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Abstract 

 
In this paper, I introduced a numerical approach to obtain the solution of boundary value problems (BVPs) 

utilizing the Bernoulli wavelet-based Galerkin method (BWGM). In this context, employed weight 

functions represented as Bernoulli wavelets, which serve as the basis elements enabling us to derive the 

numerical solutions for the BVPs. The numerical solutions obtained through this method are contrasted 

with those from established methods and the exact solutions. Several BVPs are selected to illustrate the 

efficiency and relevance of the proposed methodology. 
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1 Introduction 
 

Boundary value problems (BVPs) are frequently observed across multiple fields of engineering and science, 

such as gas dynamics, nuclear physics, atomic structures, and chemical reactions. Often, exact solutions to 

these problems cannot be obtained through analytical techniques. In review, the numerical approximation of 

solutions to BVPs serves as a crucial mechanism across various scientific and engineering fields, facilitating 

the assessment and analysis of complex systems that are not readily solvable through analytical methods.  

Due to this, the numerical methods are very crucial. As a result, numerical methods are of significant 

importance. 

 

Consequently, the development of numerical methods to derive approximate solutions is of paramount 

importance.  

 

Recently, several numerical techniques have been employed to solve differential equations, such as the 

Galerkin method using Boubaker wavelet [1], the Fibonacci wavelet collocation method [2], and the 

wavelet-based Galerkin method [3], etc. 

 

The area of wavelets has garnered considerable attention owing to their robust mathematical properties and 

extensive applicability in a variety of compelling physical issues. Recently, there has been a significant 

increase in the interest surrounding wavelet functions among researchers engaged in both theoretical and 

practical domains. 

 

Expect progress in numerical techniques that employ wavelet bases to get enhanced spatial and spectral 

resolutions. A key principle in approximation theory is the representation of a smooth function as a series 

expansion through orthogonal polynomials. This approach underpins spectral methods used to solve 

differential equations with functional arguments. The investigation of wavelet function bases is being 

explored as an alternative to traditional piecewise polynomial trial functions in the finite element analysis of 

differential equations. The Galerkin method is extensively recognized in the field of applied mathematics for 

its effectiveness and ease of use [4-5]. 

 

The wavelet-Galerkin method offers significant advantages over both finite difference and finite element 

methods, which contributes to its widespread application in various scientific and engineering fields. This 

wavelet approach presents a robust alternative to the finite element method, particularly in the numerical 

resolution of differential equations, especially in the context of boundary value problems. 

 

This study, I introduced the Bernoulli wavelet-based Galerkin (BWGM) method for addressing boundary 

value problems (BVPs) numerically. This approach involves representing the solution through Bernoulli 

wavelets characterized by unknown coefficients. Utilizing the characteristics of Bernoulli wavelets alongside 

the Galerkin method, I am able for obtaining the unknown coefficients, ultimately leading to the numerical 

solution for the BVPs. 

 

Organization of the paper is presented as: Section 2 presents Bernoulli wavelets and function approximation. 

Section 3 focuses on the Bernoulli wavelet-based Galerkin method (BWGM) for addressing boundary value 

problems (BVPs). Section 4 contains the numerical experiments conducted. Lastly, section 5 provides a 

discussion of the conclusions drawn from the proposed work. 

 

2 Bernoulli Wavelets and Function Approximation 
 

2.1 Bernoulli wavelets 
 

Bernoulli wavelets are defined as follows [6]:  
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The Bernoulli wavelets ( ) = ( , , , ), x k n m xn m   include four arguments: 

1
= 1, 2,..., 2 ,

k
n k

−
 is assumed to be a positive integer, m  is the order of Bernoulli polynomials and x  

is to be a normalized time. They are defined in the interval  )0,1  as follows:  
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Few Bernoulli numbers are 
0 1 2

1 1
1 , , , ....

2 6
  = = − = . and the first few Bernoulli 

polynomials are 
0 1 2

21 1
( ) 1, ( ) , ( ) , ....

2 6
B x B x x B x x x= = − = − +

 

For illustration, if 1k =   and 3M = , we obtain the Bernoulli wavelet bases are:  

1,0
( ) 1x =    ,     ( )1,1

( ) 3 2 1x x = −    ,   ( )2

1,2
( ) 5 6 6 1x x x = − +   and so 

on. 
 

