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A semidiscrete integrable coupled system is obtained by embedding a free function into the discrete zero-curvature equation.
Then, explicit solutions of the first two nontrivial equations in this system are derived directly by the Darboux transformation
method. Finally, in order to compare the solutions before and after coupling intuitively, their structure figures are presented

and analyzed.

1. Introduction

Integrable coupled equations have attracted more attention in
soliton theory in recent years. For a given integrable system,
we can construct a nontrivial system of differential equations
which is still integrable and includes the original integrable sys-
tem as a subsystem [1]. It is interesting to find integrable coupled
systems for a given integrable equation. Hirota and Satsuma in
1981 introduced a coupled KdV system [2]. Fuchssteiner in
1982 proposed the important question: how should completely
systems interact without losing complete integrability [3]? Then,
the method for constructing integrable coupling systems by per-
turbation was first proposed by Ma and Fuchssteiner [4]. Later,
the method has been developed. So far, it mainly includes per-
turbations, enlarging spectral problems [5, 6], creating new loop
algebras [7], and multi-integrable couplings. With the develop-
ment of integrable coupling theory, it is verified that integrable
coupled equations are usually used for describing phenomena
related to dark and antidark solitons. Such as the integrable
coupled generalized nonlinear Schrédinger equations can
exhibit N-bright-bright and N-dark-dark soliton solutions [8].
Obtaining explicit solutions for integrable equations is
the main mission in nonlinear science research. Many
methods have been developed to solve integrable equations,
such as Darboux transformation [9-15], inverse scattering
transformation [16], algebra-geometric approach [17], Lie

symmetry method [18], and Hirota bilinear method [19].
Darboux transformation is a useful tool for solving integra-
ble equations. It can obtain its nontrivial solutions in accor-
dance with an arbitrary seed solution of the integrable
equations. Solving integrable coupled equations by the
Darboux transformation method is a meaningful investiga-
tion. Explicit solutions of an integrable coupled system of
Merola-Ragnisco-Tu lattice equation (24) are investigated,
and explicit solutions of a new discrete integrable soliton
hierarchy with 4 x4 Lax pair [20] are discussed by the
Darboux transformation.

In this paper, our main consideration is the following
semidiscrete integrable coupled equations:
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where g, 7,,, u,,, and s, are the potentials. The spectral prob-
lems deriving the semidiscrete integrable coupled system are
an extension of a spectral problem introduced by Sun et al.
[21]. Another extension of the spectral problems in [21]
was investigated by Xue et al. [22]. They also constructed
infinitely many conversation laws and Darboux transforma-
tions for the first nonlinear integrable equations. In this
paper, we will concentrate on investigating explicit solutions
of Equation (1) by means of the Darboux transformation
method based on its Lax pair.

The outline of this paper is as follows. In Section 2, we
will derive Equation (1) by means of the discrete zero-
curvature equations and construct the Darboux transforma-
tion for Equation (1) based on its spectral problems. In
Section 3, we will obtain the explicit solutions of Equation
(1) and discuss the properties of solutions by means of dif-
ferent figures. In Section 4, some conclusions will be given.

2. A New Integrable Coupled Equation and Its
Darboux Transformation

2.1. Constructing for a New Integrable Coupled Equation. In
order to obtain Equation (1), we consider the following dis-
crete spectral problem:
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and its auxiliary problem
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where A is independent of t and E is a shift operator defined
by Ef(n) =Ef(n+1).

Then, we embed a free function 851"’) into the following
modification term A(™):

M 0 0 0
0 am™ 0 em
Alm) — 4
0 0 0 am

Let VU™ =X2"T(m 4 A Solving the stationary
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discrete zero-curvature equations (EI',)U, — U,I', =0 and
the discrete zero-curvature equations Un)t—E(VS["))Un +
U,Vi" =0, we can obtain the following integrable
coupled hierarchy:

G =g, + B+ q,000),

ot = —a™r, M - rn(SSlm),
= el q, + aei, + fi0) + u, 00, (%)
)

Then, the semidiscrete integrable coupled Equation (1)

can be obtained by setting m =1 and 821) =1. The detailed
symbolic computation steps are similar to [22].

