratories.

4.2.2 Second large family of analytical solutions: Case:A1 = 0, A2 6= 0, B1 6=
0, B2 = χ, χ ∈ R∗, λ 6= 0

For B2 = χ, χ ∈ R∗, eq.(56) produces a quadratic equation with an unknown coefficient A2 below

θ′A2
2 + µ′A2 + δ′ = 0. (4.66)

where θ′ = (n2m3 − n3m2)χ, µ′ = (n1m3 − n3m1)χ2 − n4m2 and δ′ = −n4m1χ. Eq.(72) gives rise
to four families, three of which come from special cases and which taking into account eq.(53).

4.2.2.1 Family I of the Second large family of analytical solutions: Particular
case 1: δ′ = 0, A1 = 0, A2 6= 0, B1 6= 0, B2 = χ, χ ∈ R∗, λ 6= 0

For δ′ = 0, we obtain n4 = 0 or m1 = 0⇐⇒ ν = −λGs−αs−k or G = −λ(1+α). Thus, we discover
for this first family of solutions, three subfamilies of solutions: cases n4 = 0 ⇐⇒ ν = −λGs − αs −
k,m1 6= 0; n4 6= 0,m1 = 0 ⇐⇒ G = −λ(1 + α) and n4 = 0,m1 = 0 ⇐⇒ ν = −λGs − αs − k and
G = −λ(1 + α)⇒ ν = [λ2(1 + α)− α]s− k.

4.2.2.1.1 First subfamily of Family I of the Second large family of analytical
solutions: sub-case 1: δ′ = 0⇐⇒ n4 = 0⇒ ν = −λGs− αs− k,m1 6= 0

Under these conditions, only coefficients n2 and m2 are impacted and become, respectively: n′′2 =
−2ηGs(λ2 + 1) and m′′2 = −3ηGs(λ2 + 1). Thenceforward, we obtain from eq.(72)

A2 =
(n3m1 − n1m3)χ

n′′2m3 − n3m′′2
. (4.67)

Given expressions of n′′2 and m′′2 above, eqs.(7), (9), (55) and (73) lead to the first sought subfamily
as being

Φ(x, y, t) = { (n3m1 − n1m3)χ

n′′2m3 − n3m′′2
J3,1[η(x+ y − νt)] + i[(

n1

n3

1

A2
+

n′′2
n3χ

)J1,1[η(x+ y − νt)]

+ χJ2,2[η(x+ y − νt)]]}ei(−kx−sy+ωt),

(4.68)

where ω and A2 are given by eqs.(53) and (73), respectively, with n′′2m3 6= n3m
′′
2 and n3 6= 0. Eq.(74)

shows that, for given values of n3,m1, n1,m3, n
′′
2 and m′′2 , the amplitude A2 is a linear fonction of

B2 = χ, χ ∈ R∗.
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4.2.2.1.2 Second subfamily of Family I of the Second large family of analytical
solutions: sub-case 2: δ′ = 0⇐⇒ n4 6= 0,m1 = 0⇒ G = −λ(1 + α)

For δ′ = m1 = 0 ⇒ G = −λ(1 + α), eq.(53) and the expressions of n1, n2, n4,m2 undergo
modifications and become, respectively: ω′ = − 1

2
(1 + 2α)s2 − γ

λ
− 1

2
k2, n′1 = −4λη2(1 + α), n′′′2 =

2ηλ[s(1 + α) + k + ν], n′′4 = ηs[α − λ2(1 + α)] + η(k + ν) and m′′′2 = 3ηλ[(1 + α)s + k + ν]. In this
context, eq.(72) leads to

A2 =
n′1m3χ

2 − n′′4m′′′2
n3m′′′2 − n′′′2 m3

. (4.69)

The previous new expressions of ω′, n′1, n′′′2 , n′′4 and m′′′2 , associated with eqs.(7), (9), (55) and (75),
produce this second subfamily of solutions in the form

Φ(x, y, t) = { n
′
1m3χ

2 − n′′4m′′′2
(n3m′′′2 − n′′′2 m3)χ

J3,1[η(x+ y − νt)] + i[
n′1χ+ n′′′2 A2

n3χA2 + n′′4
J1,1[η(x+ y − νt)]

+ χJ2,2[η(x+ y − νt)]]}ei(−kx−sy+ω′t),

(4.70)

whereA2 is given by eq.(75) with n3m
′′′
2 6= n′′′2 m3 and n3χA2+n′′4 6= 0. For this subfamily of solutions,

the coefficient A2 is a parabolic function of the coefficient B2 = χ, χ ∈ R∗.

