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In this paper, two models of elastic metamaterial containing one and two resonators are proposed to obtain the bandgaps with the
aim of providing broadband vibration suppression. (e model with one DOF is built by assembling several unite cells in which
each unite cell consists of a rectangular frame as the base structure and a rack-and-pinion mechanism that is joined to the frame
with a linear spring on both sides. In the second model with two DOF, a small mass is added while its center is attached to the
center of the pinion on one side and the other side is connected to the rectangular frame via a linear spring. In the first mechanism,
the pinion is considered as the single resonator, and in the 2DOF model, on the other hand, the pinion and small mass acted as
multiple resonators. By obtaining the governing equations of motion for a single cell in each model, the dynamic behavior of two
metastructures is thoroughly investigated. (erefore, the equations of motion for the two models are written in matrix form, and
then, the dispersion relations are presented to analyze the influences of system parameters on the bandgaps’ starting/ending
frequencies. Finally, two models are successfully compared and then numerically simulated via MATLAB-SIMULINK and MSC-
ADAMS software. With the aid of closed-form expressions for starting/ending frequencies, the correlation between the system
parameters and bandgap intervals can be readily recognized.

1. Introduction

Metamaterials are referred to the types of advanced
materials that are synthetically made including small
substructures which generally behave like a continuous
material. (e frequency bands at which acoustic and
elastic waves cannot propagate are called bandgap, which
is the most prominent feature of metamaterials. (e
propagation of waves of different wavelengths is con-
trolled by the low/high-frequency bandgaps generated by
the metamaterials. Given this unique property, meta-
materials can be used in the field of acoustic insulation,
filtration of waves, oscillations reduction, and sonic
transmission [1–3]. (e cell body of an acoustic meta-
material consists of a basic structure in which one or more
locally vibrating components are located. Interactions
between the base environment and local vibrators enable

interesting physical phenomena such as bandwidth,
negative effective density, negative modulus of elasticity,
directional filtering and wave conduction, increased
dissipation, and vibroacoustic attenuation [4, 5]. Basi-
cally, two types of local resonators are used: (1) transla-
tional resonator and (2) rotary resonator, which cause
negative effective density and negative effective elastic
modulus, respectively [6]. Huang et al. [7] demonstrated
the consequence of using different equivalent models to
represent a lattice system consisting of mass-in-mass
units. (en they studied the dispersive wave propagation
and compared to various equivalent models. (ey found
that, if the classical elastic continuum is utilized to rep-
resent the original mass-in-mass structure, the effective
mass density will be frequency dependent and may be-
come negative for frequencies near the resonance fre-
quency of the internal mass. In the meantime, if a multi-
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displacement microstructure continuum model is uti-
lized, the dispersive behavior of wave propagation and the
band gap structure can be adequately described.

Active and passive periodic structures are made up of
similar substructures or unit cells that are joined to each
other in a similar way. (e periodicity of these structures
exhibits unique dynamic properties because they can
prevent wave propagation and act as a mechanical filter [8].
Wave propagation is not possible in infinite periodic
structures at particular frequency intervals. Photonic
bandgaps are frequency bands in which acoustic/elastic
waves cannot be transmitted. Unlike infinite periodic
structures, wave transmission or vibration occurs sparingly
if finite periodic structures are excited within the band
gaps, which can be examined for frequency response
function diagrams to obtain this wave or vibration
transmission [9]. Propagation or passbands allow waves
along these structures which propagate in certain fre-
quency ranges without attenuation; and stopbands, at-
tenuation bands, or bandgaps are the frequency bands in
which waves can be attenuated [10]. In periodic structures,
two common methods for generating phononic bandgaps
are Bragg scattering and local resonances [9]. (e band
structure and wave reduction mentioned above are due to
these two types of mechanisms that are clearly different
from each other [11]. In the high-frequency mode, Bragg
bandgaps can be used to filter the waves, but in the low-
frequency mode, this is not possible [12]. On the other
hand, at much lower frequencies than Bragg scattering,
bandgaps can be created by local resonance [9]. Control of
resonant-type bandgaps due to local resonance (LR)
mechanism is easily possible, unlike Bragg-type bandgaps.
In order to adjust the bandgap properties, the properties of
the locally resonant structure can be changed. Chen and
Chien [12] proposed a mass grid system, and before this
new idea was applied to the field of elastic, it was presented
in the field of acoustic.