2.2. Darboux Transformation. In this section, we will inves-
tigate the Darboux transformation of Equation (1).
The spectral problems of Equation (1) are presented by
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Firstly, we choose a proper Darboux matrix:
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The Darboux transformation can transform U,, V,, into

U,V,ie,
Ep, =U,p,,
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V,=(T,,+T, V)T

And the potential functions U, and V, have the same
form as U, and V, respectively. Then, we need to define a
solution matrix @, ; it can be represented as
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If we assume that the terms both ¢[n] = (¢, [n], ¢, [n], ¢,
[n], @,[n])" and y(n] = (v, [n], y, [n], ys[n], ,[n]) " are two

linear independent solutions of the 4 x 4 Lax pair of Equa-
tion (1), we can obtain
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So we have an algebraic system:
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Solving the linear algebraic system, we can obtain the
expressions  for a,,a,,,by,,¢ 1, €€ fi9, In
Appendix A. Furthermore, the following equations can be
obtained by Equation (2):
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From Equation (9) to Equation (16), it can be seen that
+A, and *A, are the roots of Det(T,) = 0. So, we have

Det(T,) =, ()1 - 4, P(A+ AP - L, (A + hy)2, (17)

where a,,(t) is a function with respect to ¢. From the above
conclusion, we can prove the following proposition.

Proposition 1. The form of the matrix U, is
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i “Ar, NG i+ 1 =X, A%(G5, + i,T,)
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(18)

and the transformation from the old potentials q,,, r,,, u,,, s,, to
new ones q,,, T, i, S,, is given by
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where all the expressions ©;(1),1,j=1,2,3,4 are the
functions with respect to #n and t. It is easy to verify that
the terms +A, and +A, are the roots of @ij()\), ,j=1,2,3,
4 except  O3(A), 05(A), 04,(1), 04,(), ©;,(1),0;5(A),
and ©,; (). We can also prove that ©5, (1), ©4,(A), O, (1),
04,(1),01(1),015(1), ©33(4) =0, the terms O, (A),
0144(1).0,1,,(1), @33 ,(4), O34, (1), and O 43, (1) are ninth-
order polynomials with respect to A, and the terms ®,, ,(A),
®y,(A), and Oy ,(A) are tenth-order polynomials with
respect to A. The equation T,,,U,T; =det (T,)P, can be

writtenas T,,,U, =P, T,, with
0 1239 0 12
o | P POV +PY PoA P
" 0 0 0 1239
0 0 PyA PYA 4+ P
(21)
1 1 A 1
) S A |
2 40"n-1 T 2
- i l 22
~ q,
V,=
0 0
0 0
Proof.
Qll,n (A) QlZ,n (/\) 'QIS,n(/\) Ql4,n(A)
(1) QZl,n (A) 'QZZ,n (/\) QZS,n(/\) QZ4,n(A)
T T,VIT: = ,
< SR ) g Q1,(A) 55,(A) 53,(1)  Ds34,(A)
941,71 (A) Q42,n (/\) Q43,n(/\) ‘Q44,n(A)
(24)

Advances in Mathematical Physics

By comparing the coefhicients in T',,,, U, =P, T, we find
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From the above equations, we can see P, = U,. The proof
is completed. O

Proposition 2. Under the transformations Equations (10)
and (19), the term V, has the form

u 1 s Tyl = Spo1
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where all the expressions Q;(i,j=1,2) are the func-
tions with respect to n and t. It is obvious that the terms
Q11,4(A), Q43,4(1):2 4 (1), 2344 (A)5 233,,(4), and Qs (2)
are tenth-order polynomials with respect to A, the terms
Q14,(A), Q1 4(1):23,, (1), 34, (A),  and Qg3 () are
ninth-order polynomials with respect to A, the term
Q,,(A) is eighth-order polynomials with respect to A,
and the terms Qj (1), Q;,,(A), 2y ,(4), and Q, (1)
are all zero. In addition, the terms +A; and *A, are the
roots of the ;;(A). So, we have
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(Tn,t + Tnvgp) T? = (det T,)Q,,

with
Qv +al Q) QireQl
o~ Qdir QP Qiia
0 0o QY +qQY
0 0 QYA

Equation (25) can be rewritten as
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By comparing the coefficients in Equation (27), we

obtain
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It is obvious that Q, = V,,. The proof is completed. ]

Equations (14) and (19) constitute the Darboux transfor-
mation for the semidiscrete integrable coupled systems

based on Equations (6) and (7).