4.2.2.1.3 Third subfamily of Family I of the Second large family of analytical
solutions: sub-case 3: δ′ = 0 ⇒ n4 = 0 ⇐⇒ ν = −λGs − αs − k,m1 = 0 ⇐⇒
G = −λ(1 + α)

For m1 = n4 = 0, we obtain successively: G = −λ(1+α) and ν′ = [λ2(1+α)−α]s−k. Eq.(53) leads
to ω′ previously obtained, while n1, n2 and m2 undergo a modification and become, respectively:
n′1 = −4λη2(1+α), n′′′′2 = 2ληs[λ2(1+α)+1] and m′′′′2 = ληs(1+α)(λ2 +1). Thus, eq.(72) provides

A2 =
n′1m3χ

n3m′′′′2 − n′′′′2 m3
. (4.71)

Therewith, we obtain this third subfamily, considering the expressions of ν′, n′1, n′′′′2 ,m′′′′2 as well as
eqs.(7), (9), (55) and (77), in the form

Φ(x, y, t) = { n′1m3χ

n3m′′′′2 − n′′′′2 m3
J3,1[η(x+ y − ν′t)] + i[(

n′1
n3

1

A2
+
n′′′′2

n3χ
)J1,1[η(x+ y − ν′t)]

+ χJ2,2[η(x+ y − ν′t)]]}ei(−kx−sy+ω′t),

(4.72)

where A2 is given by eq.(77) with n3m
′′′′
2 6= n′′′′2 m3 and n3 6= 0. Herein, coefficients A2 is a linear

function of coefficient B2 = χ, χ ∈ R∗ as in eq.(74).

4.2.2.2 Family II of the Second large family of analytical solutions: Particular
case 2: µ′ = 0, δ′ 6= 0, θ′ 6= 0, A1 = 0, A2 6= 0, B1 6= 0, B2 = χ, χ ∈ R∗, λ 6= 0

For µ′ = 0, we obtain

χ = ±
√

n4m2

n1m3 − n3m1
. (4.73)

Then, eq.(72) delivers

A2 = ±
√

n4m1

n2m3 − n3m2
. (4.74)
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Subsequently, taking into account eq.(79) in (55), as well as eqs.(9), (79) and (80) in (7) produce this
second family of solutions under the form

Φ(x, y, t) = {±
√

n4m1

n2m3 − n3m2
J3,1[η(x+ y − νt)] + i[

n1χ+ n2A2

n3χA2 + n4
J1,1[η(x+ y − νt)]

±
√

n4m2

n1m3 − n3m1
J2,2[η(x+ y − νt)]]}ei(−kx−sy+ωt),

(4.75)

where χ andA2 are given by eqs.(79) and (80) with constraints n4m1(n2m3−n3m2) � 0, n4m2(n1m3−
n3m1) � 0 and eq.(53). Notice also herein that, coefficients A2 and B2 = χ, χ ∈ R∗ are independent
of each other.

4.2.2.3 Family III of the Second large family of analytical solutions: Particular
case 3: θ′ = 0, µ′ 6= 0, δ′ 6= 0, A1 = 0, A2 6= 0, B1 6= 0, B2 = χ, χ ∈ R∗, λ 6= 0, s 6= 0

For θ′ = 0, we obtain λ = ±
√

3
3

or G = (αs+ k + ν)λ
s

with s 6= 0. This gives rise to three subfamilies
of solutions.

4.2.2.3.1 Subfamily 1 of Family III of the Second large family of analytical
solutions: Sub-case 1: λ = ±

√
3
3 ;G 6= (αs+ k + ν)λs ;B2 = χ, χ ∈ R∗

For λ = ±
√

3
3
, G 6= (αs+ k + ν)λ

s
, Eq.(72) reveals that

A2 =
n4m1χ

(n1m3 − n3m1)χ2 − n4m2
, (4.76)

where χ 6= ±
√

n4m2
n1m3−n3m1

. Consideration of B2 = χ, χ ∈ R∗ in eq.(55) and insertion of eqs.(9), (55)

and (82) in (7) provide this first subfamily as being

Φ(x, y, t) = { n4m1χ

(n1m3 − n3m1)χ2 − n4m2
J3,1[η(x+ y − νt)] + i[

n1χ+ n2A2

n3χA2 + n4
J1,1[η(x+ y − νt)]

+ χJ2,2[η(x+ y − νt)]]}ei(−kx−sy+ωt),

(4.77)

with χ 6= ±
√

n4m2
n1m3−n3m1

, (n1m3 − n3m1)n4m2 � 0, χ 6= − n4
n3A2

and where ω and A2 are given

by eqs.(53) and (82), respectively. In the case of this Subfamily 1 of Family III of the Second
large family, the coefficient A2 is a rational fraction of the function n4m1χ by the function (n1m3 −
n3m1)χ2 − n4m2 of variable B2 = χ, χ ∈ R∗ .