Lazarov and Jensen [10] conducted their study in both
linear and nonlinear modes to propagate the wave in one-
dimensional chains in which nonlinear oscillators are
joined.(ey found that in the nonlinear state, the bandgap
could shift depending on the amplitude and degree of
local nonlinearities. Also, the results of their research
showed that in the linear mode, the location of the gap is
around the resonant frequency which allows the gap to be
generated at a lower frequency domain. Casalotti et al.
[13] examined an Euler-Bernoulli beam with an ar-
rangement of nonlinear mass-spring substructures at-
tached to investigate the ability of the nonlinear
metamaterial beam to absorb multistate vibrations. Beam-
connected substructures that act as local resonators or
vibration absorbers created bandgaps. At first, they
identified the frequency stop bands of the unite cell, and
then in order to investigate the multifrequency stopband,
the frequency response for the nonlinear metamaterial
beam was extracted. (ey indicated that, for the meta-
material beam, the oscillations related to the lowest three
vibration modes were significantly reduced by properly
adjusting the constituent parameters of local absorbers.

Zhou et al. [14] presented two models of an acoustic
metamaterial beam in which local resonators were at-
tached owning to both flexible bandgaps and high static
stiffness. Initially, an equivalent model by mass-spring-
beam of acoustic metamaterial beam with variable cross
section was considered and analyzed analytically. (e
dispersion relationship of acoustic metamaterial beam
was extracted, and the effect of different control param-
eters on bandgaps was investigated. (en, they simulated
and examined a two-dimensional finite element model of
acoustic metamaterial beam for the sake of validation in
COMSOL Multiphysics. (eir results showed that there is
good compatibility between the analytical model and the
two-dimensional model. Finally, a three-dimensional
model of acoustic metamaterial beam was presented and
discussed in two forms of equal and unequal thickness to
measure the wave attenuation. Huang and Sun [15]
studied a multiresonator mass-in-mass grid system and
obtained its dispersion curves and bandgap. It was shown
that bandgap can be displaced by changing the magnitude
of the internal masses and the spring constant. (ey
proposed a monoatomic model equivalent to the original
system and found that the effective mass at bandgaps
frequencies is negative. Finally, they introduced a mi-
crostructure continuous model that can obtain the dis-
persive behavior and bandgap structure of the original
system. According to the study conducted by Sun et al.
[16], it was shown that an acoustic absorber based on
metamaterial can be thought of as a uniform isotropic
beam with a number of very small mass-spring subsystems
at different points. (ey also discussed how to create
bandgap by subsystems, the negative effective mass, and
stiffness. (eir results showed that common mechanical
vibration absorbers are the basis of the actual working
mechanism of metamaterial beam. Shear forces and
bending moments were then created to hold the beam
straight and prevent wave propagation. An important and
in-depth topical review in the field of active metamaterials
and metadevices was performed by Xiao et al. [17]. (ey
reported the advancement of active metadevices and
metamaterials ranging from microwave to visible wave-
lengths, including milestones as well as the state of the art,
and finally presented the future prospects together with
several emerging tuning strategies and materials.

Most studies of metamaterial models are based on a
damper-spring-damper combination. However, this paper uses
a new combination of rack-and-pinion mechanism and mass
to achieve wider bandgaps and investigate the dynamic be-
havior of the new combination. In the current research, two
models of elastic metamaterials are proposed to obtain
broadband bandgaps for vibration suppression.(emodels are
made from a combination of a rack-and-pinion mechanism
connected to a concentrated mass. (e governing equations of
bothmodels with one and two degrees of freedom are solved by
MATLAB-SIMULINK and dispersion curves and frequency
response diagrams are also drawn. (en, the effect of control
parameters on the starting and ending frequencies of the
bandgaps is mathematically investigated. Finally, both models
are modeled and simulated inMSC-ADAMS software, and the
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desired graphs are numerically extracted.(ere is a satisfactory
agreement between the simulated results and those obtained by
numerical algorithms.

2. Models: 1DOF and 2DOF

In this section, two models consisting of one- and two-
degree-of-freedom elastic metamaterials (EMM) are intro-
duced and discussed. (e models include rectangular cells
containing a rack-and-pinion mechanism and a concen-
trated mass. (e presence of a rack prevents slipping be-
tween the pinion and the cell which converts the transfer
motion to a pure rolling motion. (e aim of this study is to
analytically obtain the bandgaps of the proposed models in
order to reduce or eliminate the mechanical vibrations. For
both one- and two-degree-of-freedom models, the mathe-
matical models are presented and the staring/ending

frequencies of bandgaps are mathematically extracted with
close-form expressions.

