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Abstract
Plant-pathogen-herbivore model describe interaction between plants, pathogens and herbivores.
Plants are invaded by pathogens and herbivores while the herbivores are harvested by natural
enemies such as predators and human. On the other hand, the abundance of food does not
guarantee exponential growth of species who reproduce sexually and plants governed by carrying
capacity. Therefore, the Allee effect may be crucial for sustaining such species. In this paper, a
model of plant-pathogen-herbivore interactions that takes Allee effect and harvesting into account
was developed and analyzed. The stability analysis showed that the ratio intrinsic growth rate to
the environmental carrying capacity of susceptible plants must be greater than certain threshold
value to raise sufficient plant biomass to sustain other species. Numerical simulations shows that
all species coexist when intrinsic growth rate of plants is greater than the harvesting rate and
when conversion rate of what is eaten by herbivores to newborn ones is greater than that of their
natural enemies. It also shows that in the absence of susceptible plants, herbivores migrates in
search of food, while others deteriorate and dies out. Furthermore, regardless of the availability
of susceptible plants, the herbivores population crashes to extinction if the herbivore population
is less than the lower limit required to keep the herbivores existing in the ecosystem.
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In the interest of conservation of all species and the environment, policy developers will greatly
benefit from understanding the solutions to address clearing land for human settlement, human
activities and herbivore or their natural enemies hunting. In addition, monitor species closely,
especially those that reproduce sexually by establishing and maintaining the least number
required to keep the species existing.

Keywords: Ecology; Allee effect; harvesting; extinction.
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1 Introduction

All types of organisms coexist in different habitats. Given that all species feed on their varied food
sources to provide them with energy for life, growth, and development, their sources of food link
them together within these ecosystems. For instance, plants produce their own food from water and
sunlight, whereas animals feed on other species in order to survive. Therefore, the law of nature for
all living things in every ecosystem is based on the struggle for food, with the weak being eliminated
from the ecosystem while the strong species survive [1, 2, 3]. Interactions between species have an
impact on an ecosystem biomass, productivity, and population size of each species [4]. As a result,
the existence of all species is necessary for an ecosystem to be in balance. According to [1, 5], the
entire ecosystem equilibrium will change if one type is abundant or scarce.

The biological process of herbivory involves a species (herbivore) feeding on plants or their byproducts.
The plant-herbivore interaction is one of the fundamental interactions between species in an ecosystem
that shapes the natural habitats found in all ecosystems [6, 7, 8]. The presence of herbivores hinders
the growth, development, and reproduction of plants. The plant-herbivore model assumed that
plants are only invaded by herbivores with analogy of classical predator prey interaction. However,
this may not be the case in real life situation since plants are also affected by other environmental
perturbations. For instance, human activities where plants are cleared for settlement and human
activities. Furthermore, the model did not incorporate other species and phenomenon including
plant pathogens, species harvesting, Allee effect and natural enemies of herbivores whose behaviors
govern the ecosystem were assumed [9, 6, 10, 11]. Pathogens also invades plants, according to
[12]. This pathogens causes modifications that modify plant-insects interactions, plant fitness and
growth. In turn, this modification has an impact on the kind and number of pollinators that the
plants can attract, which may lower plant reproduction. On the other hand, pathogens may have an
impact on plant-herbivore interactions by modifying plant qualities that serve as cues for herbivores.

Allee effect and harvesting of species have been incorporated in the interaction of the plant-herbivore
models [1, 2, 11]. However, the models did not incorporate plant pathogen and natural enemies
of herbivores. In addition [1, 11] did not incorporate harvesting of species. On other hand, the
plant-pathogen-herbivore models, for instance [13, 14] did not incorporate the Allee effect and
harvesting of species. Yet, the unpredicted collapse of many harvested species is just one illustration
of the need to bring Allee effect to the forefront of conservation and management strategies of the
ecosystem. The Allee effect phenomena is a fundamental ecological mechanism that establishes
lower limits on a species’ density below which population crash to extinction [15, 16]. There are a
variety of mechanism that create Allee effect, including mating systems, predation, environmental
modification, the smallest group size essential to successfully rear offspring, produce seeds, increase
genetic inbreeding among others [17, 11].

24



Barasa et al.; JAMCS, 37(9): 23-38, 2022; Article no.JAMCS.92867

On the other hand, harvesting involves elimination of the species from the ecosystem [3]. For
instances, through forest fire, prolonged drought, deforestation where plants are cleared for farming,
settlement and charcoal burning. In addition herbivores can be harvested through predators who
prey on herbivores, diseases which may lead to death, migration and natural calamities like fire
and drought or through human activities such as hunting of herbivores and natural enemies of
herbivores. Therefore, it is very important to find out how harvesting of species and Allee effect
may affect the interaction of species who are governed by the environmental carrying capacity such
as plants and those that are assumed to reproduce sexually where the abundance of food does not
guarantee exponentially growth of the species.