4.2.2.3.2 Subfamily 2 of Family III of the Second large family of analytical
solutions: Sub-case 2: λ 6= 0;λ 6= ±

√
3
3 ;G = (αs+ k + ν)λs ;B2 = χ, χ ∈ R∗

For λ 6= ±
√

3
3

;G = (αs + k + ν)λ
s

, we obtain n2 = m2 = 0 and coefficients n1, n4 and m1 undergo
some adjustments and become, respectively: n01 = 2η2λ

s
(k + ν − s), n04 = η(αs + k + ν)n3 and

m01 = η2λ
s

[(1 + 2α)s + k + ν]. However, n3 and m3 remain unchanged, while eq.(72) gives the
expression of the coefficient A2 below

A2 =
n04m01

(n01m3 − n3m01)χ
, (4.78)
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with n01m3 6= n3m01. In this context, taking into account B2 = χ, χ ∈ R∗ and n2 = 0 in eq.(55) as
well as insertion of eqs.(9), (55) and (84) in (7) give this second subfamily of solutions as being

Φ(x, y, t) = { n04m01

(n01m3 − n3m01)χ
J3,1[η(x+ y − νt)] + i[

n01χ

n3χA2 + n04
J1,1[η(x+ y − νt)]

+ χJ2,2[η(x+ y − νt)]]}ei(−kx−sy+ωt),

(4.79)

with n01m3 6= n3m01, λ 6= ±
√

3
3
, χ 6= − n04

n3A2
, G = (αs + k + ν)λ

s
and where ω and A2 are given by

eqs.(53) and ( 84), respectively. Eq.(85) indicates that, for this subfamily of solutions, the coefficients
A2 and B2 = χ, χ ∈ R∗, have antagonistic actions: when A2 is high B2 is low vice versa.

4.2.2.3.3 Subfamily 3 of Family III of the Second large family of analytical
solutions: Sub-case 3: λ = ±

√
3
3 ;G = (αs+ k + ν)λs ;B2 = χ, χ ∈ R∗

Under these conditions, we arrive at n2 = m2 = 0 , while coefficients n01, n3, n04,m01 and m3

become, respectively: n′01 = ± 2η2
√

3
3s

(k + ν − s), n03 = 4
3
, n′04 = 4

3
η(αs+ k + ν),m′01 = ± η

2√3
3s

[(1 +
2α)s+ k + ν] and m03 = 2

3
. Thus, we obtain the coefficient A2 in the form

A2 =
n′04m

′
01

(n′01m03 − n03m′01)χ
, (4.80)

with n′01m03 6= n03m
′
01, λ = ±

√
3

3
, χ 6= − n′04

n03A2
, G = (αs+ k + ν)λ

s
. In this context, the consideration

of B2 = χ, χ ∈ R∗ and n2 = 0 in eq.(55) as well as insertion of eqs .(9), (55) and (84) in (7) lead to
this third subfamily of solutions as follows

Φ(x, y, t) = { n′04m
′
01

(n′01m03 − n03m′01)χ
J3,1[η(x+ y − νt)] + i[

n′01χ

n03χA2 + n′04

J1,1[η(x+ y − νt)]

+ χJ2,2[η(x+ y − νt)]]}ei(−kx−sy+ωt),

(4.81)

with n′01m03 6= n03m
′
01, λ = ±

√
3

3
, χ 6= − n′04

n03A2
, G = (αs + k + ν)λ

s
and where ω and A2 are given

by eqs.(53) and (86), respectively. Eq.(87) also indicates that, for this subfamily of solutions, the
coefficients A2 and B2 = χ, χ ∈ R∗, have antagonistic actions: when A2 is high B2 is low vice versa.

4.2.2.4 Family IV of the Second large family of analytical solutions: General
case: θ′ 6= 0, µ′ 6= 0, δ′ 6= 0, A1 = 0, A2 6= 0, B1 6= 0, B2 = χ, χ ∈ R∗, λ 6= 0

Considering these conditions, eq.(72) yields as a discriminant a bisquare polynomial in χ: 4′ =
(n1m3−n3m1)2χ4 +[4n4m1(n2m3−n3m2)−2n4m2(n1m3−n3m1)]χ2 +n2

4m
2
2. For4′ ≥ 0, eq.(72)

produces two distinct expressions for the coefficient A2 as follows

A2 =
−µ′ ±

√
4′

2θ′
. (4.82)

Thus, the inclusion of B2 = χ, χ ∈ R∗ in eq.(55) as well as insertion of eqs.(9), (55) and (88 ) in (7)
lead to this fourth family of solutions such that

Φ(x, y, t) = {
−µ′ ±

√
4′

2θ′
J3,1[η(x + y − νt)] + i[

n1χ + n2A2

n3χA2 + n4

J1,1[η(x + y − νt)] + χJ2,2[η(x + y − νt)]]}ei(−kx−sy+ωt),

(4.83)

with χ 6= − n4
n3A2

and where ω and A2 are given by eqs.(53) and (88), respectively. 4′ is a bisquare
polynomial in χ which must frame the choice of acceptable values of B2 = χ, χ ∈ R∗ during the
propagation tests in approved laboratories.
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However, it should globally be noted in this case of Solutions type I that all the families of solutions
obtained are from the outset hybrid and new, since they each form a mixed wave packet [29-32]. This
is justified by the fact that the real part is a hybrid solitaire wave of the types Dark-Bright, Bright-Dark
or Kink-Dark-Bright solitaire wave; and, the imaginary part as for it, is made up of solitons Kink and
Dark, respectively. Thus, the results of the interactions between these different components are wave
structures which depend above all on the nature of the relations which exist between the coefficients
A2 and B2: this is how we can see emerge in their propagation media solitary wave molecules of the
Antikink-Bright-Dark, Kink-Bright-Dark, Double-Bright Dark or Kink-Dark-Bright solitary wave types
(see Figs. 2 and 3), and so on. Let us now address those of the families of Solutions type II.