2.1. One DOF Model of EMM

2.1.1. One DOF Model: Mathematical Formulation. (e
proposed one-degree-of-freedom model of elastic meta-
materials is shown in Figure 1. As shown, the main body of
this model consists of rectangular frames with a rack-and-
pinion inside. Rectangular frames are then connected by
linear springs. On the other hand, the pinion is connected to
the walls of the rectangular frame by two linear springs.

(e parameters defined for the problem are shown in
Figure 2, which represents the unit cell of the one-degree-
of-freedom model. (erefore, using Newton’s second law,
the governing equations of a unit cell are derived as
follows:

􏽘 Fx � m1 €xn⇒ − k1 xn − xn− 1( 􏼁 − k1 xn − xn+1( 􏼁 − m2 €xn + r€θ􏼐 􏼑 � m1 €xn , (1)

􏽘 MO � IO
€θ⇒ − 2k2(rθ)r − m2 €xn( 􏼁r � IO

€θ, (2)

where m1 and m2 are frame and pinion masses, respec-
tively, randθ are the radius and the rotational displace-
ment of pinion, respectively, xn represents the
translational displacement of the nth cell, and IO denotes

the mass moment of inertia of the pinion with respect to
the point o.

Now, Equations (1) and (2) are written in a matrix form
as follows:

m1 + m2 m2r

m2r IO

􏼢 􏼣 €xn
€θ􏽨 􏽩 +

2k1 0

0 2k2r
2􏼢 􏼣

xn

θ
􏼢 􏼣 +

− k1 xn− 1 + xn+1( 􏼁

0
􏼢 􏼣 �

0

0
􏼢 􏼣, (3)

and the dimensionless parameters used in this model are
defined by

M �
m1

m2
,

I
⌢

�
IO

m2r
2,

K
⌢

�
k1

k2
,

ω⌢n �

���
k2

m2

􏽳

,

rxn � xn,

τ � ωt,

􏽥ω �
ω
ω⌢n

,

(4)

where ω⌢n is the local natural frequency, M, I
⌢

, K
⌢

, xn, τ, and 􏽥ω
are the dimensionless mass, moment of inertia, stiffness,
displacement, time, and frequency, respectively. By replac-
ing these dimensionless parameters in Equation (3), the new
form of governing equations can be written as follows:

(M + 1)􏽥ω2
􏽥ω2

􏽥ω2
I
⌢

􏽥ω2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d
2
xn

dτ2

d
2θ

dτ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
2K

⌢
0

0 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xn

θ

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+
− K

⌢
xn− 1 + xn+1( 􏼁

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

0

0

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(5)

2.1.2. One DOFModel: Dispersion Properties. In this section,
the solution corresponding to the harmonic wave for the
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1DOF model is defined for extracting the dispersion rela-
tions and the bandgap frequencies:

xn

θ
􏼢 􏼣 �

x
∘
n

θ∘
􏼢 􏼣e

i(qa.n+τ)
+ c.c,

xn±1􏼂 􏼃 � x
∘
n±1􏼂 􏼃e

i(qa.n+τ)
+ c.c,

(6)

where x ∘n and θ∘ are the steady-state amplitude of the so-
lution, qa is the phase factor, and nrepresents the periodic
number. Moreover, a.n indicates the distance between
nthcell from the origin (support) [18–22]. Substituting
Equations (6) into (5), the new form of the governing
equation in its matrix form is as follows:

(M + 1)􏽥ω2
􏽥ω2

􏽥ω2
I
⌢

􏽥ω2
⎡⎢⎣ ⎤⎥⎦

x
∘
n (− 1)e

i(qa.n+τ)
+ c.c

θ∘(− 1)e
i(qa.n+τ)

+ c.c

⎡⎢⎢⎣ ⎤⎥⎥⎦ +
2K

⌢
0

0 2
⎡⎢⎣ ⎤⎥⎦

x
∘
n e

i(qa.n+τ)
+ c.c

θ∘ei(qa.n+τ)
+ c.c

⎡⎢⎢⎣ ⎤⎥⎥⎦

+
− K

⌢
x
∘
n e

iqa(n− 1)
e

iτ
+ x
∘
n e

iqa(n+1)
e

iτ
+ c.c􏼐 􏼑

0
⎡⎢⎣ ⎤⎥⎦ �

0

0
􏼢 􏼣.