Function approximation 

 

Suppose   )2
( ) 0 , 1y x L  and the expression is represented in terms of Bernoulli wavelets as: 
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( )( ) , ,
1 0

y x c xn m n m
n m




=  
= =

                                                                               (2.3) 

Truncating the aforementioned infinite series, we get  

 

( )
1 12

( ) , ,
1 0

k M

y x c xn m n m
n m



− −

=  
= =

                                                                     (2.4) 

 

3 Method of Solution  
 

Take the BVP of the type, 

 

( )y y y f x  + + =                                                                                      (3.1) 

 

Boundary conditions are       ( ) ( )0 , 1y a y b= =
                                               

(3.2) 

 

Where  ,    are constants and ( )xf  to be a continuous function. 

 

Rewrite the Eq. (3.1) i.e. ( )( )R x y y y f x  = + + −                    (3.3) 

 

Here, ( )xR   is the residual of the Eq. (3.1). For the exact solution if ( ) 0=xR and ( )y x  will met the 

boundary conditions.  

 

The solution of Eq. (3.1) in trail series is defined in the interval [0, 1) and it can be expressed as a modified 

form of Bernoulli wavelets. This expansion adheres to the specified boundary conditions and incorporates an 

unknown parameter as outlined. 

 

( )
1 12

( ) , ,
1 0

k M

y x c xn m n m
n m



− −

=  
= =

                                                                       (3.4) 

 

where  
,

'
n m

c s  are the unknown coefficients and are to be determined. 

 

The precision of the solution is enhanced by selecting Bernoulli wavelet polynomials of a higher degree. The 

process involves differentiate Eq. (3.4) with respect to the specified variable x twice, and then substitute 

the corresponding values of , ,y y y  in Eq. (3.3). To determine the desired outcome, we select weight 

functions as the assumed basis elements and perform integration over the boundary values, ensuring that the 

residual is equal to zero [7]. 

 

               i.e.              ( ) ( )
1

1,

0

0
m

x R x d x = , 0 , 1 , 2 , ........m =  

 

Consequently, I obtain a linear system of algebraic equations. Upon solved this system, I determined the 

unknown coefficients. These unknowns are then substituted into the trial solution, specifically Eq. (3.4), 

which yields the numerical solution of Eq. (3.1). 
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To assess the accuracy of the Bernoulli wavelet Galerkin method (BWGM) to the test problems, we employ 

the error metric known as the maximum absolute error. The calculation of the maximum absolute error will 

be conducted as follows. 

max
max ( ) ( )

exact approx
E y x y x= − . 

 

Where ( )
exact

y x  and ( )
approx

y x  are exact and approximate solutions respectively. 

 

4 Numerical Implementation 
 

Problem 4.1 First, take the BVP    

  

  ( )1
1 , 0 1

x
y y e x

−
 − = − +                                                      (4.1) 

 

Boundary conditions:  ( ) ( )0 0 , 1 0y y= =                                                         (4.2) 

 

The execution of the Eq. (4.1) as per the method discussed in section 3 is as follows: 

Residual of Eq. (4.1) is i.e.   

 

( ) ( )1
1

x
y y eR x − − + +=                                                                    (4.3) 

 

At this point, the selection of the weight function ( ) ( )1w x x x= −  for Bernoulli wavelet bases 

must satisfy the boundary conditions (Eq. (4.2)), i.e. ( ) ( ) ( )x w x x= ψ  

 

     ( ) ( )1,01,0
( ) ( ) 1 1x x x x x x=  − = −ψ  

     ( ) ( ) ( )1,1 1,1
( ) ( ) 1 3 2 1 1x x x x x x x=  − = − −ψ       

     ( ) ( ) ( )2

1,2 1,2
( ) ( ) 1 5 6 6 1 1x x x x x x x x=  − = − + −ψ  

 

Assume the trail solution for Eq. (4.1) when   1k =  and 2m =  is given as 

 

( ) ( ) ( )1 ,0 1,0 1,1 1,1 1,2 1, 2
( )y x c x c x c x= + +ψ ψ ψ                              (4.4) 

 

Therefore, the Eq. (4.4) become    

        

( )  ( ) ( ) 

( ) ( ) 2

1,0 1,1

1,2

( ) 1 3 2 1 1

5 6 6 1 1

y x c x x c x x x

c x x x x

= − + − − +

− + −

                 (4.5) 

 

Differentiate Eq. (4.5) w.r.t. to the variable x  twice and substitute the values ,y y  in Eq. (4.3), and 

obtained the residual for Eq. (4.1). The "weight functions" are as same as the wavelet bases. 
 