B: Solutions type II: case A2 = 0, λ 6= 0

For A2 = 0, eqs.(11), (12), (20) and (21) are verified while eqs.(14) and (23) supplied A1 = 0
or B2 = 0 or B1 = 0. Therefore, with the intention of getting nontrivial solutions, we only hold
from this type II of analytical solutions, four families of solutions:A2 = B1 = 0, A1 6= 0, B2 6= 0;
A2 = A1 = 0, B1 6= 0, B2 6= 0; A2 = B2 = 0, A1 6= 0, B1 6= 0 and A2 = A1 = B2 = 0, B1 6= 0.

4.2.3 Family I of the Solutions type II: Case: A2 = B1 = 0, A1 6= 0, B2 6= 0, s 6=
0, λ 6= 0

In this case, eqs.(11), (12), (14), (20), (21) and (23) are verified. Thenceforth, eqs.(13) and (22) lead
to B2 = ±A1, while eqs.(16) and (18) impose to take s = 0(the case G =0 being not interesting). As a
consequence, equations (25) and (27) provide the same constraint ν = −k. Continuing our analysis:

- eqs(15), (17) and (19) successively reduce to

−λB2
2 − 3η2G = 0, (4.84)

2λB2
2 + 2η2G+ γ = 0, (4.85)

and

−γ − λB2
2 = 0, (4.86)

- eqs.(24), (26) and (28) also reduce and become respectively

−B2
2 − 3η2(1 + α) = 0, (4.87)

2B2
2 + 2η2(1 + α)− ω − 1

2
k2 = 0, (4.88)

and

−B2
2 + ω +

1

2
k2 = 0. (4.89)

On the one hand, combining eqs.(90), (91) and (92), and, on the other hand, combining equations
(93), (94) and (95) also, and given the fact that B2 is unique, we get some relations between
parameters: η =

√
γ

3G
, G = λ(1 + α), ω = − γ

λ
− 1

2
ν2 as well as the expression of the coefficient B2

as being

B2 = ±A1 = ±η
√
−5

2
(1 + α), (4.90)
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where η =
√

γ
3G

with constraints γG � 0, α ≺ −1, λγ ≺ 0 and sign(G) = sign(γ). We thus obtain,
the Family I of solutions type II in the form

Φ(x, y, t) = {±η

√
−

5

2
(1 + α)J2,1[η(x + y − νt)]± ηi

√
−

5

2
(1 + α)J2,2[η(x + y − νt)]}ei[−kx−sy+(− γ

λ
− 1

2
k2)t]

, (4.91)

where η =
√

γ
3G
, G = λ(1 + α) with constraints γG � 0, α ≺ −1, λγ ≺ 0 and sign(G) = sign(γ).

This family of solutions is a complex family which, from the base, is hybrid, since the first term is a
hybrid wave of the Dark-Bright or Bright-Dark type, and the second is a Kink wave. This mixture,
during the interactions in the propagation media, will produce complex intermediate structures which
will highlight each of the characteristics of the basic waves.

4.2.4 Family II of the Solutions type II: Case: A1 = A2 = B2 = 0, B1 6= 0, λ �
0, s = 0, γ ≺ 0, G ≺ 0

Under these conditions, eqs.(26) and (17) respectively lead to: s = 0 and ν = −k, while, all the other
equations of the first range are verified. As a result, equations of the first range provided only the
relations between the parameters of the system and those of the solitary wave that we are looking
for. Thus, we have to refer to equations of the second range. In this context, eqs.(29) to (34) and
(36) as well as eqs.(38) to (43) and (45) are verified. Then, Combining eqs.(35), (37), (44 ) and
(46), and taking into account the fact that B1 is unique, we successively obtain constraints between
the parameters of the system and those of the solitary wave: G = (1 + α)λ, γ = η2(1 + α)λ, ω =
−η2(1 + α)− 1

2
ν2 = − γ

λ
− 1

2
ν2 as well as the expression of the coefficient B1 under the form

B1 = ±η
√
−(1 + α) = ±

√
−γ
λ
, (4.92)

with α ≺ −1, γλ ≺ 0, Gλ ≺ 0, η2(1 + α) ≺ − 1
2
ν2 ⇒ γ

λ
≺ − 1

2
ν2. Thus, we obtain the Family II of

Solutions type II under the pure imaginary exact solution as being

Φ(x, y, t) = {±ηi
√
−(1 + α)J1,1[η(x+ y − νt)]}e−i[kx+( γ

λ
+ 1

2
ν2)t], (4.93)

with α ≺ −1, γλ ≺ 0, Gλ ≺ 0, ν = −k, γ
λ
≺ − 1

2
ν2 and sign(G) = sign(γ) . Eq.(99) shows that eq.(1)

admits the kink wave as a pure imaginary solution. Let us point out herein that this kink wave had
been proposed in[33] as a pure real solution and qualified as a homoclinic wave solution which tends
to periodic wave solution ±

√
− γ
d
ei(px+ωt) when we match d→ λ and p→ −k when t→ ±∞.