(7)

Now, by factoring and arranging the different expres-
sions in Equation (7), the final form of the equations of
motion for the considered system is given by

− (M + 1)􏽥ω2
+ 2K

⌢
− K

⌢
(2 cos(qa)) − 􏽥ω2

− 􏽥ω2
− I

⌢
􏽥ω2

+ 2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

x
∘
n

θ∘
􏼢 􏼣e

i(qa.n+τ)
+ c.c �

0

0
􏼢 􏼣. (8)

(e dispersion relation for the 1DOF model can be
obtained from Equation (8). For a nontrivial solution, the

determinant of the coefficient matrix must be equal to zero.
(erefore, the dispersion relation is extracted as

(I
⌢

(1 + M) − 1)􏽥ω4
+ 2(− M − 1 − I

⌢
K
⌢

(1 + cos(qa)))􏽥ω2
+ 4K

⌢
(1 − cos(qa)) � 0. (9)

By solving Equation (9) for 􏽥ω, the relation for the
acoustic and optical frequencies of the EMM can be
achieved as described in Equations (10) and (11). (en, by

employing the obtained closed-form expressions, the
dispersion curves for the 1DOF model are shown in
Figure 3.

. . .

Figure 1: A schematic of the metamaterial arrangement of the 1DOF model.

k1 k1

XnXn–1 Xn+1

k2 k2

θm1

m2,I2
r

O

Figure 2: A schematic of a unite cell of the 1DOF model.
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􏽥ωAcoustic �

�������

Δ −
��
Φ

√

Ψ

􏽳

, (10)

􏽥ωOptical �

�������

Δ +
��
Φ

√

Ψ

􏽳

, (11)

where

Δ � M + I
⌢

K
⌢

− I
⌢

K
⌢
cos(qa) + 1,

Ψ � I
⌢

+ I
⌢

M − 1,

Φ � I
⌢2

K
⌢ 2

cos2(qa) + − 2I
⌢2

K
⌢ 2

+ 4I
⌢

K
⌢

− 4K
⌢

􏼒 􏼓cos(qa) +(1 + 4K
⌢

+ 2M − 2I
⌢

K
⌢

− I
⌢

K
⌢

M).

(12)

Equations (10) and (11) express the acoustic and optical
frequency branches, respectively. Low-frequency and high-
frequency dispersive curves are then presented by 􏽥ωAcoustic
and 􏽥ωOptical, respectively [1]. In the above equations, at the
point of qa � ±π, the slope of the dispersion curve, namely,
the velocity of the traveling wave, is equal to zero. (is
means the wave cannot propagate, similar to what happened
at the bandgaps. (is area is the first Brillouin zone’s
boundary. Hence, substituting qa � π and qa � 0 into
Equations (10) and (11), and then solving these expressions,
the starting and ending frequencies of the bandgaps for the
1DOF model are extracted [1, 20].

2.2. Two DOF Model of EMM

2.2.1. Two DOF Model: Mathematical Formulation. In this
section, a model of two degrees of freedom of EMM is
presented (see Figure 4). (is model is an extended model of
the first model discussed in the previous section. (e unite
cell of the model is made of rectangular frames with a rack-
and-pinion inside it connected to a concentrated mass. As
shown in Figure 5, the pinion and concentrated mass are
joined to the rectangular frame by a linear spring with
stiffness of k2. In addition, the rectangular frames are
connected to each other by a linear spring with stiffness of k1
and create an integrated metastructure. (erefore, the
governing equations of a unit cell can be described as
follows:

􏽘 Fx � m1 €xn⇒ − k1 xn − xn− 1( 􏼁 − k1 xn − xn+1( 􏼁 − m2 €xn + r€θ􏼐 􏼑 − m3 €xn + €x( 􏼁 � m1 €xn , (13)

􏽘 MO � IO
€θ⇒ − 2k2(rθ)r + k2x( 􏼁r − m2 €xn( 􏼁r � IO

€θ, (14)

􏽘 Fx � m3 €x⇒ − m3 €xn − 2k2x + k2rθ � m3 €x, (15)

–3.14
0

2

4

6

8
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14

–2.14 –0.14 0.86–1.14
qa

ω 
(H

z)

1.86 2.86

Acoustic branch for 1DOF
Optical branch for 1DOF

Bandgap

Figure 3: Dispersion curves for the 1DOF model.
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where m3is the concentrated mass, and x denotes the
translational displacement of concentrated mass.

