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The digitization, analysis, and processing technology of music signals are the core of digital music technology. There is generally a
preprocessing process before the music signal processing. The preprocessing process usually includes antialiasing filtering,
digitization, preemphasis, windowing, and framing. Songs in the popular wav format and MP3 format on the Internet are all
songs that have been processed by digital technology and do not need to be digitalized. Preprocessing can affect the
effectiveness and reliability of the feature parameter extraction of music signals. Since the music signal is a kind of voice signal,
the processing of the voice is also applicable to the music signal. In the study of adaptive wave equation inversion, the
traditional full-wave equation inversion uses the minimum mean square error between real data and simulated data as the
objective function. The gradient direction is determined by the cross-correlation of the back propagation residual wave field
and the forward simulation wave field with respect to the second derivative of time. When there is a big gap between the
initial model and the formal model, the phenomenon of cycle jumping will inevitably appear. In this paper, adaptive wave
equation inversion is used. This method adopts the idea of penalty function and introduces the Wiener filter to establish a dual
objective function for the phase difference that appears in the inversion. This article discusses the calculation formulas of the
accompanying source, gradient, and iteration step length and uses the conjugate gradient method to iteratively reduce the
phase difference. In the test function group and the recorded music signal library, a large number of simulation experiments
and comparative analysis of the music signal recognition experiment were performed on the extracted features, which verified
the time-frequency analysis performance of the wave equation inversion and the improvement of the decomposition algorithm.
The features extracted by the wave equation inversion have a higher recognition rate than the features extracted based on the
standard decomposition algorithm, which verifies that the wave equation inversion has a better decomposition ability.

1. Introduction

Music can express people’s thoughts and can convey people’s
happiness, anger, sorrow, and joy. It exists in various cultures
and countries and is closely related to people’s lives [1]. Since
the reform and opening up, music has been constantly
developing and changing, and there have been many dif-
ferent styles of music and a large number of music works
[2]. 64% of users cannot find the song they want to listen
to when using a music search engine, and many users are
not clear about their needs for music [3]. In the face of

the large number of music, it is difficult to find your
favorite music, and music classification and search still
have huge room for development [4]. Today, with the
popularization of the Internet and the continuous develop-
ment of network applications, in the face of a huge user
group and massive scale of data, the importance of digital
music retrieval and recommendation is self-evident [5].
Music classification is an important field of music
retrieval. It is the premise, technical means, and main
work content of the research on content-based music
retrieval and recommendation. The study of music style
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classification has a broad development space [6]. The clas-
sification of music styles can help people quickly find their
favorite music and can play different styles of music at dif-
ferent times according to different occasions.

In music signal recognition technology, the key issue is
to establish an acoustic model of music signal recognition
primitives [7]. At present, some technologies for the
acoustic model of music signals have not been completely
solved, resulting in the performance of some products that
are still difficult to meet the ideal use requirements [8].
The acoustic model is established on the basis of the char-
acteristic parameters of the music signal. Therefore, the
amount of useful information contained in the characteris-
tic parameters of the music signal directly determines the
accuracy of the acoustic model’s description of the music
signal. The parameter information is less, so the final
acoustic model is also imperfect. Before the acoustic model
is established, the characteristic parameters must be stud-
ied to extract the parameters with the most useful infor-
mation [9]. Acoustic models established based on
characteristic parameters mainly fall into two categories.
One is mapping planning on the time axis, and the distor-
tion of the two characteristic parameters is measured; the
other is a model based on statistical knowledge. The estab-
lishment is based on the initial model and training data
and constantly reevaluates and optimizes the parameters
until the model converges. This algorithm is not a global
optimal analytical solution, and it is easier to fall into a
local optimal solution. The final model parameters are
quite different. Therefore, the study of feature parameter
extraction and model initialization is of great significance
in music signal recognition.