4.2.5 Family III of the Solutions type II: Case: A2 = A1 = 0, B1 6= 0, B2 6= 0, s 6=
0, λ 6= 0

In the case A1 = A2 = 0, eqs.(11), (12), (14), (16), (18), (20), (21), (23) , (25) and (27) are verified.
On the other side, eqs.(13) and (22) give B2 = 0, thus, leading to the result obtained in paragraph
4.2.3., which is not interesting in this case. This supposes that we neglect the contribution of each of
eqs.(13) and (22) to the order of the indices of J6,0 (or to this order of the powers of ). Continuing our
investigations, it comes from the combination of eqs.(15) and (24), the constraint below

G = (1 + α)λ. (4.94)

Combining, on the one hand eqs.(19) and (28), then, on the other hand, eqs.(17) and (26), and,
taking into account the constraint given by eq.(100), we obtain expressions of B1 and B2 under the
respective forms

B1 = ±1

2

√
(2ω + k2 − 1)λ+ 2γ

λ
, (4.95)
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and

B2 =
2η[αs(1 + λ2) + λ2s+ k + ν]

(2ω + k2 − s2)λ+ 2γ
B1. (4.96)

Thus, we obtain the Family III of Solutions type II under the forced solution form

Φ(x, y, t) = {±1

2
i

√
(2ω + k2 − 1)λ+ 2γ

λ
J1,1[η(x+ y − νt)]

+ i
2η[αs(1 + λ2) + λ2s+ k + ν]

(2ω + k2 − s2)λ+ 2γ
B1J2,2[η(x+ y − νt)]}ei(−kx−sy+ωt),

(4.97)

with (2ω+k2−1)λ2+2γλ � 0, (2ω+k2−s2)λ+2γ 6= 0 with the constraints given by eqs.(53) and (100).
Eq.(103) is a new prototype of pure imaginary solitary wave solution of eq.(1). It is a combination of
a classical Kink wave and a classical dark wave, both belonging to the large Dark soliton family. The
interactions between them generate hybrid structures which are intermediate forms which can for
example display a Kink-Dark-Bright solitary wave which brings out the three characters, namely: Kink
wave, Dark wave and Bright wave solutions (see Fig. 1 (C) and (D )).

4.2.6 Family IV of the Solutions type II: Case: A2 = B2 = 0, A1 6= 0, B1 6= 0, λ 6= 0

In this case, eqs.(11) to (15) and (19), as well as the equations (20) to (24) and (28), of the first range
are verified. On the other hand, eqs.(16), (17), (18), (25), (26) and (27) of this first range are reduced
to, respectively

First range of equations

- From the real part:

the term in J3,0(ηξ),

2ηGsA1 = 0, (4.98)

the term in J2,0(ηξ),

−η(αs+ k + ν)B1 = 0, (4.99)

the term in J1,0(ηξ),

−ηGsA1 = 0, (4.100)

- From the imaginary part:

the term in J3,0(ηξ),

2η(αs+ k + ν)A1 = 0, (4.101)

the term in J2,0(ηξ),

ηGsB1 = 0, (4.102)

the term in J1,0(ηξ),

−η(αs+ k + ν)A1 = 0. (4.103)

In the continuity, with regard to the second range of equations, we note that eqs.(29), (30), (31), (38),
(39) and (40) are verified while eqs.(32) to (37) as well as (41) to (46) lead to, respectively
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Second range of equations

- From the real part:

the term in J6,1(ηξ),

A3
1 = 0, (4.104)

the term in J5,1(ηξ),

λB1A
2
1 = 0, (4.105)

the term in J4,1(ηξ),

[B2
1 −A2

1 + 3η2(1 + α)]A1 = 0, (4.106)

the term in J3,1(ηξ),

[λ(B2
1 −A2

1) + η2G]B1 = 0, (4.107)

the term in J2,1(ηξ),

[−B2
1 + ω +

1

2
k2 +

1

2
αs2 − 1

2
η2(1 + α)]A1 = 0, (4.108)

the term in J1,1(ηξ),

(−λB2
1 − γ +

1

2
Gs2)B1 = 0, (4.109)

- From the imaginary part:

the term in J6,1(ηξ),

−λA3
1 = 0, (4.110)

the term in J5,1(ηξ),

B1A
2
1 = 0, (4.111)

the term in J4,1(ηξ),

[λ(A2
1 −B2

1)− 3η2G]A1 = 0, (4.112)

the term in J3,1(ηξ),

[B2
1 −A2

1 + η2(1 + α)]B1 = 0, (4.113)

the term in J2,1(ηξ),

[λB2
1 + γ +

1

2
G(η2 − s2)]A1 = 0, (4.114)

the term in J1,1(ηξ),

(−B2
1 + ω +

1

2
k2 +

1

2
αs2)B1 = 0, (4.115)

