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In this paper, we define and investigate a special kind of ruled surfaces called type-2 Smarandache ruled surfaces related to the
type-2 Bishop frame in E’. From this point and depending on the type-2 Bishop curvature, we provide the necessary and
sufficient conditions that allow these surfaces to be developable in a minimal amount of time. Furthermore, an example is

given to clear the results.

1. Introduction

In the classical differential geometry, the theory of ruled sur-
faces is one of its branches which has been developed by sev-
eral researchers. A ruled surface is generally defined as the
set of a family of straight lines that depend on a parameter that
is mentioned as the ruled surface’s rulings. A ruled surface’s
parametric representation is Y(o,v) =c(0) + vX(0) where
¢(0) is the base curve of Y(o,v) and X(0) define the ruling
directions [1, 2]. Surfaces’ developability and minimalist
notions are two of their most important properties. One of
the most interesting points is the study of ruled surfaces with
different moving frames, as seen in this example [3-7].

The Smarandache curve in Euclidean and Minkowski
spaces is the curve whose position vector is made by Frenet
frame vectors on another regular curve [8-11]. Several
researchers [12-20] have recently studied Smarandache
curves in Minkowski and the Euclidean spaces.

In this work, in E*, we introduce the definitions of type-2
Smarandache ruled surfaces using the type-2 Bishop frame,
namely, u, i), 4, B, and u,B type-2 Smarandache ruled sur-
faces. Our main results are presented in theorems that look
into the necessary and sufficient conditions for those sur-
faces to be developable and minimal. Throughout the
response, an example with illustrations is created.

2. Preliminaries

Let E’ be a 3-dimensional Euclidean space provided with the
metric

() =dui + du; + du3, (1)

where (u, u,, u3;) is the rectangular coordinate system of E?.

Representing the moving Frenet frame along its regular
curve ¥ by {T,N, B} in conjunction with curvature func-
tions x and 7 in E?, the Frenet formula is given as follows [1]:

T(o) 0 k(o) 0 T(0)
% N(o) | =] -«(0o) 0 (o) N(o) |»
B(o) 0 -1(0) 0 B(o)

where (T,T)=(N,N)=(B,B)=1 and (T,N)=(T,B)
=(N,B) =0.
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For any arbitrary curve y with 7+0 in E?, the type-2
Bishop frame of y is given as follows [21]:

S (0) 0 0 k(o) [#(9)
| #@ [=] o0 0 k(o) || #al0) |>
B(0) k(o) ko) 0 B(o)

where k; and k, are the type-2 Bishop curvatures and satis-

fying

T(o0) sin6(o) -cosB(c) 0 u, (o)
N(o) | =| cosO(c) sinf(c) 0 w(o) |>
B(o) 0 0 1 B(0)

where 0(0) = arctan (k,/k,) and

k, =-7 cos 0(0), (%)

k,=-7sin 0(0).

Definition 1. [21]. p,p, type-2 Smarandache curves of the
curve y(0) via {y,, 4,, B} are given as

B(o* (o)) = \}5(#1(0) +1y(0)). (6)

Definition 2. [21]. u,B type-2 Smarandache curves of the
curve y(o) via {y,, u,, B} are given as

* _ ! o)+ B(o
(o (0))—75(%( )+ B(0)). (7)

Definition 3. [21]. u,B type-2 Smarandache curves of the
curve y(o) via {y,, u,, B} are given as

80" (0)) = % (4(0) + B(@)). (8)

A ruled surface v in E* can be reparametrized as
0(0,v) = ¥(0) + v (o), ©)

where y(0) is really the base curve and y(o) is its unit which
defines a space curve that characterizes the straight line’s
direction [22].

v’s unit normal vector N is given as follows [23]:

Us Yo% (10)
s x v, I°
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where v, = 0v/0o and v, = dv/0v. The Gaussian curvature K
and the mean curvature H are given as follows [23]:

e — m?

K= ——,
EG-F?
(11)
_ En+ Ge-2mF
~ 2(EG-F?)

2 2
where E= [[Y, |, F= (Y, ¥,), G= Y| €= (Y, U), m
=(Y,,,U), and n= (Y, U). The normal curvature, geode-
sic curvature, and geodesic torsion that connects the curve

(o) on Y are computed as follows:
K, = <1//",U>, Ky = <U>< T, T'>,Tg = <U>< v, T'>. (12)

Definition 4. A ruled surface is developable if and only if K
=0 and minimal if and only if H=0.