In this paper, plant-pathogen-herbivore model incorporating Allee effect and harvesting where plants
serve as food for pathogen and herbivores. In this study, other plants are harvested where plants are
cleared for human activities which when may affect the plant population densities. On the other
hand, herbivores are harvested through hunting by their natural enemies or migration from one
habitat to another. The objective of this paper is to formulate and analyze a mathematical model
of plant-pathogen-herbivore interaction incorporating Allee effect and harvesting. In the second
section, we describe Plant-Pathogen-Herbivore model incorporating Allee effect and harvesting along
with posistivity and boundedness of the solution of the model. In the third section, the stability
properties of various equilibrium points of the model was analyzed. The fourth section deals with
numerical simulations of the model to verify the theoretical results obtained graphically and this
paper ends with conclusion presented in the last section.

2 The Model

In this study, different types of population densities at time t are considered. The plant population
is divided into susceptible plant population denoted by S(t) that comprises of the plant population
that are at risk of being invaded by pathogens. The infected plant is denoted by I(t) it comprises
of the plant population that are already invaded by the pathogens. On the other hand, H(t) and
Y (t) are the herbivore population and their natural enemies population respectively. The model is
governed by the following system of ordinary differential equations:

dS

dt
= S[r(1− S

k
)− ηI

1 + aS
− p1H − ε]

dI

dt
= I[

ηS

1 + aS
− σ − ε]

dH

dt
= H[c1p1S(

H

θ +H
)− µ− p2Y ]

dY

dt
= Y [c2p2H − d] (2.1)

With initial conditions given by S(0) ≥ 0, I(0) ≥ 0, H(0) ≥ 0 and Y (0) ≥ 0

Where, r is the intrinsic growth rate of susceptible plants, k is the environmental carrying capacity,
η is the pathogen transmission rate and a is the preventive measures taken by susceptible plants
to protect themselves from invasion. The term p1 and p2 are the consumption rate of susceptible
plant-herbivore and predation rate herbivore-natural enemies respectively. Furthermore, c1 and c2
are corresponding conversation rates of what is eaten to newborns by herbivores and natural enemies
of herbivores respectively. The parameter, µ is the removal rate of herbivores in the habitat. The
mortality rate of the natural enemies of herbivores is denoted by d and σ is the mortality rate of
the infected plants due to pathogens attack. The parameter ε is the harvesting rate of susceptible
and infected plant population while θ is the Allee threshold.
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The assumption of this model are as follows:

(i) Herbivores feed on the susceptible plants thus the infected plants survive until killed by
pathogens or harvested due to less attack by herbivores.

(ii) Infected plants are less attractive to pollinators than healthy plants thus no reproduction of
infected plants.

(iii) Susceptible plant population grows bounded by the carrying capacity of the environment in
absence of herbivores, pathogens and harvest.

(iv) The species interaction and consumption are assumed to be of the same type in any ecosystem.
The only difference could be due to different kingdom or families which is typical for ecological
systems.

The equation dS
dt

describes how susceptible plant populations are attacked by pathogens, herbivores,
and harvesting of in the system of equation (2.1). The carrying capacity of the ecosystem controls
the expansion of the susceptible plant populations in the absence of pathogens, herbivores, and
harvesting. Infected plant populations interact according to the equation dI

dt
, where some plants

die from pathogen invasion at a rate denoted by σ while others can be harvested at a rate denoted
by ε. The rate of herbivore reproduction is expressed in the first term of the equation dH

dt
. This

demonstrates that an individual herbivore will reproduce more if it eats more, and will be wiped
out in the absence of susceptible plants, i.e. c1p1(0)( H

θ+H
) = 0.

Due to the fact that c1p1S( H
θ+H

) goes to zero when susceptible plant population density disappears.

The coexistence of the herbivore population is very crucial and is protected by ( H
θ+H

) because it
is believed that herbivores reproduce sexually, each individual herbivore strives to locate mates or
avoids inbreeding. Allee Constant takes care of this to ensure that the number of herbivores doesn’t
go to extinction.

2.1 Invariant region

It is crucial to demonstrate positivity and boundedness of the solutions of the system of equation
(2.1) since the variables indicate biological population densities. Positivity denotes population
survival, and boundedness denotes a growth limitation brought on by natural resource constraints.
For the model to be mathematically and biologically well posed, the state variables S(t), I(t),
H(t) and Y (t) at all time must be non-negative. This implies that the positive quadrant R+

4 =
[(S, I,H, Y ) ∈ R4 : S ≥ 0, I ≥ 0, H ≥ 0, Y ≥ 0] is positively invariant. This will be done by showing
positivity and boundedness of the formulated model. This is shown by the lemma as follows:

Lemma 2.1. (Positivity) All solutions [S(t), I(t), H(t), Y (t)] of the system of equation (2.1) starting
in (S0, I0, H0, Y0) ∈ R+

4 remain positive for all t > 0.