Under these conditions, and, following the order of priority in the resolution of the range equations, it
emerges that eqs.(104), (106) and (108) propose G = 0 or s = 0 while eqs.(105 ), (107) and (109)

18



Ngantcha et al.; CJAST, 41(38): 1-28, 2022; Article no.CJAST.92908

lead to the only constraint: ν = −αs − k. In view of all these observations, it looms that equations
of the first range only inform about the relations which must exist between certain parameters of the
system and those of the solitary wave which one builds. In such a context, the equations of the second
range become priorities in the order of resolutions. Thus, by continuing in our investigations, it clearly
appears that the equations (110), (111), (116) and (117) propose A1 = B1 = 0, leading therefore
to a trivial solution, which is not important. This supposes, concerning this family of solutions, that
the contribution of each eqs.(110), (111), (116) and (117) remains negligible at these orders of the
clues of Jn,m(ηξ) with n ∈ {5; 6},m = 1 . In this context, this family gives rise to two subfamilies of
approximate solutions.

4.2.6.1 Subfamily I of the Family IV of the Solutions type II: Case: A2 = B2 =
0, A1 6= 0, B1 6= 0, λ ≺ 0, G = 0, s 6= 0, ν = s− k
For A2 = B2 = G = 0 and, taking into account the previous analyses, eqs.(113) and (118) give:
A1 = ±B1 while eqs.(112) and (119) lead to: α = −1. As a consequence, eqs.(105), (107) and (109)
yield ν = s− k. On the other hand, the combination of eqs.(115) and (120) as well as eqs.(114) and
(121), and, given the fact that each of the coefficients A1 or B1 is unique, it comes respectively

B1 = ±
√
−γ
λ
, (4.116)

and

ω =
1

2
ν(k + s)− γ

λ
, (4.117)

with γ
λ
≺ 1

2
ν(k + s), k ≥ s, γλ ≺ 0. Thus, we obtain Subfamily I of family IV of solutions Type II in

the form

Φ(x, y, t) = {±
√
−γ
λ
J2,1[η(x+ y − νt)]± i

√
−γ
λ
J1,1[η(x+ y − νt)]}e−i{kx+sy+[− 1

2
ν(k+s)+ γ

λ
]t},

(4.118)

with α = −1, γλ ≺ 0, γ
λ
≺ 1

2
ν(k + s), ν = s − k, k ≥ s. Eq.(123) shows that, for fixed values of the

parameters s0, λ0 and γ0 of the system whose dynamics is described by eq.(1), the angular frequency
ω is a parabolic function of k ∈]0;

√
s2

0 −
2γ0
λ0

[ of the solitary wave, since ν = s0 − k. According to

this observation, the angular frequency reaches its maximum ω0 = 1
2
s2

0 − γ0
λ0
, γ0λ0 ≺ 0; this for the

value of k = 0. Then, the angular frequency ω tends to its maximum value ω0 for low values of k,
and low for large values of k. Thenceforward, it appears that this angular frequency ω decreases for
k ∈]0;

√
s2

0 −
2γ0
λ0

[. From this result, it follows that we can control the deployment of the solitary wave,
in brief, the control of the energy of the considered system through eq.(123).

4.2.6.2 Subfamily II of the Family IV of the Solutions type II: Case: A2 = B2 =
0, A1 6= 0, B1 6= 0, λ 6= 0, G = s = 0, α = −1, ν = −k
For A2 = B2 = s = G = 0, eqs.(104), (106) and (108) are verified while eqs.(105), (107) and (109
) gives rise to the constraint ν = −k. As before, the equations of the first range again anew give
constraints between some parameters of the solitary wave. Thus, eqs.(110), (111), (116) and (117)
suggest: A1 = B1 = 0, thus giving rise to a trivial solution which is not important. This supposes
that we neglect the contribution of each of these eqs.(110), (111), (116) and (117) to these orders
of clues of Jn,m(ηξ) with n ∈ {5; 6},m = 1. In this context, eqs.(113) and (118) give: B1 = ±A1.
As a consequence, eqs.(112) and (119) lead to: α = −1. On the other hand, eqs.(114) and (121)

19



Ngantcha et al.; CJAST, 41(38): 1-28, 2022; Article no.CJAST.92908

are identical, as well as eqs.(115) and (120). Given the fact that the coefficients A1 and B1 are each
unique, we successively obtain

ω = −1

2
ν2 − γ

λ
, (4.119)

and

B1 = ±A1 = ±
√
−γ
λ
, (4.120)

with ν = −k, γλ ≺ 0 and α = −1. We obtain this second Subfamily II of Family IV of solutions
Type II in the form

Φ(x, y, t) = {±
√
−γ
λ
J2,1[η(x+ y − νt)]± i

√
−γ
λ
J1,1[η(x+ y − νt)]}ei[νx−( 1

2
ν2+ γ

λ
)t], (4.121)

with ν = −k, γλ ≺ 0 and α = −1. Eq.(125) indicates that, for fixed values of the parameters λ0

and γ0 of the system whose dynamics is described by eq.(1), the angular frequency ω is a parabolic
function of the velocity ν ∈] −

√
− 2γ0

λ0
; 0[ or k ∈]0;

√
− 2γ0

λ0
[ of the solitary wave, since ν = −k.