Now, Equations (13) to (15) are written in matrix form as
follows:

m1 + m2 + m3 m2r m3

m2r IO 0

m3 0 m3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ €xn
€θ€x􏽨 􏽩 +

2k1 0 0

0 2k2r
2

− k2r

0 − k2r 2k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xn

θ

x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

− k1 xn− 1 + xn+1( 􏼁

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (16)

To express the problem in the dimensionless form, the
following nondimensional parameters are defined for the
2DOF model:

m1 �
m2 + m3

m1
,

m2 �
m2

m1
,

I �
IO

m2r
2,

K �
k2

k1
,

ωn1 �

���
k1

m1

􏽳

ωn2 �

���
2k2

m3

􏽳

,

rxn � xn,

rx � x,

τ � ωt,

ω1 �
ω
ωn1

,

ω2 �
ω
ωn2

,

(17)

where ωn1 and ωn2 stand for the natural local frequencies of
the first and second modes, respectively, m1 and m2 are
defined as the ratio of the total mass of the pinion and the
concentrated mass to the mass of the rectangular frame and
pinion-to-frame mass ratio, respectively, I, K, xn, x, and τ
are the dimensionless moment of inertia, stiffness, dis-
placement for cell, displacement for concentrated mass, and
dimensionless time, and ω1 andω2 denote the first and
second dimensionless frequencies, respectively. Using the
introduced dimensionless parameters, Equation (16) can be
rewritten in a dimensionless form as follows:

. . .

Figure 4: A schematic of the metamaterial arrangement of the 2DOF model.

Xn–1 Xn+1Xn

k1 k1k2 k2 k2

m1

m3

θ
m2,I2

r
O

Figure 5: A schematic of a unite cell of 2DOF model.
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1 + m1( 􏼁ω2
1 m2ω

2
1 m1 − m2( 􏼁ω2

1

ω2
1 Iω2

1 0

ω2
2 0 ω2

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d
2
xn

dτ2

d
2θ

dτ2

d
2
x

dτ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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2.2.2. TwoDOFModel: Dispersion Properties. In this section,
the solutions corresponding to the harmonic wave for the
2DOF model are presented as follows for extracting the
dispersion relations as well as the bandgap frequencies:
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(19)

Similar to the previous section, x ∘n , θ
∘, and x∘represent

the steady-state amplitude of the solutions. Substituting
Equations (19) into (18), the new forms of the governing
equations using matrix notation are given by

By simplifying Equation (1), the final form of the gov-
erning equations yields
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Dispersion relation for the 2DOF model can be then ob-
tained by manipulating Equation (21). For a nonzero solution,
the determinant of the coefficient matrix should be set to zero.
(erefore, the dispersion relation is extracted as follows:

Aω6
+ Bω2

n1 + Cω2
n2􏼐 􏼑ω4

+ Dω2
n1ω

2
n2 + Eω4

n1􏼐 􏼑ω2
+ F � 0,

(22)

where
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A � 2m2 m2I − 1 − I( 􏼁,

B � − 2K 2 + m2( 􏼁 + 4m2I(1 − cos(qa)),

C � m2 m2 + 2I( 􏼁 + m1m2(1 + 2I),

D � 3K 1 + m1( 􏼁 − 4m2I(1 − cos(qa)),

E � 8K(1 − cos(qa)),

F � − 6K(1 − cos(qa))ω4
n1ω

2
n2.

(23)

Similar to the explanations given for the one-degree-of-
freedom model, Equation (22) shows the relationship be-
tween ω and qa. By plotting this equation, the dispersion
curves are then available. By replacing qa � π in Equation
(22), the expressions for the starting frequencies can be
achieved as follows:
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�������������
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1
2
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􏽲

.

(24)

Now, by substituting qa� 0 in Equation (22), the cor-
relations between the system parameters and ending fre-
quencies are given by
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2
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2
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2
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(26)

3. The Integrity of One and Two DOF Models

To verify the results of this study extracted by mathematical
modeling, both elastic metamaterials are modeled and
simulated in MSC-ADAMS software under the assumption
of rigid dynamics, as shown in Figures 6–9. Furthermore, the

frequency response analysis (FRA) is performed for both
models and frequency diagrams are then plotted. In the
following section, the transient specifications of the system
are expressed by parameter Π and the ratio of the fifth cell
displacement to the displacement of the first cell and then
compared with numerical solutions.
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For numerical simulations, MATLAB/Simulink soft-
ware is utilized, and the governing equations of proposed
models are solved numerically. (e block diagrams drawn
by MATLAB/Simulink models are displayed in Figure 10.
It is worth mentioning that each section in the diagram
contains the equations governing the dynamics of a single
cell.

For both models, the frequency response diagrams ob-
tained from numerical solutions and simulations are plotted
in Figures 11 and 12. As indicated, both analyses provide the

same intervals for system bandgaps, demonstrating the
satisfactory agreement between the results of both proce-
dures which indicates the integrity of our mathematical
modeling as well as numerical calculations.