This article introduces the adaptive wave equation inver-
sion method as the core and analyzes the wave equation
inversion in the time domain, including the idea of wave
equation inversion. The objective function is given for the
full-wave equation inversion method in the time domain,
and the local optimization algorithm, namely the gradient
method, is used for inversion. The gradient formula is given,
and a detailed derivation process is attached. Aiming at the
period jump, the proposed adaptive wave equation inversion
is introduced, including the basic principle and objective
function of the method. A new objective function is used
to give the formulas of the accompanying source and gra-
dient and give a detailed derivation process. The gradient
difference between adaptive wave equation inversion and
full-wave equation inversion is compared. The gradient
formula of the conjugate gradient method and the selec-
tion of the step length are introduced. We perform vowel
recognition experiments on the music signal libraries 1
and 2, respectively. For features of the same dimension,
on music signal library 1, the wave equation inversion
has a higher recognition rate than the three contrasted fea-
tures. On music signal library 2, it also has a higher recog-
nition rate under the original signal and low signal-to-
noise ratio. For the combination of features in this article,
HMS-MFCC has a strong characterization ability, while
EWCF is more susceptible to noise pollution, but it has
the lowest dimensionality.
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2. Related Work

The purpose of feature extraction is to obtain information
that is conducive to identification and eliminate interference
in the music signal. The music signal contains a large
amount of not only music signal information but also per-
sonal characteristic information. The characteristic parame-
ters of the music signal should be able to accurately
represent all the information contained in the original signal
that helps to distinguish. Thorough research makes the
existing characteristic parameters unable to completely and
accurately characterize the information of the music signal.
At present, the characteristic parameters in music signals
can be divided into time domain, frequency domain, and
cepstrum domain. The time domain parameters are
obtained by reducing the dimensionality of each frame of
music signal in the time domain to form a set of feature vec-
tors. Time domain parameters mainly include short-term
energy, short-term zero-crossing rate, and autocorrelation
coefficient. The frequency domain and cepstrum domain
parameters are to transform each frame of music signal into
the frequency domain range and extract characteristic
parameters in the frequency domain or convert the fre-
quency domain parameters into the cepstrum domain.

At present, there is no parameter in feature extraction
that can represent all useful information of music signals,
even if the more mature MFCC parameters are used [10].
Among the various parameters, it is an approximate descrip-
tion of a certain aspect of the music signal. For example, the
commonly used MFCC parameters simulate the human
auditory system, which mainly considers low-frequency
components. The low-frequency components of the param-
eters account for the main part, and the use of the differ-
ences of the components of the MFCC parameters is not
considered for feature selection, so that the parameters will
lose some important information [11]. Researchers have
proposed many algorithms to improve the characteristic
parameters of music signals [12].

The Mel-frequency cepstral coefficient is currently the
most widely used characteristic coefficient in the music sig-
nal recognition system. It is based on the auditory system
of the human ear and extracts parameters by simulating
the auditory system of the human ear to establish a model
to describe the energy distribution of the music signal in
the frequency domain [13]. For sounds of different frequen-
cies, the ability of the human auditory system to perceive
them is different. For sounds with a frequency below
1,000 Hz, the auditory system’s ability to perceive it satisfies
an approximate linear relationship, but when the frequency
is higher than 1,000 Hz, the auditory system’s perception of
sound meets a logarithmic relationship with the frequency
approximately [14]. Compared with PLC and PLCC param-
eters, MFCC parameters emphasize the low-frequency infor-
mation of music signals, shielding high-frequency noise
interference, and without any assumptions can be used in
various situations.

With the advancement and development of computer
science and technology, the basic theories and key technolo-
gies of music signal recognition technology have been
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initially promoted [15]. The main research results of music
signal recognition technology during this period are
dynamic programming (DP) and linear prediction (LP).
Among them, the dynamic programming technology is a
technology to calibrate a group of music signals in time. It
can better solve the problem of unequal length correction
of music signals in music signal recognition [16]. The linear
predictive analysis technology proposes a better solution to
the mathematical model of music signal generation, which
has a profound impact on the development and application
of music signal recognition technology [17]. At the same
time, NEC Laboratory, Tokyo Radio Laboratory in Japan,
and Kyoto University have successively researched and
produced dedicated hardware devices to be used in music
signal recognition technology, laying a solid foundation for
their further theoretical research and practical application
[18, 19].

The Baum-Welch algorithm is essentially an algorithm
that uses the maximum expected value [20]. This algorithm
can ensure that the output probability of the model that is
not reevaluated once is increased, but this algorithm has a
large dependence on the initial parameters. For different ini-
tial parameters, the final output probability is not unique.
Therefore, the traditional Baum-Welch algorithm cannot
accurately and completely establish an acoustic model of
the trained music signal observation sequence [21]. In terms
of the hidden Markov models, how to train a perfect acoustic
model has always been a difficult point in research [22]. In
order to solve the problem that the Baum-Welch algorithm’s
dependence on the initial model parameters may cause the
final training model to fall into a local optimum, researchers
have proposed various solutions and algorithms [23]. These
algorithms are mainly aimed at two aspects: one is in the
algorithm training process, combined with other algorithms,
to intelligently optimize the model parameters obtained
from each revaluation. These algorithms generally have the
advantages of global optimization [24]. The other is to opti-
mize parameters in the model initialization stage and try to
choose more appropriate model initialization parame-
ters [25].