Proof. The positivity of S(t), I(t), H(t), Y (t) can be verified by the equations:

dS
dt

= S[r(1− S(t)
k

)− ηI
1+aS(t)

− p1H(t)− ε]

Let v = t then dv = dt. Substituting in equation above and integrating both sides, we have

dS
dv

= S[r(1− S(v)
k

)− ηI
1+aS(v)

− p1H(v)− ε]

dS
S

= [r(1− S(v)
k

)− ηI
1+aS(v)

− p1H(v)− ε]dv
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lnS =
∫ t
0

[r(1− S(v)
k

)− ηI
1+aS(v)

− p1H(v)− ε]dv + S0

Introducing exponential, we have

S(t) = S0exp
∫ t
0

[r(1− S(v)
k

)− ηI
1+aS(v)

− p1H(v)− ε]dv

Applying, the same on entire system of equation (2.1), we have

I(t) = I0exp
∫ t
0

[ ηS(v)
1+aS(v)

− σ − ε]dv

H(t) = H0exp
∫ t
0

[c1p1S(v)( H
θ+H

)− µ− p2Y (v)]dv

Y (t) = Y0exp
∫ t
0

[c2p2H(v)− d]dv

with S0, I0, H0, Y0 > 0. If S(0) = S0 ≥ 0 then S(t) > 0 for all t > 0. The same argument is valid
for I(t), H(t) and Y (t). Hence int(R+

4 ) is positively invariant set.

Lemma 2.2. (Boundedness) All solutions of system of equation (2.1) will lie in the region A =
[(S, I,H, Y ) ∈ R+

4 : 0 ≤ S+I+H+Y ≤ B
γ

] for all positive initial values (S(0), I(0), H(0), Y (0)) ∈ R+
4

where γ = min (r, σ, ε, µ, d) and B = rk + c1c2.

Proof. Let us consider the function Z(t) = S + I +H + Y

Taking the derivative along a solution of system of equation (2.1)

dZ(t)
dt

= S[r(1− S
k

)− ε]− I(σ + ε)− µH − dY

For each γ > 0, the following inequality is satisfied:

dZ
dt

+ γZ ≤ B + (γ − r)S + (γ − ε)S + (γ − σ)I + (γ − ε)I + (γ − µ)H + (γ − d)Y

Now choose γ such that 0 < γ = min(r, ε, σ, µ, d) the the above equation can be written as

dZ
dt

+ γZ ≤ B

By comparison theorem [18], we obtain

0 ≤ Z(S(t), I(t), H(t), Y (t)) ≤ B
γ

+ Z(S(0), I(0), H(0), Y (0))/eγt

Taking limit when t→∞, we have

0 ≤ Z(t) ≤ B
γ

.

Hence the system of equation (2.1) is bounded.

Clearly, the total population is bounded. Therefore, each sub-population S, I,H, Y is bounded for
all future times. Thus the system of equation (2.1) is biologically and mathematically well posed.
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3 Model Analysis

3.1 Equilibrium points

In order to find the equilibrium points or steady states of the model system, we set the right hand
side of the system of equations (2.1) equal to zero. The following equilibrium points are clearly
present in the system of equation (2.1):

E0 = (0, 0, 0, 0), E1 = ( k(r−ε)
r

, 0, 0, 0),E2 = (0, 0, d
c2p2

, −µ
p2

), E3 = (S3, I3, 0, 0), E4 = (S4, 0, H4, Y4),
and the last equilibrium point of the system is E5 = (S5, I5, H5, Y5). Where:

S3 = −ε−σ
−η+aε+aσ

I3 =
r−ε− ra(−ε−σ)2

k(−η+aε+aσ)2
− r(−ε−σ)
k(−η+aε+aσ)+

ra(ε−σ)
(−η+aε+aσ)−

dp1
c2p2

− da(−ε−σ)p1
(−η+aε+aσ)c2p2

η

S4 = −dkp1+krc1p2−kεc2p2
rc2p2

H4 = d
c2p2

Y4 =
−d2kc1p21−drµc2p2+dkrc1c2p1p2−dkε1c2p1p2−rθµc

2
2p

2
2

rc2p
2
2(d+θc2p2)

S5 = −ε−σ
−η+aε+aσ

I5 =
r−ε− ra(−ε−σ)2

k(−η+aε+aσ)2
− r(−ε−σ)
k(−η+aε+aσ)+

ra(ε−σ)
(−η+aε+aσ)−

dp1
c2p2

− da(−ε−σ)p1
(−η+aε+aσ)c2p2

η

H5 = d
c2p2

Y5 = −µ+ (−ε−σ)c1p1
−η+aε+aσ −

θ(−ε−σ)c1p1
−η+aε+aσ(θ+ d

c2p2
)

3.2 Local stability

Stability analysis examines the solutions of differential equation formulated and trajectories of
dynamical systems under small perturbations of initial conditions. In this study, local stability
analysis of the system of equation (2.1) is performed. This involves examining the jacobian
matrix of the model around the equilibrium points where the characteristic roots(eigenvalues) from
characteristic equations are obtained. Using this eigenvalues, the behavior of the solutions of the
model can be analyzed.