3. Main Results

In this part, we define the type-2 Smarandache ruled sur-
faces within Euclidean 3-space E’ referring to the frame
{u> 4> B}. Furthermore, we evaluate the sufficient and
necessary conditions that enable these surfaces to be devel-
opable and minimal.

3.1. yu,u, Type-2 Smarandache Ruled Surface

Definition 5. For a regular curve v = y(0) in E? related to the
frame {y,, u,, B}, the p,p, type-2 Smarandache ruled sur-
face is given as

1
Q=9(0)0)=75(%(0)+#2(0))+UB(0)- (13)
Theorem 6. Let Q = Q(0, v) be the y,u, type-2 Smarandache

ruled surface in E° defined by (13). Then, we have

(1) Q is a developable surface with asymptotic base curve
y(0)

(2) Q is a minimal surface if and only if the type-2 Bishop
curvatures satisfy the following equation

k, = ke, (14)

where c is real constant.

Proof. Considering that the y, y, type-2 Smarandache ruled
surface given by (13), then, the velocity vectors of O are
given as follows:

k,+k
QU:vkl‘u1+vk2‘u2—< 1\/5 2>B, (15)

Q,=B.
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From equation (15), we can obtain that the (2’s quanti-
ties of fundamental forms are

1
E=v"7"+ 5 (ki + ky)%

-1
F=—(k +k,),
(ki + k)
G=1,
0= (&) [ K - ky(ky + ky } B (k1> [ K — kl(kl"'kz)]
T ! V2 T 2 N
m=0,
n=0.

(16)

Consequently, from the above data, we obtain K, and
Hg, of the y,p, type-2 Smarandache ruled surface given as
follows:

K,=0,

Kk~ kK, (17)

Q 2ut3

Also, we use (12) to get the normal curvature, the geode-
sic curvature, and the geodesic torsion that associate y(o) on
Q as the following:

K, =0,
__K
K= (18)
1 ki k
9= |:T2 <ITZ> - klkzr'].
So, the proof ended. O

3.2. u,B Type-2 Smarandache Ruled Surface
Definition 7. For a regular curve y = y(0) in E® related to the

frame {y,, u,, B}, the y, B type-2 Smarandache ruled surface
is given as

®=0(0,0)= = (1(0) +Bo)) +opi(o). (19

2Kk

Theorem 8. Let @ = D(0,v) be the B type-2 Smarandache
ruled surface in E? defined by (19). Then, we have

(1) If k;k, =0, then, © is a developable surface with the
geodesic base curve

(2) @ is a minimal surface with the geodesic base curve if
and only if the type-2 Bishop curvatures satisfy the
following differential equation

<k1 + \/§vk2> [k; —k, (k, + ﬂvkz)} )
—k, (TZ +K o+ \/Evk;) — 2k, 2 =0.

Proof. Considering the y,B type-2 Smarandache ruled sur-
face given by (19), then, the velocity vectors of @ are given
as follows:

D, = (%)141 + <%> M (L\/\/;Ukz) & (21)

D, =u,.

v

From equation (21), the @’s quantities of fundamental
forms are

E= % {12 + (k1 + \/Evkz)z],
k2
-
G=1,
. (k1 + \/kaz) [k; —k, (k1 + \/Evkz)] —k, [12 +kl+ \/ivk;]
\/E\/kf +(k+ \/iukz)2
o kiky |
\/kf + (k, + \/kaz)z
n=0.
(22)
O

Then, K4 and Hg, of the y, B type-2 Smarandache ruled sur-
face is given as follows:

[kf + (e + ﬂvkz)z} [12 K

Hg =

(kl + \/Evk2> [k; —k, (kl + \/Evkzﬂ ~k, [12 T+ \/Zuk;] + 2k, K2

+ (k1 + \/ivk2>2} ’

(23)

V2 [+ (k, + \/kaz)z



Furthermore, from (12), we have

(k; - kf) (k1 + \/Evkz) —k, (TZ + k;)

" ﬁ\/kf + (K, +\/§vk2>2 ,

Ky =0, (24)
Kk, (kl + \/§ka>

9= 2
i+ (kl + \/§ka>

which replies to the above theorem.