3. Music Signal Processing Technology

3.1. Mathematical Model of Music Signal. Based on the char-
acteristics of the vocal tract model of the music signal, the
music signal model is composed of three parts: (1) glottal
excitation function G(z), (2) vocal tract modulation function
V(z), and (3) lip radiation function R(z).

The music signal generation system is formed by con-
necting these three functions in series, namely

H(z) =R(z)G(2) V(). (1)

Common vocal tract models include lossless sound tube
and formant models. The excitation wave of the sound
source is affected by the resonance of the vocal tract, and res-
onance occurs in certain frequency bands. The peak pro-
duced by the envelope of the spectral line at the resonant
frequency is the resonant peak. The vocal tract model of gen-

eral vowels is represented by the all-pole model, and the
nongeneral vowels and most consonants are represented by
the zero-pole model. The transfer function expression of a
second-order resonator is

4 2)

V()= ——————.
i(?) 1-Biz7'-Ciz?

Multiple V; linear combinations are obtained to obtain
the formant model of the sound channel:

V(z) = Jlim T [(1-A)x(1-Bz"'+Cz7?)]. (3)

i=0

Since the excitation model of the music signal is an
expression in the form of all poles, we call the ratio of the
music signal to the output wave velocity of the vocal tract
as the radiation impedance, ignoring that the open area of
the lips is much smaller than the head surface area, and
derive the radiation impedance expression:

Z,(0) = JL,R,Qx (R, ~JL,2) . (4)

In the actual process, the physical process of music signal
generation is different from the above three models but is
approximately equivalent. This also verifies that the music
signal is a short-term stable signal and a signal that changes
over time. In addition, the fricatives in voiced sounds have
both unvoiced and voiced excitation sources at the same
time and cannot be obtained by simply superimposing the
two.

3.2. Preprocessing of Music Signal. The music signal is repre-
sented by a time-varying function curve on the mathemati-
cal image, and its dimension is N x 1, which is a column
vector. Among them, N is the sum of the number of samples
in the music signal. Through sampling and A/D conversion,
the music signal is changed from an analog signal to a digital
signal. The sampling rate is the number of times the music
signal is sampled within 1s per unit time. The higher the
sampling rate, the more music signal information is
obtained per unit time. The restoration of the music signal
is more real. In order to maintain the maximum characteris-
tics of the music signal and avoid spectrum aliasing, the
Nyquist theorem must be satisfied when sampling, that is,
the sampling frequency fs> 2 fm, and fm is the highest fre-
quency of the music signal. Quantization is to divide the
amplitude of the entire range into a finite set, specify the
waveform of one of the ranges as the standard, and treat
the amplitude of all the waveforms as having the same
amplitude as that.

The preemphasis processing is to consider that the music
signal in the high-frequency band above 800Hz has a
6 dB/octave amplitude drop. Sometimes, it is also considered
to eliminate the DC level offset, so the high-frequency part
of the music signal must be added through a transfer
function.



The music signal is a short-term stable signal, and its
characteristics can be considered to remain unchanged
within 10ms. The part of the sound interval obtained by
multiplying the music signal by the window function is
called a frame. The length of the interval is called the frame
length. Generally, there are 33-100 frames per second. The
overlapping part between adjacent frames is called a frame.
In order to make a continuous and smooth transition
between frames, the frame shift is usually 1/3 of the frame
length.

The main lobe of the rectangular window is narrow and
sharp, and the corresponding frequency resolution is high,
the side lobe peak is large, and the spectral smoothing effect
is good, but the spectrum leakage is more serious; the width
of the main lobe of the Hamming window is large, which can
greatly retain the waveform characteristics of the music sig-
nal. But its side lobe attenuation is relatively large. Accord-
ing to the music signal waveform multiplied by the
window function, there will be no sharp changes, and the
music signal waveform characteristics should be maintained
as much as possible. When selecting the window, the main
lobe width, frequency resolution, and side lobe attenuation
should be comprehensively considered.