3. Explicit Solutions

3.1. Explicit Solutions for Equation (1). In order to obtain the
explicit solutions of the semidiscrete integrable coupled
equations (1), we choose the trivial solution g, =u, =¢',r,
=s,=e¢"'. Then, the spectral problems Equations (2) and
(7) become
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By solving Equation (29), we achieve the two basic solu-
tions of Equation (1), ¢, and vy,
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FIGURE 1: Three-dimensional structure figures of explicit solutions from Equation (32) and the evolutions of these solutions with parameters

A =03, A, =0.61, , = /31, and x, = /2.

Then, based on Equation (13), we can obtain

- ((—Zt — A (E DA mf“*ﬁ) Ke (1) 4 (—)L? + )t;‘) £ 3044202

6i, [n} = 2 i
1 Z(Ki((—l/Zt FU2)A 122 A2 (14 1)) e - 12006t (A, + 1) (12 — 1 + 1))A,.
(2047 - 1)) (Ae )i, = X2 (-1726A} + 1))
8i, [71] == 2
’ SR+ 1) (002 — 4 1) et 21PN (21728 4 172)A272 — 120274 4 A2 (4 1)),
(=262 + 2 ) A2 ) o) — o),
0,5[n] =

According to the transformations Equations (19), (16),
and (31), we can obtain the explicit solutions of Equation
(1) by symbolic computing software maple. It is presented
by 8;,[n], ;,[n], §;5[n] in Appendix B.

3.2. Discussions. The integrable equations investigated in
[22] are presented as follows:

q 1
qn,t:_q nr +7+qn’
n+l'n n (32)
T, 1
rn,t = - =Ty
ann—l qn

The explicit solutions of Equation (32) by Darboux
transformation method are given in [22]

_ P KA"A3 ()‘f —1)e+ Ay (pipse’ - e+ Af/\gey)
TP - )€ - p, A A (o, — e + Ae)
B X+ A3 - p A (Ag -1)e' + Py AT (/\f -1)e
S Aet = A2et + i A (A =1) - py A3 (A1 - 1)

n

>

26, (=172t + 12)A"2 = 12024+ A2 (¢ + 1)) M = Aet (A + 1) (EA7 — £ +1)

where p, = e, p, = e*!, and p; = 5, A2 (A2 = 12).

In order to compare the differences of the explicit
solutions between integrable coupled Equation (1) and inte-
grable Equation (32), we first investigate the three-
dimensional structure and the evolution properties of
explicit solutions Equation (33) with two sets of parameters,
A =04,1,=25x =32,and k, =0.8and A, =0.3, 1, =0.6]
L, K = /31, and Ky = V2 in Figures 1 and 2. Then, we plot the
three-dimensional structures, density figures, the evolution
properties of g,,7,, and 5, with parameters A, =0.3, A, =
0.61, and «, = v/3I, and i, with parameters A, =0.4,, =
25, x; =32, and «, = 0.8 in Figures 3-5 (The expression for
i, is so complicated that Maple cannot calculate its figure
when the parameters contain a complex number. The
specific expression of 7, is in the appendix.).