3.3. u,B Type-2 Smarandache Ruled Surface

Definition 9. For a regular curve v = y(0) in E’ related to the
frame {y,, u,, B}, the y, B type-2 Smarandache ruled surface
is given as

1
‘P='f’(0’v)=75(#2(0)+B(0))+v!41(0)- (25)
Theorem 10. Let ¥ =¥(o,v) be the u,B type-2 Smaran-
dache ruled surface in E* defined by (25). Then, we have

(1) If k;k, =0, then, ¥ is a developable surface with the
principal base curve

(2) ¥ is a minimal surface if and only if the type-2 Bishop
curvatures satisfy the following differential equation

k, (12 +k)+ \/Evk;) — 2Kk, - (k2 + f2v1<1)
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Proof. Considering the y,B type-2 Smarandache ruled sur-
face given by (25), then, the velocity vectors of ¥ are given
as follows:

e (e (e (252,
¥, =y

From equation (27), the ¥’s quantities of fundamental
forms are

E=

{TZ + (k2 + \/Evkl)z],

N =

K,
Vit
G=1,
k, [72 +K+ \/Evkq - (k2 + \/Evk1> [k; —k, (k2 + ﬁvkl)}
\/E\/k§ + (ky +\/§vk1)2
kb

\/k§ + (kz + \/iukl)z

n=0.

F=

L=

>

(28)

The Ky and Hy of the y,B type-2 Smarandache ruled

K=Ky (ky + 20k, ) | = 0. 26) surface given as follows:
[ 2 2( 2 1)] g
Ky=- 2k k5 ’
[k; + (kz + \/kal)z} {12 K+ (k2 + \/Evkl)z}
o k, (TZ +k+ \/iuk;) — 2Kk, - (k2 + \/Evkl) [k; —k, (kz + \/iukl)]
’ ﬁ\/k§+ (k2+\/ivk1)2
So, the proof ended. O

Also, from (12), we have

ks (72 + k;) - (k; - kf) (k2 + \/Evkl)

K, = ,

Va2 i+ (k, +\/§vkl>2

k, (kz + \/5ka>

K, = >

K+ (kz + \/ka1>2

Kk <k2 + ﬂvk1>

T
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-1.0
100
50
0
1.0
Ficure 1: Curve v = y(0).
Then, equations (29) and (30) complete the proof. o o
) ) ) py(0) = | —cos (—) sin (—) + = cos (—) sin (—),
3.4. Example. Let v be a circular helix parameterized as y/( 3 9/ 3 9 3

irv):h gizs (0/3), sin (0/3), (21/20/3)) (see Figure 1). Then, 1 o (%) o (g) Cw (g) . G)

37 3

. EVC (i))
1 . /o0 1 o\ 22 '
T(o)= (—5 sin (5),5 cos (—) —>, ? ?

(32)
N(o)= (—cos (g) ,— sin (—) O) (31)
The p,u, type-2 Smarandache ruled surface Q(o,v) is
22 22 1 i
o= (Fn (- ()5 e

Then, 7=21/2/9#0 and 6(0) = [ (1/9)do = 6/9. From Q(o,v) = (% { % sin (%) (cos (g) - sin (g))
(4), we get k,(0) =—(2v/2/9) cos (0/9), x,(0) =—(2v/2/9) - o
sin (0/9). Also, we have — cos (5) (sin (—) + cos (
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FIGURE 2: y, i, type-2 Smarandache ruled surface (o, v).

5

FIGURE 3: y, B type-2 Smarandache ruled surface @(o, v).

The y,B type-2 Smarandache ruled surface @(o,v) is The u,B type-2 Smarandache ruled surface ¥(o,v) is
(see Figure 3) (see Figure 4)

o (o <:>—% <€>> = (0 ) (o ) v ()
O' o

%m@)%ﬁ>
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FIGURE 4: y,B type-2 Smarandache ruled surface ¥(o,v).

4. Conclusion

The study of ruled surfaces with different moving frames is
one of the most interesting points of this paper. The
researchers found that these surfaces could be developed in
a minimal amount of time. In this work, we describe and
study type-2 Smarandache ruled surfaces, which are a spe-
cific form of ruled surfaces. We create the essential and ade-
quate circumstances for these surfaces to be developable in a
minimal amount of time.
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