To examine the local stability of the equilibrium points E0, E1, E2,E3, E4 and E5, we have to
find the eigenvalues of the jacobian matrix of the system of equation (2.1) around the equilibrium
points. The jacobian matrix of system of equation (2.1) at any given point J(S, I,H, Y ) is given
by:

J(S, I,H, Y ) =


b11

ηS
(1+aS)

−p1S 0
ηI

(1+aS)2
ηS

1+aS
− σ − ε 0 0

Hc1p1( H
(θ+H)

) 0 c1p1S(H(2θ+H)

(θ+H)2
)− µ− p2Y −p2H

0 0 c2p2Y c2p2H − d

 (3.1)

Where, b11=r[1− 2S
k

]− ηI
(1+aS)2

− p1H − ε

The stability of the equilibrium points are determined by the nature of the eigenvalues of the
jacobian matrix evaluated at the corresponding equilibrium points. Evaluating the Jacobian matrix
at the population free equilibrium point E0 = (0, 0, 0, 0) takes the form;
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J(E0) =


r − ε 0 0 0

0 −σ − ε 0 0
0 0 −µ 0
0 0 0 −d

 (3.2)

Where the eigenvalues of J(E0) are give by λ1 = −µ ,λ2 = r−ε, λ3 = −σ−ε and λ4 = −d which are
real. Clearly, E0 = (0, 0, 0, 0) is unstable for r > ε and stable if r < ε. Therefore, regardless of the
values of other parameters, the ecological species do not exist at the population-free equilibrium
point. This could happen as a result from the occurrence of prolonged droughts or forest fires.
These occurrences could result in the extinction of all species in the habitat. However, at long run,
when r < ε the plant population may grow and the system becomes stable.

At equilibrium point E1 = ( k(r−ε)
r

, 0, 0, 0), the Jacobian matrix takes the form:

J(E1) =


−r + ε 0 −p1 k(r−ε)k

0
0 −σ − ε 0 0
0 0 −µ 0
0 0 0 −d

 (3.3)

The eigenvalues of J(E1) are given by λ1 = −µ, λ2 = −r + ε, λ3 = −σ − ε, λ4 = −d which
are real. Therefore E1 is locally asymptotically stable for r > ε otherwise unstable if r < ε. This
demonstrates that the population of susceptible plants can grow logistically up to the environment’s
carrying capacity in the absence of pathogens, herbivores, and a high rate of harvesting. This is
a biological observation because, given a certain piece of ground with sufficient soil resources, no
pathogens or herbivores, and a low harvest rate, plant populations can expand to the maximum
extent that the land would support. The absence of herbivores in a limited ecosystem also ensures
the extinction of herbivores’ natural enemies. The system is stable when intrinsic growth rate of
susceptible plant is greater than their harvesting rate (r > ε) otherwise, the system is unstable
when intrinsic growth rate is less than the harvesting rate (r < ε).

The Jacobian matrix evaluated at E2 = (0, 0, d
c2p2

, −µ
p2

) takes the form:

J(E2) =


r − ε− p1H2 0 0 0

0 −σ − ε 0 0

H2c1p1( H2
θ+H2

) 0 −µ −d
c2

0 0 −µc2 0

 (3.4)

Where the eigenvalues of J(E2) are given by λ1 = r − ε − p1 d
c2p2

, λ2 = −σ − ε, λ3 = 1
2
(−µ −√

µ(4d+ µ)) and λ4 = 1
2
(−µ +

√
µ(4d+ µ) which are real. The equilibrium point E2 is a saddle

point which is unstable for r > ε + p1
d

c2p2
otherwise stable for r < ε + p1

d
c2p2

. Since no species
exists in isolation and herbivore survival is fully dependent on the availability of food, in this case
plants. Therefore, it is more likely that the population of herbivores will starve to death if they
have little or no food available. Therefore, in the absence of populations of susceptible plants, the
herbivore populations lacks a source of food and eventually become extinct. Furthermore, since the
population of herbivores is declining as a result of a lack of food, the natural enemies of herbivores
gradually die out or move to another area thus the system is unstable.

This situation is evident over the world, especially in arid and semi-arid regions and during extended
droughts when plant populations decline owing to a lack of water or soil nutrients. For instance,
Osborne [19] stated that during the drought of 1993 in Kenya, fewer herbivores were present in
several ecosystems. According to reports, 70 percent of them perished from famine as a result of a
lack of a source of food. This highlights the necessity of caring for the plant population, which serves
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as food to herbivores, pathogens and a water catchment region. Evidently, lack of populations of
plant species causes herbivores to die out, which causes the natural enemies of herbivores in the
constrained habitat to become extinct.