4. Results and Discussion

After verifying the soundness of the numerical solutions, the
dispersion characteristics and the effect of different system
parameters on the bandgap intervals are comprehensively

Figure 7: A schematic of a unite cell of 1DOF model-MSC-ADAMS software.

Figure 6: A schematic of the EMM arrangement of 1DOF model-MSC-ADAMS software.

Figure 8: A schematic of the EMM arrangement of 2DOF model-MSC-ADAMS software.

Figure 9: A schematic of a unite cell of 2DOF model-MSC-ADAMS software.
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Figure 10: Continued.
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Figure 10: Block diagrams plotted in MATLAB/Simulink for the numerical solution of governing equations. (a) 1DOF model. (b) 2DOF
model, array of cells (top) and a unit cell (bottom).
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Figure 11: FRA for 1DOF model, comparison of numerical solution (MATLAB/Simulink) with simulation (MSC-ADAMS).
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studied. In this section, it is aimed to examine the bandgaps
of the introduced models and demonstrate in which con-
ditions they can be extended or transmitted.

4.1. One DOF Model of EMM

4.1.1. Dispersion Curve for the 1DOF Model. Figure 2 shows
the dispersion curves of the one-degree-of-freedom model,
which shows the acoustic and optical wave modes as well as
the bandgap interval. (e values of the selected parameters
are M � 1.56, I

⌢
� 1.5, K

⌢
� 0.35, andω⌢n � 8.9. Considering

these parameters, the bandgap of the one-degree-of-freedom
model is placed between the frequencies of 6.15 to 11.94
(Hz), which is the same as the frequency range obtained
from Figure 11.

4.1.2. .e Effect of System Parameters in the 1DOF Model.
(e surfaces drawn in Figure 13 exhibit the effect of different
dimensionless parameters on the starting and ending fre-
quencies of their corresponding bandgaps. (e top and
bottom surfaces indicate the starting and ending frequen-
cies, respectively, and the distance between them indicates
the bandgap interval of the 1DOF model. As can be seen in
Figure 13, there is a direct relationship between the bandgap
and the dimensionless stiffness, meaning that as the di-
mensionless stiffness increases, the bandgap is also en-
hanced. On the other hand, by increasing the dimensionless
mass, the bandgap decreases. It is deduced that the stiffness
parameter has a positive effect on the expansion of the
bandgap and the effect of the mass parameter is to weaken
the bandgap interval. Moreover, according to the illustrated
results, in general, the dimensionless moment of inertia
directly affects the bandgap range, which means that as the
dimensionless moment of inertia increases, the bandgap of
the model is also enlarged. Although the bandgap interval
slightly decreases at the lower values, when the dimen-
sionless moment of inertia takes the higher values, this
interval is then enhanced satisfactorily.

4.2. 2DOF Model of EMM

4.2.1. Dispersion Curve for the 2DOF Model. In order to
display the dispersion curves of the modified model with
multiple resonators, one can solve Equation (22) for ω and
extract the desired curves. (e values of the selected pa-
rameters are m1 � 1.04, m2 � 0.64, I � 1.5, andK � 2.86,

ωn1 � 4.2(rad/s),ωn2 � 15.9(rad/s). Considering the above
parameters, the bandgap starting frequencies (Fs1and Fs2)
are calculated by substituting qa � ± π in the acoustic and
optical wave modes, respectively. (e resulting plots are
shown in Figure 14 by Ds(1) and Ds(2), respectively. In
addition, the bandgap ending frequencies (Fe1and Fe2) are
also extracted by replacing qa � 0 in two optical roots of
Equation (22), respectively.(e plotted results are illustrated
in Figure 14 by Ds(2) and Ds(3), respectively. As indicated in
Figure 14, the difference between the first starting frequency
and the first ending frequency demonstrates the first
bandgap, and the difference between the second starting
frequency and the second ending frequency represents the
second bandgap. According to the illustrated results in
Figure 12, one can find that there is a small area between the
first and second bandgaps. (is consequence is also dem-
onstrated in Figure 14 with a slight difference between the
highest and lowest points of Ds(2). (e slight difference
leads to the flattening of the Ds(2) curve.