Endpoint detection can find out the start and end of the
sound segment in the signal, which can remove the silent
segment, enhance the useful part of the signal, and reduce
the length of the voice. For isolated word recognition, the
main purpose is to reduce the amount of calculation and
noise interference and increase the calculation accuracy;
for continuous speech recognition, it is mainly used to divide
the recognition primitives and to model and recognize the
recognition primitives. Only by accurately finding the start-
ing end of the voice signal can the subsequent processing of
the voice be accurately performed. The schematic diagram of
dual-threshold method endpoint detection is shown in
Figure 1.

4. Mathematical Model of Adaptive Wave
Equation Inversion

4.1. Adaptive Wave Equation Inversion. The objective func-
tion of the full-wave equation inversion in the time domain
is

C(m)=0.5(Ad)* =0.5(d - u)*. (5)

The forward simulation wave field is u, the wave field is
d, and dd is the residual of the two. The residual equation of
the wave equation inversion is

Ad; = Sup{u; — d;}. (6)

When the phase difference between the predicted data
and the real data is greater than half a cycle, a cycle jump will
occur at this time. When used in actual seismic data, because
the initial model is not so accurate in most cases, it is prone
to cycle jumping, which has a great impact on the inversion.
Based on this, we proposed to introduce a penalty term to
constrain the objective function to overcome the cycle jump.
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Figure 2 is a schematic diagram of cycle skip artifacts in
FWI. The solid blue line represents the time function of the
true waveform of period T. The solid red line above repre-
sents the predicted waveform with a time delay greater than
T/2 cycles from the real waveform. In this case, FWI will
update the underground medium model so that the seismo-
gram of the (n + 1)th period predicted data will match the
nth period of the observation data map. An error occurs in
the update of the underground medium model, resulting in
the inversion effect, deviation. In the example at the bottom,
the n periods of the predicted data and the observed data are
consistent, because the time delay is less than T/2, and the
FWI can get the correct underground medium model
updated.

The adaptive wave equation inversion is proposed to
suppress the influence of cycle jumps on the inversion, and
it can be inverted under an unsatisfactory initial model to
obtain relatively still ideal inversion results.

The theory and method of adaptive wave equation inver-
sion are different from the traditional full-wave equation
inversion method. Here, the convolution of the filter and
one of the data sets is used to subtract from the other data
set instead of direct subtraction. The adaptive full-wave
equation inversion can well suppress the occurrence of cycle
jumps.

The convolution of a signal f(¢) and the impact signal
O(t) is equal to f(¢) itself. When the wave field value d is
convolved with the shock function, the wave field d is
obtained. When the predicted wave field data u is very close
to the real wave field data, u - & = d can be obtained. The fil-
ter coefficients are calculated, and the simulated data is con-
volved with the filter coefficients. Through continuous
iteration, the simulated data keeps getting closer to the real
data, and at the same time, the phase difference between
the two is gradually reduced, and the cycle jump is well sup-
pressed. The filter coeflicient gradually becomes a shock
function or approximates the shock function. At this time,
the difference between the simulated data and the real data
is minimized, and finally, an ideal inversion effect is
achieved. This method is called forward adaptive fluctuation
equation inversion. At the same time, when the real data is
convolved with the filter coefficients and then compared
with the simulated data, the gap between the two can also
be reduced through iteration. This method is called the sub-
sequent adaptive wave equation inversion.

4.2. Inversion of Objective Function by Adaptive Wave
Equation. The objective function of adaptive wave equation
inversion is different from that of traditional full-wave equa-
tion inversion. With dual objective functions, the inversion
is also divided into two steps: the first step is to calculate
the filter coefficients. The second step is to determine the
new accompanying source through the filter coeflicients
and calculate the gradient combined with the step size for
iterative calculation. The first step is to design a Wiener filter
here, that is, to define a Wiener filter w of order 1, first con-
volve the filter with the real data, and then the result of the
convolution with the least squares of the simulated data
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can obtain the objective function C(m):
C(m)=0.25(u - Dw)®. (7)

The forward simulation wave field u and w are the coef-
ficients of the Wiener filter, D is the Toblitz matrix, each col-
umn contains the seismic survey record wave field d, and D
is the real data d convolution filter w. In the traditional full-
wave equation inversion, the objective function is the mini-
mum mean square error of the difference between the pre-
dicted data and the real data. Under the less-than-ideal

initial prediction model, the inversion result is poor or the
inversion result is wrong, and the cycle jump is one of the
influencing factors.