From Figures 1 and 2, it can be observed that the solitary
waves move from right to left whether the parameter
contains complex numbers or not. From the evolutions of
solutions in Figure 1, we see that these one-soliton solutions
are not stable. From Figure 2, we observed that g, and 7,
have the kink-shaped structures when we take the appropri-
ate parameters. From Figure 5, it is easy to see that the soli-
tary waves of q,, 7,,, and 5, also move from right to left, and
they are also not stable. From Figures 1-5, we find that the
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FIGURE 2: Three-dimensional structure figures of explicit solutions from Equation (32) and the evolutions of these solutions with parameters
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FIGURE 3: Three-dimensional structure figures of §,, 7,, and §, with parameters A, = 0.3, A, = 0.61, ;, = /31, and &, = /2 and density
figures of u, with parameters A, = 0.4, A, =25, ¥, =32, and «, = 0.8.
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FIGURE 4: Density figures of §,, 7,, and §, with parameters A, =0.3, A, =0.6I, x, = /3], and k, =+/2 and density figures of i, with
parameters A, = 0.4, A, =25, k¥, =32, and k, =0.8.
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shapes, amplitudes, and wavelengths of solutions have a big 9= ! .
difference before and after coupling, but the directions of " (- O12[n03 (A, + 8, 5[n]0,,[n]My)
solitary wave solution propagation have not changed. (4= 1) (B[] = 1)as[m) + 85, []8,[1]) X181 5[]
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paper, we have constructed a couple ax pair = 8, [1]28 4[]0 [1]0 5 [1]) 8]0 5 [m]A*

by enlarging the 2 x 2 Lax pair and derived new semidiscrete
integrable coupled equations which include the original inte-
grable equations as subequations. Next, we have found a
suitable Darboux matrix and obtained the explicit solutions
of Equation (1) according to the seed solution g, = u, = ¢,
r,=s,=¢e' by means of the Darboux transformation
method. Then, we plot three-dimensional structure figures,
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= 852[n]d25[1] = 8y5[n]) + (((=82.1[n] = 823 [n])S15(n]

011 [11025[1])02[1] + 815[1]0,,5[1])81 5[] (10,1 )61, [1]
+(=011[1]013 (182 ()8 5[] + (=01, [1]
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+0, ["]282,2 [1]8,5(1])8,,2 (102, [1]) (A, + Az)/(/\%/\g (81214

=268, [n])d,3(n]
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*(01,1[n]853[n] Ay = 6,5[n]05,1[n]A3)). (A' 1)

B. The Solution to Equation (1)
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= 8y,[n+ 118, ,[n+1]8,, [n+1])8, 5[n+1]
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(B.1)

Data Availability

The data in the manuscript are available from the corre-
sponding authors upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Acknowledgments

The authors express their sincere thanks to the members of
our discussion group for their valuable suggestions. The
work was supported by the National Nature Science Foun-
dation of China (No. 11701334) and the “Jingying” Project
of Shandong University of Science and Technology.

References

[1] W.Ma, “Integrable couplings of soliton equations by perturba-
tions I. A general theory and application to the KdV



10

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

hierarchy,” Methods and Applications of Analysis, vol. 7, no. 1,
pp- 21-56, 2000.

R. Hirota and J. Satsuma, “Soliton solutions of a coupled
Korteweg-de Vries equation,” Physics Letters A, vol. 85,
no. 8-9, pp. 407-408, 1981.

B. Fuchssteiner, “The Lie algebra structure of degenerate Ham-
iltonian and bi-Hamiltonian systems,” Progress in Theoretical
Physics, vol. 68, no. 4, pp. 1082-1104, 1982.

W. Ma and B. Fuchssteiner, “Integrable theory of the perturba-
tion equations,” Chaos solitons & fractals, vol. 7, no. 8,
pp. 1227-1250, 1996.

W. Ma, “Enlarging spectral problems to construct integrable
coupling of soliton equations,” Physics Letters A, vol. 316,
no. 1-2, pp. 72-76, 2003.

W. Ma, X. Xu, and Y. Zhang, “Semidirect sums of Lie algebras
and discrete integrable couplings,” Journal of Mathematical
Physics, vol. 47, no. 5, pp. 053501-053516, 2006.

F. Guo and Y. Zhang, “A new loop algebra and a correspond-
ing integrable hierarchy, as well as its integrable coupling,”
Journal of Mathematical Physics, vol. 44, no. 12, pp. 5793-
5803, 2003.