4.2.2. Comparison of Dispersion Curves for Two Models.
As shown in Figure 15, by adding the concentrated mass
and modifying the 1DOF model to a 2DOF model, two
bandgaps are created in the dynamics of the new model,
which allows us to reduce or suppress the vibrations of the
modified system in more frequency ranges. From the
comparison between the dispersion curves of both
models, one can conclude that the first bandgap in the
two-degree-of-freedom model starts and ends at lower
frequencies than that of the one-degree-of-freedom
model.
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Figure 12: FRA for 2DOF model, comparison of numerical solution (MATLAB/Simulink) with simulation (MSC-ADAMS).
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Figure 15: Comparison of dispersion curves in two models.
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4.2.3. .e Effect of System Parameters in the 2DOF Model.
Figure 16 displays well that when the parameter m1 shifts
upward, the first starting frequency also increases and the
first ending frequency reduces, which satisfactorily expands
the first bandgap of the modified model. On the other hand,
by increasing the first bandgap, the second one decreases and
the starting and ending frequencies eventually reach a
constant value.

With increasing the parameter K, the first bandgap can
be extended to cover a larger frequency range, as shown in
Figure 17, although the first starting frequency will even-
tually approach a constant value. However, the change in the
second bandgap of the model does not show the same trend,
eventually converges to an almost constant value, and no
longer changes significantly.

For the sake of extending the first and second bandgaps
of the modified model, the dimensionless moment of
inertia I has to be increased. As indicated in Figure 18, by
continuing the process of increasing the dimensionless
moment of inertia, the first ending and the second
starting frequencies will not change and take a constant
value.

As the first and second local frequencies increase, the
same behavior cannot be observed in the first bandgap of this
model, although it decreases with small values and follows
an increasing trend at higher values (see Figures 19 and 20).
In general, it can be inferred that the first bandgap is ex-
panded. Finally, it is found that with the increase of the first
local frequency, the expansion of the second bandgap is not
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Figure 16: (e effect of m1 parameter on bandgap for the 2DOF
model.
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Figure 17: (e effect of K parameter on bandgap for the 2DOF
model.
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Figure 19: (e effect of ωn1 parameter on bandgap for the 2DOF
model.
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Figure 18: (e effect of I parameter on bandgap for the 2DOF
model.

14 Advances in Condensed Matter Physics



uniform, although, in general, it becomes larger. Moreover, it
should be pointed out that when the second local frequency
increases, the second bandgap of themodifiedmodel is reduced.

5. Concluding Remarks

In this paper, at first, a new model of elastic metamaterials
(1DOF model) involving a rack-and-pinion mechanism was
presented.(en, by adding a concentratedmass, themodel was
modified by converting to a novel metastructure with multiple
resonators in whichmore broadband bandgaps were produced.
Different system parameters allow us to shift or expand the
frequency ranges at which the system vibrations are reduced or
eliminated by changing them. (e influences of different
system parameters on the bandgap intervals of the considered
metamaterial are summarized as follows:

(i) By adding the concentrated mass and converting the
model from 1DOF to 2DOF, two bandgaps are sat-
isfactorily produced in the dynamics of the system

(ii) In the 1DOF model, in order to achieve the wider
bandgap, in general, the dimensionless parameters I

⌢

and K
⌢
should be increased or the dimensionless

mass parameter M should be reduced
(iii) In the 2DOFmodel, the width of the first bandgap is

enhanced by increasing the parametersK, I,m1, and
ωn1 and decreasing ωn2

(iv) In the 2DOF model, the width of the second
bandgap is improved by increasing I, ωn1, and ωn2
or decreasing the parameter m1. No significant
effect was demonstrated by varying the parameter K

Data Availability

(e data will be available upon request to the corresponding
author.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

H. M. Sedighi is grateful to the Research Council of Shahid
Chamran University of Ahvaz for its financial support
(Grant No. SCU.EM99.98).

References

[1] M. Gao, Z. Wu, and Z. Wen, “Effective negative mass non-
linear acoustic metamaterial with pure cubic oscillator,”
Advances in Civil Engineering, vol. 2018, Article ID 3081783,
15 pages, 2018.

[2] S. E. Mendhe and Y. P. Kosta, “Metamaterial properties and
applications,” International Journal of Information Technology
and Management, vol. 4, no. 1, pp. 85–89, 2011.

[3] A. Valipour, M. H. Kargozarfard, M. Rakhshi, A. Yaghootian,
and H. M. Sedighi, “Metamaterials and their applications: an
overview,” Proceedings of the Institution of Mechanical En-
gineers, Part L: Journal of Materials: Design and Applications,
2021.

[4] X. Zhou, J. Wang, R. Wang, and J. Lin, “Effects of relevant
parameters on the bandgaps of acoustic metamaterials with
multi-resonators multi-resonators,” Applied Physics A,
vol. 122, no. 4, pp. 1–8, 2016.

[5] H. Al Ba, D. DePauw, T. Singh, and M. Nouh, “Dispersion
transitions and pole-zero characteristics of finite inertially
amplified acoustic metamaterials,” Journal of Applied Physics,
vol. 123, pp. 1–12, 2018.