Theorem 3.1. If r
k
> r− ηI3

(1+aS3)2
− ε and ηS3

1+aS3
< σ + ε then E3 is locally asymptotically stable.

Proof. The jacobian matrix evaluated at E3 = (S3, I3, 0, 0) takes the form:

J(E3) =


r(1− 2S3

k
)− ηI3

(1+aS3)2
− ε ηS3

1+aS3
−p1S3 0

ηI3
(1+aS3)2

ηS3
1+aS3

− σ − ε 0 0

0 0 −µ 0
0 0 0 −d

 (3.5)

Clearly, the first two eigenvalues of J(E3) are given by λ1 = −d and λ2 = −µ. The other eigenvalues
are given by the following characteristic equation;

λ2 − (A− E)λ + BC where λ3 = 1
2
(A− E −

√
A2 − 2AE + E2 + 4BC), λ4 = 1

2
(A− E +

√
A2 − 2AE + E2 + 4BC)

Where A = r(1 − 2S3
k

) − ηI3
(1+aS3)2

− ε, B =
ηS3

1+αS3
, C =

ηI3
(1+aS3)2

, E =
ηS3

1+aS3
− σ − ε

According to the theorem, the other two eigenvalues from the equation λ2− (A−E)λ+BC are real
and have a negative sign. As a result, we draw the conclusion that, subject to a few constraints, the
equilibrium state E3 is locally asymptotically stable. Evidently, the susceptible plant populations
grows logistically to a specific threshold value needed to maintain the population when the rate of
pathogen transmission and harvesting of the susceptible population is less than the intrinsic growth
rate of the susceptible plant population. This holds in the absence of herbivores, who depend on
populations of susceptible plants to survive, and when there is less harvesting of plant population.

Theorem 3.2. The equilibrium point E4 = (S4, 0, H4, Y4) is locally asymptotically stable if r
k
>

r − ε− p1H5 and ηS
1+aS

< σ + ε

Proof. The Jacobian matrix evaluated at E4 takes the form:
r(1− 2S4

k
)− ε− p1H2 − ηS4

1+aS4
−p1S4 0

0 −σ − ε+ ηS4
1+aS4

0 0

H4c1p1( H4
θ+H4

) 0 −µ− p2Y + c1p1S4(H4(2θ+H4)

(θ+H4)2)
0

0 0 c2p2Y4 −d+ c2p2H4

(3.6)

Clearly, the first two eigenvalues at J(E4)are given by −d + c2p2H4 < 0 and −ε− σ + ηS4
1+aS4

< 0.
The other two eigenvalues are given by the following equation.

λ2 − (A + F )λ − Ep1S4 = 0 where, λ3 = 1
2
(A + F −

√
A2 − 2AF + F 2 − 4Ep1S4) and λ4 =

1
2
(A+ F +

√
A2 − 2AF + F 2 − 4Ep1S4)

where A = r(1− 2S4
k

)− ε− p1H2, F = −µ− p2Y + c1p1S4(H4(2θ+H4)

(θ+H4)2)
and E = H4c1p1( H4

θ+H4
)

The theorem implies that all the four eigenvalues at J(E4) are real and have negative signs.
Therefore, we conclude that E4 is locally asymptotically stable when r

k
> r − ε − p1H5 and

ηS
1+aS

< σ+ ε. The absence of infected plant population implies absence of pathogen in the system.
Therefore, the plant population, herbivore population and natural enemies of herbivore population
can coexist.

For the coexistence of the three species, the initial susceptible plant population must be greater than
the minimum required to sustain the herbivore population. Similar to this, the initial population of
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herbivores should be greater than the required number to maintain the population and provide food
for natural enemies. For herbivores to ensure food availability, the average density of susceptible
plant populations growth must be able to sustain each population

Theorem 3.3. If r
k
> r − ηI5

(1+aS5)2
− ε, then E5 is locally asymptotically stable

Proof. At positive interior equilibrium point of system of equation (2.1) about E5 = (S5, I5, H5, Y5)
where
E5 is feasible if

r − ε− ra(−ε−σ)2
k(−η+aε+aσ)2 −

r(−ε−σ)
k(−η+aε+aσ) + ra(ε−σ)

(−η+aε+aσ) −
dp1
c2p2
− da(−ε−σ)p1

(−η+aε+aσ)c2p2
> 0

and
dµ

dc1p1+µa
< σ+ε

η
< 1

a

The Jacobian matrix evaluated at J(E5) reduces to
b12 − ηS5

1+aS5
−p1S5 0

ηI5
(1+aS5)2

−σ − ε+ ηS5
1+aS5

0 0

H5c1p1( H5
θ+H5

) 0 −µ− p2Y + c1p1S5(H5(2θ+H5)