N. V. Priya and M. Senthilvelan, “N-bright-bright and N-dark-
dark solitons of the coupled generalized nonlinear Schrodinger
equations,” Communications in Nonlinear Science and Numer-
ical Simulation, vol. 36, pp. 366-377, 2016.

D. Levi, “On a new Darboux transformation for the construc-
tion of exact solutions of the Schrodinger equation,” Inverse
Problem, vol. 4, no. 1, pp. 165-172, 1988.

V. G. Bagrov and B. F. Samsonov, “Darboux transformation of
the Schrodinger equation,” Physics of Particles and Nuclei,
vol. 28, no. 4, pp. 374-397, 1997.

C. Gu, Z. Zhou, and H. Hu, Darboux Transformations in Inte-
grable Systems: Theory and Their Applications to Geometry,
Springer Netherlands, 2004.

W. Riaz and M. Hassan, “Multi-component semi-discrete
coupled dispersionless integrable system, its Lax pair and Dar-
boux transformation,” Communications in Nonlinear Science
and Numerical Simulation, vol. 61, pp. 71-83, 2018.

L. Liu, X. Wen, and D. Wang, “A new lattice hierarchy:
Hamiltonian structures, symplectic map and N-fold Dar-
boux transformation,” Applied Mathematical Modelling,
vol. 67, pp. 201-218, 2019.

Y. Wu and X. Geng, “A new hierarchy of integrable
differential-difference equations and Darboux transforma-
tion,” Journal of Physics A: Mathematical and General,
vol. 31, no. 38, pp. 677-684, 1998.

H. Zhao, Z. Zhu, and J. Zhang, “Darboux transformations and
new explicit solutions for a Blaszak-Marciniak three-field lat-
tice equation,” Communications in Theoretical Physics,
vol. 56, no. 1, pp. 23-30, 2011.

M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The
inverse scattering transform-Fourier analysis for nonlinear
problems,” Studies in Applied Mathematics, vol. 53, no. 4,
pp. 249-315, 1974.

X. Geng, Y. Zhai, and H. Dai, “Algebro-geometric solutions of
the coupled modified Korteweg-de Vries hierarchy,” Advances
in Mathematics, vol. 263, no. 1, pp. 123-153, 2014.

M. Craddocck and E. Platen, “Symmetry group methods for

fundamental solutions,” Journal of Difference Equations,
vol. 207, no. 2, p. 302, 2004.

(19]

(20]

(21]

(22]

Advances in Mathematical Physics

B. Ayhan and A. Bekir, “The G’ G-expansion method for the
nonlinear lattice equations,” Communications in Nonlinear
Science and Numerical Simulation, vol. 17, no. 9, pp. 3490-
3498, 2012.

F. Yuand S. Feng, “Explicit solution and Darboux transforma-
tion for a new discrete integrable soliton hierarchy with 4x4
Lax pairs,” Mathematical Methods in the Applied Sciences,
vol. 40, no. 15, pp. 5515-5525, 2017.

Y. Sun, D. Chen, and X. Xu, “A hierarchy of nonlinear
differential-difference equations and a new Bargmann type
integrable system,” Physics Letters A, vol. 359, no. 1, pp. 47-
51, 2006.

Y. Xue, B. Tian, and W. Ai, “Integrable nonlinear differential-

difference hierarchy and Darboux transformation,” Physica
Scripta, vol. 86, no. 4, article 045001, 2012.



	Characters of Explicit Solutions for a Semidiscrete Integrable Coupled Equation
	1. Introduction
	2. A New Integrable Coupled Equation and Its Darboux Transformation
	2.1. Constructing for a New Integrable Coupled Equation
	2.2. Darboux Transformation

	3. Explicit Solutions
	3.1. Explicit Solutions for Equation (1)
	3.2. Discussions

	4. Conclusions
	Appendix
	A. Darboux Matrix in Equation (12)
	B. The Solution to Equation (1)
	Data Availability
	Conflicts of Interest
	Acknowledgments