According to this observation, the angular frequency reaches its maximum ω0 = − γ0
λ0
, γ0λ0 ≺ 0; this

for the value of the speed ν = 0 (which can be considered as a state of pseudo equilibrium). In this
context, it appears that this angular frequency ω increases for ν ∈] −

√
− 2γ0

λ0
; 0[ and decreases for

k ∈]0;
√
− 2γ0

λ0
[. Then, the angular frequency ω tends to its maximum value ω0 for great values of ν,

and for low values of k. From this result, it follows that we can control the deployment of the solitary
wave, in brief, the control of the energy of the considered system through eq.(125). These reflections
can also be carried out in the cases of Families I and II of Solutions Type II.

4.3 Plot of Profiles of Some Obtained Solutions
We present in this part of work, the profiles of certain solitary wave structures that we tracked down
from packages constituted by the eqs. (85), (99) and (103), this thanks to the graphical tool MAPLE.
This exercise therefore gave rise to three figures, each containing four profiles called (A), (B), (C) and
(D), respectively.

Withal, it is appropriate herein to highlight the process which made it possible to produce the different
profiles of certain obtained solitary wave structures. For example, in the case of Figs. 2 (A) or (B),
we set, η = 0.01; γ = 1; ν = 0.0013;α = −0.67; k = 0.1; s = 0.2;B2 = χ = 0.3;A2 = 3B2;B1 = 5

3
B2.

Then, one deduced from the equality ( arbitrarily fixed): A2 = 3B2 and from one of the constraints that
accompany eq.(85) as well as eq.(53): λ = −1.720977806;G = 0.2813798713 and ω = 0.5861950181.
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Fig. 1. Graphical representations given by eq.(99) and (103). Top row, eq.(99): for
η = 0.05;B1 = 0.3; γ = 0.03; k = 0.1; s = 0; ν = −0.1;α = −37;λ = −0.3333333333;G = 12;ω =

0.08500000001 : Dark solitons with a sawtooth bottom: (A): y = 0 (B): t = 0. Bottom row,
eq.(103): for η = 0.01;λ = 0.02;α = −2.5; k = 0.1; s = 0.2; γ = −0.0015; ν = 0.00026;B1 =

0.6;B2 = −1.5B1 = −0.9;G = 0.30966;ω = 0.42966: Kink-Dark-Bright solitary waves C) y = 0;
D) t = 0
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Fig. 2. Graphical representation given by eq.(85). Top row, for
η = 0.01; γ = 1; ν = 0.0013;α = −0.67; k = 0.1; s = 0.2;B2 = χ = 0.3;A2 = 3B2 = 3;B1 =

5
3
B2;λ = −1.720977806;G = 0.2813798713;ω = 0.5861950181 : Antikink-Bright-Dark solitary

waves: A) y = 0; B) t = 0. Bottom row, for
η = 0.01; γ = 1; ν = 0.0013;α = −0.67; k = 0.1; s = 0.2;B2 = χ = 0.3;A2 = 3B2;B1 = − 5

3
B2;λ =

−1.720977806;G = 0.2813798713;ω = 0.5861950181: Kink-Bright-Dark solitary waves C) y = 0;
D) t = 0
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Fig. 3. Graphical representation given by eq.(85). Top row, for
η = 0.01; γ = 1; ν = 0.0013;α = −0.67; k = 0.1; s = 0.2;B2 = χ = 0.006;A2 = 125B2;B1 =

5
6
B2;λ = −0.9586430515;G = 0.1567381389;ω = 1.048271134 : Double-Bright Dark solitary

waves: A) y = 0; B) t = 0. Bottom row, for
η = 0.01; γ = 1; ν = 0.0013;α = −0.67; k = 0.1222; s = 0.2;B2 = χ = 0.05;A2 = 0.16B2;B1 =
−0.8B2;λ = −0.5211797094;G = 0.02736193474;ω = 1.923607548 : Kink-Dark-Bright solitary

waves: C) y = 0; D) t = 0
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5 DISCUSSION

In the rest of our analyses, it is important in
this section to place particular emphasis on two
aspects essential to understanding the obtained
results: the analytical aspect and the graphical
aspect.

Eq.(9) is a complex analytical multi-soliton. This
is justified by the fact that it groups together
two hybrid solitary waves represented by terms
with respective coefficients A1 and A2 as well
as two classical solitons represented by terms
with respective coefficients B1 and B2. These
two classic solitons belong to the great family of
Dark solitons. In this context and, by operating
the choice of the ansatz of the eq.(9), we
opted to construct new prototypes of solitary
waves of multiple forms which are more robust
and able to resist to a number of constraints
impose their propagation media which are more
generally non-linear and dispersive. These
more robust and new prototypes result from
the interactions between the basic forms of the
different constituent terms of eq.(9). This state
of affairs is favored by the values taken by the
characteristic parameters of the solitary wave
and those of the studied system. Subsequently,
it turned out that the series of ordinary equations
with four unknowns resulting from the main
eq.(10) are very complicated to solve. And so
it was necessary to neglect the contribution of
the coefficient term A1 by setting A1 = 0 so that
the three remaining terms and their coefficients
A2, B1 and B2 give rise to several families of
approximate Solutions Type I.