(θ+H5)2)
0

0 0 c2p2Y5 −d+ c2p2H5

 (3.7)

b12 = r − 2rS5
k
− ηI5

(1+aS5)2
− ε− p1H5

Choosing a positive definite function about E5 given as

W (t) = r1(S − S5)S(t) + r2(I − I5)I(t) + r3(H −H5)H(t) + r4(Y − Y5)Y (t) where r1,r2,r3 and r4
are positive constants chosen to be: r1 = 1,r2 = 1 + aS5, r3 = 1

c1
, and r4 = 1

c1c2

Differentiate W with respect to t along the solution of system of equation (3.1) we get

dW
dt

= r1(S − S5) dS(t)
dt

+ r2(I − I5) dI(t)
dt

+ r3(H −H5) dH(t)
dt

+ r4(Y − Y5) dY (t)
dt

dW
dt

= r1(S−S5)[S(r(1−S
k

)− ηI
1+aS

−p1H−ε)]+r2(I−I5)[I( ηS
1+aS

−σ−ε)]+r3(H−H5)[H(c1p1S( H
θ+H

)−
µ− p2Y )] + r4(Y − Y5)[Y (c2p2H − d)]

Expanding dW
dt

about E5, we obtain

dW
dt

= r1(S−S5)2[r− 2rS5
k
− ηI5

(1+aS5)2
− ε]− r1p1(S−S5)(H −H5) + r2[ η

(1+aS5)2
(I − I5)(S−S5)]−

r2(σ − ε)(I − I5) + r3c1p1(H5(2θ+H5)

(θ+H5)2)
)(H −H5)(S − S5)− r3p2(H −H5)(Y − Y5)− r3µ(H −H5) +

r4c2p2(H −H5)(Y − Y5)− r4d(Y − Y5)+Higher Order Terms

Such that the cross product (S − S5)(H −H5), (H −H5)(Y − Y5) and (I − I5)(S − S5) equals to
zero and we obtain

dW
dt

= r1(S − S5)2[r − r
k
− ηI5

(1+aS5)2
− ε]− r2(σ + ε)(I − I5)− r3µ(H −H5)− r4d(Y − Y5)

Hence if r
k
> r − ηI5

(1+aS5)2
− ε then dW

dt
is negative definite everywhere so that the value of W is

decreasing along the solutions and W is a lyapunov function about E5. The solution implies that
on any level, they curve into the region bounded. Thus, E5 is locally asymptotically stable.

The existence of locally stable positive interior equilibrium ensures the coexistence of susceptible
plant population, infected plant population, herbivore population and natural enemies of herbivores
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in the system. Therefore, the susceptible plant population grows to the carrying capacity when the
intrinsic growth rate of plants r is greater that the rate of pathogen attack η and harvesting rate
ε. Furthermore, herbivore population increases as result of availability of food. Similarly, natural
enemies of herbivores increases. To maintain stability of the system, activities on the system that
increase mortality rate of species should be controlled.

From biological point of view, the existence of E5 demand

(i) The ratio of the intrinsic growth rate to carrying capacity for susceptible plant population
must be greater than some threshold value to raise the plant biomass for herbivores and
pathogens to feed on and become established.

(ii) The conversion rate of plant biomass eaten by herbivore to give rise to newborn must be
greater than their harvest rate and predation rate of natural enemies to sustain the natural
enemies population to guarantee the non-extinction of any species.

This ensures the long term survival and persistence of all population density, that is, none of the
species goes to extinction.

4 Numerical Simulation of the Model

In this study, numerical simulations are performed by the use of MATLAB software using secondary
data obtained from [2, 14]. These simulations are performed to analyze the effect of harvesting of
species and Allee effect on the ecosystem where time is in years. This will help to verify theoretical
results obtained graphically. The results obtained will give more insights and prediction of long
term behaviour of the solutions.

4.1 Description of parameters

Table 4.1. Description of the model parameters

Parameter Description Units

r Intrinsic growth rate of susceptible plants Per year
k Environmental carrying capacity Assumed
η Pathogen transmission rate Per infected plant
a Measure of inhibition effects taken by

susceptible plants to protect themselves
per susceptible plants

p1 Predation rate of plant-herbivore per herbivore
p2 Predation rate of herbivore-natural

enemies
per natural enemy

c1 Conversation rate of what is eaten to
newborns by herbivores

per herbivore

c2 Conversation rate of what is eaten to
newborns by natural enemies of herbivore

per natural enemy of herbivores

ε Harvest rate of plants per total plant population
σ Mortality rate of infected plants due to

pathogens attack
per total infected plant population

θ Allee constant least herbivore number per total
herbivore population

µ removal rate of herbivores in the confined
habitat

per total herbivore population

d mortality rate of the natural enemies of
herbivores

per total natural enemy population
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4.2 Simulation for susceptible and infected plants interactions