The first step is to find the coefficients of the filter. Here
is a brief introduction to the principle of the Wiener filter: in
the system, if w(m) is its unit response, x(#) is an input ran-
dom signal, and

x(n)=s(n-1)+v(n-2), (8)

where s(n) represents the signal and v(n) represents the



noise. Then, the output y(n) is

n)=Hx(n—m) xw(m-1). 9)
It is known that the desired output is

)= [ x(m -1)] (10)
The error is
e(n) ﬂ x(n-m-Lw(m-1)]. (11)

m=1

The mean square error is

E(é(n)) = x(n-m-1)>xw(m)||. (12)

::]z

m 1

Further, we get

::]z
8

Elx(n—j—-1)s(n—-1)] x(n—j)xx(n-m-1)].

(13)

The process of designing a Wiener filter is to find the
expression of the unit impulse response or transfer function
of the filter under the minimum mean square error, and its
essence is to solve the Wiener-Hopf equation. Here, the
use of a Wiener filter can well suppress the cycle jump.
Through the introduction of Wiener filtering, the filter w
in the objective function C(m) in the adaptive wave equation
inversion can be derived:

w=D"uD(DD") . (14)

DD is the autocorrelation of the seismic survey record
wave field d, and D'd is the cross-correlation between the
forward simulation wave field u and the seismic survey
record wave field d. The meaning of the filter w formula is
the inverse matrix of the autocorrelation matrix of the
observed data multiplied by the cross-correlation between
the observed data and the predicted data. When the
observed data is consistent with the predicted data, that is,
when d = u, w should be an impulse function. But in general,
the predicted data is not equal to the observed data. Through
the filter w and subsequent algorithms, we try to make the
filter w an impulse signal. When designing the l-order filter
w, the seismic source wavelet should be taken into
consideration.

After calculating the coeflicients of the filter, the objec-
tive function f(m) of the adaptive full-wave equation inver-
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sion is given:
f(m)=0.5w"(Tw)>. (15)

The purpose of designing this objective function is to
constrain the filter w, using the idea of a penalty function,
where T'isa (1+ 1) x (1+ 1) diagonal matrix. The T function
is based on the absolute phase difference between the simu-
lated data and the real data. But the more complex form T
function can provide faster and more stable convergence.

4.3. Adjoint Sources and Gradients of Adaptive Wave
Equation Inversion. Due to the change of the objective func-
tion, the accompanying sources and gradients of adaptive
wave equation inversion are different from those of full-
wave equation inversion. The formula is given and deduced
here. A represents a matrix of numerical operators to imple-
ment the wave equation. s is the seismic source, and u is the
wave field generated by model m.

ou _ uA™ oA (16)
om om’
When the model m takes the partial derivative of the
objective function, we can get

of ou [0(Ad)]"
om Adam[ ou ] ’

(17)

The above is still the derivation process of the gradient
formula for the inversion of the full-wave equation. Here,
if the s variable is set, the gradient of the adaptive full-
wave equation inversion is

VE=-u"'A"T5s (gi) . (18)

The accompanying source §s is

ds=D"(DD") " w'w(T? - 2fT). (19)

Through the above deduction, the gradient and accom-
panying source of the inversion of the full-wave equation
are obtained. This is the wave equation inversion in the time
domain. Compared with the full-wave equation inversion in
the time domain, transformation is needed to obtain the
final gradient.

1 o*p
VE = 1+V3J wilar (20)

The gradient in the full-wave equation inversion is the
integral of the second derivative of the forward wave field
with respect to time and the back propagation of the residual
wave field. The gradient of the adaptive wave equation inver-
sion is different from the former. From the second derivative
of the forward wave field with respect to time and the back
propagation integral of the new accompanying source,
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finding the new accompanying source plays an important
role in the realization of the whole method. On the whole,
the objective function and gradient formula of the adaptive
wave equation inversion design are aimed at how to sup-
press the adverse effects caused by the cycle jump.