Graphical results as for them and following the
construction plan, have produced three Figures.

Fig. 1 comes from eqs.(99) and (103) and each
containing two profiles for the same values taken
by the parameters of the solitary wave and those
of the considered system. Thus, we notice that
Fig. 1 (A) or (B) comes from the Kink type
analytical form, but, because of its modulus, has
provided a sawtooth bottom Dark soliton given
by eq.(99), while, Fig. 1 (C) or (D) presents a
mixed and new structure that we have called
Kink-Dark-Bright solitary wave. We estimate
that this obtained mixed figure is the fruit of the

interactions induced by the combinations of the
two classical solitons of the Kink and Dark types
that constitutes eq.(103).

Figs. 2 and 3 both come from eq.(85). A deep
observation of these figures reveals that:

- Fig. 2 displays four profiles which contain
the mixed forms that are new intermediate forms
that are more robust. These come from the
interactions between the Kink, Hybrid and Dark
solitons with respective coefficients B1, A2 and
B2 of eq.(9) and which we have called Antikink-
Bright-Dark and Kink-Bright-Dark, respectively;

- Fig. 3 on the other hand, in its version (A) or
(B) shows a mixed solitary wave structure which
is a new intermediate form between the Bright
and the Dark soliton with a strong Bright soliton
tendency which we have qualified as Double-
Bright-Dark solitary wave. However, version
(C) or (D) offers the Kink-Dark-Bright structure
that we obtained to the Fig. 1 (C) or (D). This
observation made at the level of version (C)
or (D) of Fig. 3 sufficiently indicates that the
multi-soliton of eq.(85) is a wide package [29-
32] of solitary waves which put together within it,
structures contained in the less wide packets of
eqs.(99) and (103) respectively.

Consequently, all these graphical results thus
confirm the theoretical or analytical predictions
consi-dered when adopting the ansatz given to
the eq.(9). In comparison with previous works
contained in [15; 17; 22-24; 33-38; 41; 42; 49],
there appears a clear difference, at least under
is analytical and graphical forms. To be a little
more precise, almost all of the proposed results in
those work are solutions of the types homoclinic
waves, periodic and blow up solutions, singular
function solutions, periodic kink wave, double
kink wave, periodic soliton, double periodic wave
solutions, dark periodic, chirped bright wave,
chirped soliton solutions, kink waves and single
soliton solutions.

6 CONCLUSION

At the end of this work in which we used the
BDKm extended to iB-functions, new packets [29-
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32] of mixed and complex solitary waves are
proposed. It is established that some of the
obtained wave structures owe their existence in
their propagation media thanks to the nature
of the relations which exist mainly between the
coefficients A2, B2 of eq.(56), other parameters
of the wave and those of the system whose
dynamics are described by eq.(1): this is the
case of Solutions Type I (see Figs. 2 and
3). Then, in the case of certain families of
Solutions Type II, the angular frequency ω is
a parabolic function of the speed ν or of the
wave number k of the solitary wave (where the
parabola has a concavity facing down) and that
ω reaches a maximum value ω0 for a value ν0

or k0 of the speed or the wave number. It is
also established that ω tends to ω0 for large
values of ν or small values of k. We have
also graphically established that the families of
Solutions Type I contain within them a large
part of the undulatory structures from certain
families of Solutions Type II (see Fig. 1 (C)
or (D) and Fig. 3 (C) or (D) ). Graphical
results corroborate at best with the theoretical
predictions. During laboratory propagation tests,
these results obtained will be very useful in the
simple choice of new wave structures that one
would like to inject into the propagation media by
taking into account the ratios that exist among
the coefficients A2 and B2 of the pivot equation
(56) and thus limiting the loss of time. In addition,
with regard to certain Solutions Type II, these
results must allow the control of the deployment
of the solitary wave through the relation which
gives ω according to ν or k. The authors are all
convinced that these new packages of proposed
wave structures will find applications in various
fields of science and engineering. They will be
used in these fields to describe a wide variety
of nonlinear wave phenomena, in particular, from
superconductivity to liquids in physics, including
superfluidity and Bose-Einstein condensation.
Beyond the results obtained with satisfaction,
this work also had the merit of developing a
technic of construction of solitary wave solutions.
The principle has consisted of injecting into the
nonlinear partial differential equation the solitary
wave ansatz previously adopted and as far as
possible, proceeded by elimination of certain
coefficients in order to determine with accuracy
new prototypes of suitable hybrid solutions.

However, it would be appropriate in future work
to use an appropriate bifurcation technique to
track down all of these new wave structures that
will allow in the short, medium or long term
to understand and explain new phenomena that
remain unexplainable so far.
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