To illustrate theorem 1, we simulate the susceptible and infected plant population over time using
the values adopted from [14] where r = 4.5, k = 5000, σ = 1.5 and a = 2. The numerical simulation
of susceptible and infected plants gives Fig. 1 and Fig. 2 shown below:
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Fig. 1. η = 2.5, ε = 0.25
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Fig. 2. η > 3, ε = 5

From Fig. 1 when the intrinsic growth rate of susceptible plant density is greater than the
transmission rate of pathogen or the susceptible plants are resistant to pathogens, the infected
plants density reduces and goes to extinction. Furthermore, susceptible plant density grows to the
environmental carrying capacity when transmission rate of pathogen is η = 2.5 and harvesting rate
of plant population is ε = 0.25. On the other hand when η = 3.4 and ε = 5, the susceptible plant
density and infected plant density becomes extinct over a time as seen in Fig. 2. Under certain
restriction, the susceptible plants density and infected plant density coexists since pathogens may
survive based on the prevailing climatic conditions and some pathogens must be at a critical life
stage for them to cause infections.

4.3 Simulation of susceptible plants, herbivores and their natural
enemies interaction

In the absence of pathogens, we have susceptible plants, herbivores and their natural enemies.
Performing numerical simulation for this population dynamics using data adopted from [2, 14]
where,r = 20, k = 10000, c1 = 1.22, θ = 0.4, p2,c2 = 0.2, d = 0.2 where we get the graphs in Fig.
3, Fig. 4 and Fig. 5.
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Fig. 3. p1 = 4, µ = 0.2 ε = 0.1
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Fig. 4. p1 = 0.4, µ = −0.14, ε = 0.001
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Fig. 5.p1 = 0.002, d = 0.6, µ = −0.14p2 = 0.12

From Fig. 3, the susceptible plant population decreases drastically when the predation rate of
herbivore and harvesting rate is high. This leads to increase of natural enemies of herbivores
population due to availability of food(herbivores). When susceptible plant population becomes
extremely small, the herbivores decrease and goes to zero implying the herbivores dies out or some
migrate away as they look for food hence extinction of herbivore at that confined habitat. Similarly,
the natural enemies of herbivores also die out or migrate to different habitat looking for food due
to decrease of herbivore. In long run, the susceptible plant population regenerates, grows and
eventually reaches the carrying capacity of the environment. This attract the herbivores who in
turn attract their natural enemies back in the same habitat and the cycle occurs again as seen in
Fig. 4.

Fig. 4 shows that the three populations depend on each other. The susceptible plant population is
negatively affected by harvesting activities where they are harvested at the rate ε and herbivores feed
on them at the rate p1. On the other hand natural enemies of herbivores depend on the availability
of food (herbivores) for survival. High herbivore population negatively affects the susceptible plant
population and positively affects the natural enemies of herbivore population. With the reduction
of susceptible plant density, the herbivore population also reduces due to limited sources of food.
Likewise, the density of the natural enemies of herbivores declines. This implies that a decrease in
one species may lead to a decrease of another species and also an increase in one species density
imply an increase in other species densities. The cycle occurs again and again over time.

From the Fig. 5, the susceptible plants, herbivores and their natural enemies population coexists
without attaining the specific equilibrium at first. However in the long run, the system becomes
stable and the species coexists. The coexistence of the three species demands that the initial
susceptible plant population must be above the minimum required with less harvesting to sustain
herbivore population. On the other hand, the average density of newborn herbivores from herbivore
mother must be greater than that of natural enemies of herbivores to secure food. The system
becomes stable where the susceptible plant density is higher followed by herbivores then their
natural enemies.

4.4 Simulation of susceptible plants, infected plants, herbivores and
their natural enemies

For theorem 3, where we have the susceptible plants, infected plants, herbivores and their natural
enemies populations with the following parameter values:r = 4.8, k = 10000, p1 = 0.002, c1 =
1.22,θ = 0.4,µ = −14, p2 = 0.12,c2 = 0.02,ε = 0.001,a = 10, σ = 0.025 we obtain graphs in Fig. 6
and Fig. 7.

34



Barasa et al.; JAMCS, 37(9): 23-38, 2022; Article no.JAMCS.92867

0 2 4 6 8 10 12 14 16 18 20

Time 

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

P
o

p
u

la
tio

n

S(t)
I(t)
H(t)
Y(t)

Fig. 6. r = 4.8, d = 1, η = 1.3
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Fig. 7. η = 0.2, d = 6

From Fig. 6, the susceptible plants, herbivores and their natural enemies depend on each other.
Presence of pathogens, herbivores and harvesting activities negatively affects the susceptible plant
population where pathogens reduces the susceptible plant density at the rate σ. When pathogens,
herbivore and harvesting of plant decrease in the habitat, the susceptible plant population grows
bounded by the environmental carrying capacity. In the long run, this attract herbivores who may
migrate to such habitat due to availability of food. This justify why µ is negative, which shows that
herbivores migrate to the habitat where there is food. This in turn attract their natural enemies
in the same habitat. When herbivore density, pathogens and harvest of plants density is high,
the natural enemies of herbivore increases while on other hand the susceptible plant populations
decreases. Decrease of susceptible plant population result into decrease of herbivores which in turn
leads to decrease of natural enemies of herbivore population. When susceptible plants reduces to
certain threshold, they regenerate again and the cycle occurs again.