Subsequently, utilizing the weighted Galerkin method, we examine the following:     
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( ) ( )
1

0
1,

0
x R x dx

j
= ψ , 0 , 1, 2j =                                                       (4.6) 

 

For 0 , 1, 2j =  in Eq. (4.6),  

i.e.   
( ) ( )

( ) ( )

( ) ( )

1, 0

1, 1

1, 2

1
0

0

1
0

0

1
0

0

x R x dx

x R x dx

x R x dx


= 




= 


=


ψ

ψ

ψ

                                       (4.7) 

 

A system of algebraic equations with unknown coefficients are obtained using Eq. (4.7) i.e. 
1,0

c , 
1,1

c and 

1,2
c .   By applying the Gauss elimination method to solve this system, we determine the values of

1,0
0.7967c = , 

1,1
0.1049c =  and 

1,2
0.0087c = . Substitute these values in Eq. (4.5) yields 

the numerical solution. The obtained numerical solution and the corresponding absolute errors are displayed 

in Table 1, the evaluation of the numerical solution in relation to the exact solution of Equation (4.1). The 

evaluation of the numerical solution in relation to the exact solution of Eq. (4.1)

( ) ( )1
1

x
y x x e

−
= − [8] is illustrated in Fig. 1. 

 

Table 1. Comparison of the numerical solution and the absolute error in relation to the exact solution 

for Problem 4.1 
 

x Numerical solution Exact 

solution 

Absolute error 

FDM Ref [8] BWGM FDM Ref [8] BWGM 

0.1 0.061948 0.059383 0.059427 0.059343 2.61e-03 4.00e-05 8.40e-05 

0.2 0.115151 0.110234 0.110154 0.110134 5.02e-03 1.00e-04 2.00e-05 

0.3 0.158162 0.151200 0.150983 0.151024 7.14e-03 1.76e-04 4.10e-05 

0.4 0.189323 0.180617 0.180433 0.180475 8.85e-03 1.42e-04 4.20e-05 

0.5 0.206737 0.196983 0.196743 0.196735 1.00e-02 2.48e-04 8.00e-06 

0.6 0.208235 0.198083 0.197875 0.197808 1.04e-02 2.75e-04 6.70e-05 

0.7 0.191342 0.181655 0.181507 0.181427 9.92e-03 2.28e-04 8.00e-05 

0.8 0.153228 0.145200 0.145039 0.145015 8.21e-03 1.85e-04 2.40e-05 

0.9 0.090672 0.085710 0.085590 0.085646 5.03e-03 6.40e-05 5.60e-05 

FDM: Finite difference method                       BWGM: Bernoulli wavelet Galerkin method 
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Fig. 1. Comparison of the numerical solution with the exact solution for Problem 4.1. 

Problem 4.2 Next, take another BVP   

 

( )2 2
2 sin , 0 1y y x x   − = −                                                      (4.8) 

 

Boundary conditions:  ( ) ( )0 0 , 1 0y y= =                                                         (4.9) 

 

As explained in Section 3 and the problem 4.1, obtained the values of unknown coefficients i.e. 

1,0
3.702c = , 

1,1
0.0c =  and 

1,2
0.2634c = − .  Put these values in Eq. (4.5) and arrived the 

numerical solution. The comparison between the numerical solution and the absolute errors is illustrated in 

Table 2, while the numerical solution is contrasted with the exact solution of Eq. (4.8) ( ) sin( )y x x=  

[3] in Fig. 2. 