When the filter is convolved with the analog data, and
then the second norm of the difference with the real data,
the method of obtaining the filter coefficients and accompa-
nying sources in this form is called the previous adaptive
wave equation inversion.

g=0.5(d - Uw)?, (21)
v=UTd(uu")", (22)
f=0.5(Tv)*1v, (23)
Ss=Uv'UTU W vow - T)*. (24)

Among them, U is the Toblitz matrix, each column con-
tains analog data u, and v is the coefficient of the previous
filter. It can be seen that the difference between the two
methods is whether the filter is convolved with real data or
with analog data.

4.4. Conjugate Gradient Method Adaptive Wave Equation
Inversion. The gradient method is the earliest local optimiza-
tion algorithm used. Its advantage is that the algorithm is
relatively simple, the calculation amount of each iteration
is relatively small, and the memory usage is also small.
Under the condition of low initial point requirements, it
can also converge to a local minimum. The disadvantage is
that the convergence rate is slower and converges to a local
minimum instead of a global minimum. Newton’s method
has a very fast convergence rate and has the advantage of
quadratic convergence. It can converge to the global mini-
mum. However, the Hessian matrix needs to be processed.
The amount of calculation is large and the convergence rate
is slow. At the same time, it requires one of the initial points,
which is difficult to construct. The Gauss-Newton method is
improved on the basis of the Newton method to avoid the
entanglement of the second-order partial derivative using
the least square sum extreme value problem.

The conjugate gradient method is an important method
in the local optimization algorithm. It has many advantages
such as good convergence, high stability, and no need to add
additional parameters. This method also uses the gradient of
the objective function to generate the conjugate direction.
Although the calculation amount is slightly larger than that
of the steepest descent method, it overcomes the shortcom-
ings of slower convergence of the steepest descent method.
Compared with Newton’s method, it needs to calculate not
only the first-order derivative information but also the
second-order derivative information, storage, and the Hes-
sian matrix and inverse; the conjugate gradient method only
needs to calculate the first-order derivative information, and
the convergence effect is compared with the Newton law.
Therefore, the conjugate gradient method can be a more
effective algorithm for solving linear or nonlinear optimiza-

tion. Combining the above methods, this paper selects the
conjugate gradient method as the nonlinear conjugate gradi-
ent method for adaptive wave equation inversion. The calcu-
lation formula is as follows:

- (k1)
(k>={ VE,« + Big k=1 25)

~VE,o+(1-B)g%? k<l.

According to the calculation of the negative direction of
the gradient of the current model and the previously calcu-
lated conjugate gradient direction as the search direction of
this conjugate gradient method, the conjugate gradient
direction at the kth iteration is g(k), the conjugate gradient
direction in the second iteration is g(k—1), the negative
direction of the gradient calculated by the initial model is
E, > the negative direction of the gradient calculated by the
model mk in the kth iteration is E,,, and the weighting coef-
ficient is Bk. The flow chart of adaptive wave equation inver-
sion is shown in Figure 3.

5. Experiment and Result Analysis

We use Table 1 to describe the characteristic characters. This
article deals with the experiment in the following two points:
(1) The result of the recognition rate in the case of adding
noise is the intermediate value taken under five repeated
experiments. The formation method of “SNR=mixed” is as
follows: suppose the sample size of music signal is I, and /
random numbers are generated with a mean value of 25
and a standard deviation of 6 through a random function.
We add noise with the SNR value of the random number
generated to the original music signal to form a music signal
library with different SNRs. (2) The feature extraction
method in this paper adopts the Sliding-fastBSpline-EMD
decomposition algorithm. If there is no special description,
the window length is 3, and the sliding overlap number is 2.

5.1. Experiment on Music Signal Library 1. Since music sig-
nal library 1 is different vowels of the same person, it can
be understood that only the characterization and distin-
guishing ability of different vowels of features are examined,
so the classification is more accurate, and the recognition
rate of each group of features is also higher. From the com-
parison of the recognition rate of the same-dimensional fea-
tures in Figure 4, the recognition rate of wave equation
inversion is higher than the commonly used features LPCC,
MFCC, and WPTSBCC under several noise levels. It can also
be found that the lower the signal-to-noise ratio, the better
the recognition rate of wave equation inversion is relative
to the three contrast features. This not only reflects that
wave equation inversion is better than these three character-
istics in distinguishing different vowels but also reflects that
it has better antinoise performance under this condition.

In Figure 5, the wave equation inversion has a higher
recognition rate than the other three methods in general.
At the same time, it can be found that the difference between
their recognition rates can reach up to 9.5 percentage points.
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TaBLE 1: Description of characteristic characters.