[6] S. Sang, “A new approach to generate local resonator for the
application of acoustic metamaterials,” .e Journal of the
Acoustical Society of America, vol. 142, 2017.

[7] H. H. Huang, C. T. Suna, and G. L. Huang, “On the negative
effective mass density in acoustic metamaterials,” Interna-
tional Journal of Engineering Science, vol. 47, no. 4, pp. 610–
617, 2009.

[8] M. Nouh, O. Aldraihem, and A. Baz, “Metamaterial structures
with periodic local resonances,” Health Monitoring of
Structural and Biological Systems, vol. 9064, pp. 1–11, 2014.

[9] A. H. Orta and C. Yilmaz, “Inertial amplification induced
phononic band gaps generated by a compliant axial to rotary
motion conversion mechanism,” Journal of Sound and Vi-
bration, vol. 439, pp. 329–343, 2019.

[10] B. S. Lazarov and J. S. Jensen, “Low-frequency band gaps in
chains with attached non-linear oscillators,” International
Journal of Non-Linear Mechanics, vol. 42, no. 10, pp. 1186–
1193, 2007.

[11] K.Wang, J. Zhou, D. Xu, andH. Ouyang, “Lower band gaps of
longitudinal wave in a one-dimensional periodic rod by
exploiting geometrical nonlinearity,”Mechanical Systems and
Signal Processing, vol. 124, pp. 664–678, 2019.

[12] J. S. Chen and I. Chien, “Dynamic behavior of a metamaterial
beam with embedded membrane-mass structures,” Journal of
Applied Mechanics, vol. 84, no. 12, pp. 1–7, 2017.

[13] A. Casalotti, S. El-Borgi, and W. Lacarbonara, “Metamaterial
beam with embedded nonlinear vibration absorbers,” Inter-
national Journal of Non-Linear Mechanics, vol. 98, pp. 32–42,
2018.

[14] X. Zhou, W. Jun, and R. Wang, “Band gaps in grid structure
with periodic local resonator subsystems,” Modern Physics
Letters B, vol. 31, no. 25, 2017.

0 5 10 15 20 25 30
0

10

5

20

15

25

30

35

ωn2

ω 
(H

z)

�e first starting frequency.2DOF model
�e first ending frequency.2DOF model
�e second starting frequency.2DOF model
�e second ending frequency.2DOF model

Figure 20: (e effect of ωn2 parameter on bandgap for the 2DOF
model.

Advances in Condensed Matter Physics 15



[15] G. L. Huang and C. T. Sun, “Band gaps in a multiresonator,”
Journal of Vibration and Acoustics, vol. 132, pp. 1–6, 2010.

[16] H. Sun, X. Du, and P. F. Pai, “(eory and experiment research
of metamaterial beams for broadband vibration absorption,”
Journal of Intelligent Material Systems and Structures, vol. 21,
no. 11, pp. 1085–1101, 2011.

[17] S. Xiao, T. Wang, T. Liu, C. Zhou, X. Jiang, and J. Zhang,
“Active metamaterials and metadevices: a review,” Journal of
Physics D: Applied Physics, vol. 53, no. 50, Article ID 503002,
2020.

[18] Y. Y. Chen, M. V. Barnhart, J. K. Chen, G. K. Hu, C. T. Sun,
and G. L. Huang, “Dissipative elastic metamaterials for
broadband wave mitigation at subwavelength scale,” Com-
posite Structures, vol. 136, pp. 358–371, 2016.

[19] Z. Li, C. Wang, and X. Wang, “Modelling of elastic meta-
materials with negative mass and modulus based on trans-
lational resonance,” International Journal of Solids and
Structures, vol. 162, pp. 271–284, 2019.

[20] A. H. Shirazi and H. M. Sedighi, “Physics of rack-and-pinion-
inspired metamaterials with rotational resonators for
broadband vibration suppression,” .e European Physical
Journal Plus, vol. 135, no. 3, pp. 1–23, 2020.

[21] C. Comi and J.-J. Marigo, “Homogenization approach and
bloch-floquet theory for band-gap prediction in 2D locally
resonant metamaterials,” Journal of Elasticity, vol. 139, no. 1,
pp. 61–90, 2020.

[22] L. O’Faolain, “Photonic crystal cavities for optical intercon-
nects,” in Optical Interconnects for Data Centers, pp. 121–156,
Woodhead Publishing, Cambridge, UK, 2016.

16 Advances in Condensed Matter Physics