 

Table 2. The numerical solution and the absolute error are compared with the exact solution for the 

problem 4.2 

 

x Numerical solution Exact 

solution 

Absolute error 

FDM Ref [3] BWGM FDM Ref [3] BWGM 

0.1 0.310289 0.308754 0.308796 0.309016 1.27e-03 2.60e-04 2.20e-04 

0.2 0.590204 0.588509 0.588551 0.588772 1.43e-03 2.60e-04 2.20e-04 

0.3 0.812347 0.809554 0.809538 0.809016 3.33e-03 5.40e-04 5.30e-04 

0.4 0.954971 0.950670 0.950676 0.951056 3.92e-03 3.90e-04 3.80e-04 

0.5 1.004126 0.999123 0.999123 1.000000 4.13e-03 8.80e-04 8.80e-04 

0.6 0.954971 0.950670 0.950676 0.951056 3.92e-03 3.90e-04 3.80e-04 

0.7 0.812347 0.809554 0.809538 0.809016 3.33e-03 5.40e-04 5.30e-04 

0.8 0.590204 0.588509 0.588486 0.587785 2.42e-03 7.20e-04 7.00e-04 

0.9 0.310289 0.308754 0.308796 0.309016 1.27e-03 2.60e-04 2.20e-04 
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Fig. 2. A comparison between the numerical solution and the exact solution for Problem 4.2 

Problem 4.3 Finally, another BVP,   
 

2
, 0 1y y x x + =                                                                               (4.10) 

 

With boundary conditions:  ( ) ( )0 0 , 1 0y y= =                                               (4.11) 

 

As explained in Section 3 and the problem 4.1, obtained the values of unknown coefficients i.e. 

1,0
0.1689c = − , 

1,1
0.0493c = −  and 

1,2
0.0052c = − .   Substitute the obtained values in 

Eq. (4.5), and get the numerical solution. The comparison between the numerical solution and the absolute 

errors is illustrated in tables 3(a) and 3(b), while the numerical solution is contrasted with the exact solution 

of Eq. (4.10) 
sin( ) 2 sin(1 ) 2

( ) 2
sin(1)

x x
y x x

+ −
= + −  [9] as shown in Fig. 3. 

 

Table 3(a). A comparison of the numerical solution and the absolute error in relation to the exact 

solution for problem 4.3 
 

x Numerical solution Exact solution Absolute error 

FDM BWGM FDM BWGM 

0.1 -0.009628 -0.0095343 -0.009555 7.30e-05 2.10e-05 

0.2 -0.019027 -0.0189010 -0.018897 1.30e-04 4.00e-06 

0.3 -0.027804 -0.0276614 -0.027635 1.69e-04 2.60e-05 

0.4 -0.035371 -0.0352094 -0.035180 1.91e-04 2.90e-05 

0.5 -0.040954 -0.0407716 -0.040759 1.95e-04 1.30e-05 

0.6 -0.043600 -0.0434069 -0.043416 1.84e-04 9.10e-06 

0.7 -0.042180 -0.0420069 -0.042025 1.55e-04 1.80e-05 

0.8 -0.035418 -0.0352959 -0.035302 1.16e-04 6.10e-06 

0.9 -0.021878 -0.0218305 -0.021815 6.30e-05 1.50e-05 
 

Table 3(b). Comparison between the numerical solution and absolute error with the exact solution for 

the problem 4.3 
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x Numerical solution Exact solution Absolute error 

Ref [9] BWGM Ref [9] BWGM 

0.125 -0.0121 -0.0119059 -0.0119 2.00e-04 5.90e-06 

0.375 -0.0340 -0.0334755 -0.0334 6.00e-04 7.50e-05 

0.625 -0.0440 -0.0434821 -0.0435 5.00e-04 1.80e-05 

0.875 -0.0261 -0.0259153 -0.0259 2.00e-04 1.50e-05 
 

 
 

Fig. 3. A comparison between the numerical solution and the exact solution for Problem 4.3 

 

5 Conclusions 
 

This study presented the Bernoulli wavelet-based Galerkin approach for solving boundary value problems 

numerically. The advancement of new research in numerical analysis is significantly enhanced by this, 

proving advantageous for emerging researchers. The method introduced has been applied to some examples, 

yielding results that are notably satisfactory when compared to other established numerical methods.  From 

the tables and figures presented above, I noted that: 

 

➢ The numerical solutions derived from the proposed method demonstrate superior performance 

compared to the finite difference method (FDM) and some existing methods. 

➢ The absolute error produced by this method is significantly lower in comparison to the Finite 

Difference Method (FDM) and some existing methods.  

 

Consequently, the Galerkin method utilizing Bernoulli wavelets proves to be highly efficient in solving 

BVPs. 
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