Characteristic symbol

Feature composition

WPTSBCC The first 12-order WPTSBCC and its first-order and second-order differential combination
HMS-MFCC 24th order HMS-MFCC

LPCC The first 12-order LPCC and its first-order and second-order difference combination
EWCF Instantaneous energy-weighted center frequency of all IMF components

MFCC The first 12-order MFCC and its first-order and second-order difference combination

This fully reflects that the wave equation inversion has a
strong characterization ability in the combined features.
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FIGURE 4: The recognition rate of different SNR on music signal library 1.

tion inversion.

The results in Figure 6 show that the time-consuming

inversion of the wave equation is the smallest, with an aver-
age of about 0.2 ms, which meets the real-time requirements
of the system. The WPTSBCC takes the most time, about

0.6 ms, which is three times the time-consuming wave equa-

5.2. Experiment on Music Signal Library 2. It can be seen
from the results in Figure 7 that the recognition rate of wave
equation inversion is higher than the three comparison
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features, and its advantages are more obvious under the
noise level. This reflects that in these two cases, the HMS
of the signal provides a spectrum that better reflects the true
frequency of the signal-the energy distribution than the Fou-
rier spectrum and the wavelet coefficient energy spectrum,
and the wave equation inversion has better characterization
capabilities, except for LPCC. The other three features are all
based on the frequency spectrum. Since the music signal in
music signal library 2 is the pronunciation of six different
vowels of different people, and the pronunciation of different
people itself has diversity, this has brought a great degree of
influence on the recognition of six vowels. The difference in
recognition rate reflects the different effects of this diversity
and noise on the three spectrums.

The recognition rate of different feature vector dimen-
sions on the music signal library 2 is shown in Figure 8.
The recognition time of different feature vector dimensions
on the music signal library 2 is shown in Figure 9. Because
EWCE is greatly affected by noise, the results of the recogni-
tion experiments on the two music signal databases, respec-

tively, list the recognition results that it has the
characterization ability in the case of high signal-to-noise
ratio. It can be found that the characteristics extracted by
the wave equation inversion are generally higher than those
extracted based on the standard decomposition algorithm.
This fully reflects that the wave equation inversion provides
clearer and more realistic signals compared to the standard
decomposition algorithm.

6. Conclusion

In this paper, the research of adaptive time domain wave
equation inversion method is carried out. We introduced
the concept of inversion and the principle of full-wave equa-
tion inversion. According to the inversion of the full-wave
equation in the time domain, the objective function is given,
and the calculation formula of the gradient is derived. The
principle of adaptive wave equation inversion is introduced
in detail, two objective functions are introduced, and the cal-
culation formula of the accompanying source and gradient
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step length of adaptive wave equation inversion is deduced.
The solution method of adaptive wave equation inversion
is introduced. Through the analysis of the principle of fea-
ture extraction in common music signal recognition, the
effective mechanism of integrating HHT into the feature
extraction process is studied, and the feature extraction
framework of this article is established. Based on the instan-
taneous frequency and instantaneous energy of HMS and
IMF, respectively, two sets of features, HMS-MFCC and
EWCE, are extracted. The experimental results on the music
signal libraries 1 and 2 show that HMS-MFCC has strong
characterization capabilities, and in most cases, wave equa-
tion inversion has a higher recognition rate than that of
LPCC, MFCC, and WPTSBCC. Although EWCEF is greatly
affected by noise, it has a high recognition rate in the case
of high signal-to-noise ratio, but its feature dimension has
been greatly compressed, which helps reduce the complexity
of the recognition system. However, the research and exper-
iments in this article are all based on the recognition of non-
specific music signals based on small vocabulary and isolated
words. Human language is generally continuous, large
vocabulary, and relatively large noise interference from the
background environment of music signals. Moreover, the
music signal contains various other characteristics such as
phoneme and timbre. Since the research on music signal rec-
ognition technology is not long enough, we only conducted
some in-depth research on the feature parameter extraction
algorithm of music signal and the matching model of music
signal recognition system, and other aspects of music signal
recognition technology. There are deficiencies in the
research. Music signal is a complex signal, which contains
many characteristics of music signal. Integrating these
important characteristics in music signals and applying
them to music signal recognition technology are another
important direction for follow-up research.
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