Moreover, the susceptible plants, infected plants, herbivores and their natural enemies population
coexists without attaining a specific equilibrium point at first. However, in the long run, when
consumption rate of herbivores, predation rate of natural enemies of herbivores and harvesting of
susceptible plants is lower while the intrinsic growth rate of susceptible plants is higher, the system
becomes stable and coexists as seen in Fig. 7. Infected plants may increase or decrease depending
on prevailing climatic condition in a certain habitat and measures taken by the susceptible plants
to protect themselves from pathogen attack. Moreover, host plants may be resistance to pathogens
or other pathogens must be at a critical stage in order to cause infections while others have evolved
and therefore they can live for a prolonged periods such as brown spot. On the other hand, some
susceptible plants releases VOC and HIVP to protect themselves.

Most species are prone to extinction especially herbivore population which is assumed to reproduce
sexually. Allee effect plays an important role for coexistence. In absence of Allee effect, say θ = 0or
below the lowest threshold value, regardless of the other parameters, say r = 4.8, k = 10000,p1 =
4,c1 = 2, µ = 0.3,p2 = 0.2, c2 = 0.25, d = 2, ε = 0.1,η = 2, a = 1, σ = 1.6 the simulation of
susceptible plants, infected plants, herbivores and their natural enemies over time is as shown in
Fig. 8.

From Fig. 8, when the susceptible plant population declines, herbivores start to decrease and goes
to zero when the herbivore density is less than the least number of herbivores required to keep
the population existing in the system. The herbivore population becomes extinct regardless of
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availability of susceptible plants to feed on. That is when θ = 0, there will be no least number of
herbivores. This leads to decrease of their natural enemies of herbivores to extinction in the same
habitat. For some time, susceptible population regenerates and grows to the carrying capacity since
there is less enemies pressure.

Therefore for coexistence of all the species in the habitat, there is need to control harvesting rate
of plant population where plants are cut down, destroyed by fire and other human activities. This
can be achieved by setting harvest rate at ε = 0.001 to secure availability of food for herbivores
and pathogens. On the other hand, there is need to set lower bound on herbivore population that
can result in critical population thresholds below which population go to extinction and also c1 > 1
since the herbivores are assumed to reproduce sexually.
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Fig. 8. In the absence of Allee effect

5 Conclusion

A mathematical model of plant-pathogen-herbivore interaction incorporating Allee effect and harvest
was formulated. Plant population was divided into susceptible and infected plant densities with
logistic growth rate for the susceptible plant population. In this model, infected plants are plants
invaded by pathogens and remains in the system until they are harvested through human activities
or killed by pathogen. It is assumed that herbivores do not feed on infected plants. For herbivore
conversation rate for new ones, a linear multiple of the functional response and Allee effect were
taken into consideration. Herbivore population is more prone to Allee effects than plants. With the
fact that no species is isolated and live forever in the ecosystem, constant removal rate of natural
enemies of herbivore and constant removal of herbivore from the habitat was taken into account.
The herbivores can be removed through natural death, killed by human or predators or migrate
from the habitat. The effects of human interference in terms of the harvest rate ε on susceptible
plants and infected plants was also considered.

The stability analysis shows that the ratio intrinsic growth rate to the environmental carrying
capacity of susceptible plants must be greater than certain threshold value to raise sufficient plant
biomass to sustain other species. It also shows that the intrinsic growth rate of plants must be
greater than the harvesting rate of plant population for plants to get established. Given this
circumstance, all species coexists. Numerical simulations shows that all species coexist when
intrinsic growth rate of plants is greater than the harvesting rate and when conversion rate of what is
eaten by herbivores to newborn ones is greater than that of their natural enemies. It also shows that
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in the absence of susceptible plants, herbivores migrates in search of food, while others deteriorate
and dies out. Furthermore, regardless of the availability of susceptible plants, the herbivores
population crashes to extinction if the herbivore population is less than the lower limit required
to keep the herbivores existing in the ecosystem. In the interest of conservation of all species and
the environment, policy developers will greatly benefit from understanding the solutions to address
human activities for example, clearing land for farming, settlement, infrastructure construction,
burning charcoal, and herbivore or their natural enemies hunting. In addition, monitor species
closely, especially those that reproduce sexually by establishing and maintaining the least number
required to keep the species existing.
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