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Abstract

In this paper, we study a non-parametric approach to prediction in stochastic choice models in economics. We
show that VC complexity characterises the predictability of stochastic choice models. We establish prediction
methods and provide corresponding rates of convergence.
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1 Introduction

The study of stochastic choice models in economics seeks to understand aggregate demand behaviour and
preference heterogeneity (distribution over preferences) in markets ([7],[19]). A typical model of stochastic choice
involves a set of alternatives from which an agent makes a choice and based on a set of underlying characteristics
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(x ∈ X ), the model prescribes the probabilities with which various items (a ∈ A) would be chosen. This is
defined in terms of a stochastic choice function σ : X → ∆(A). The probabilities σ(x) can be interpreted as
the proportion of times a particular alternative is chosen compared to other feasible alternatives. Yet another
interpretation involves the choice probabilities resulting from randomisation on part of the agent. The nature
of this randomisation depends on the context and details of the decision making process ([14], [15], [16],[13]).
Online retail companies such as Amazon, are often interested in assessing consumer data {(xi, ai)}ni=1, to predict
market shares and learn consumer preferences, by fitting the data through an economic model, in an effort to
improve sales. In this paper, we study a novel machine learning approach to estimating choice probabilities,
which correspond to a model of stochastic choice, based on ideas from statistical learning theory.

We study the problem of learning the map σ from finite data on choices. Hence, each data point consists of
a pair (xi, ai) where ai is the alternative chosen when the characteristics were given by the vector xi. We are
interested in prediction methods defined on choice data which lead to accurate estimation of choice probabilities
and the criterion we require is uniform consistency ([27],[5],[28],[18]). This requires that for any given precision
parameters ε, δ > 0, there exists a fixed data size N(ε, δ), such that if the analyst were to apply the prediction
method to a data set of size above N(ε, δ), the probability would be at least 1 − δ that the stochastic choice
function conjectured by the prediction method would be close to the true stochastic choice function by at most
ε. Moreover, this holds true irrespective of the process that generates choice problems and the true function
σ0. Hence, working with amount of data at least N(ε, δ) allows for robust estimates of the choice probabilities,
when prediction methods are uniformly consistent [36,41]. This is a desirable feature of the notion of consistency
considered here. In many contexts, it is natural to assume that the analyst knows neither the distribution over
characteristics nor the true stochastic choice function, and may wish to work with data sizes that gaurantee, in
a robust manner, a certain degree of precision in estimation. The minimum number of samples N(ε, δ), which
provides such a gaurantee is called the sample complexity1 of the model of stochastic choice and is indeed a
central object of study in the present paper ([40]).

The estimation strategy developed in this paper relies on the principle of empirical risk minimization ([5], [1],
[2], [3]). This involves setting up a risk function to evaluate the goodness of fit of the model. Ideally, these
would be constructed in a way that the true choice probabilities would minimise expected risk. Then, since the
data generating process is unknown, we approximate the expected risk with the empirical risk on the sample.
For large enough samples, this would lead to good estimates for choice probabilities. We define risk in terms
of incentive compatible scoring rules which are, in principle, reward schemes to incentivise truthful report of
subjective probability judgements ([8], [9], [10],[12]). Hence, when applied as a risk function, it ensures that
true choice probabilities minimise expected risk. Furthermore, each scoring rule gives rise to a divergence
function which allows us to quantify expected regret2 in terms of divergence in predictions between the true
and estimated choice probababilities. The criterion for consistent learning, in turn, relies on this divergence
converging uniformly to zero. Hence, scoring rules serve as a natural candidate for defining risk and a key
result in the paper establishes that they admit uniform learning with respect to their associated divergence
functions (Proposition 3.2). Finally, we obtain sample compexity bounds by applying complexity measures such
as Rademacher complexity and Pollard dimension. The details of the approach can be found in Section 2.

There are several reasons as to why the above problem would be of relevance to economists. We discuss here
a few points, highlighting how the present work contributes to the empirical and theoretical literature. The
estimation of choice probabilities in discrete choice models has for a long time been of interest to empiricists and
econometricians interested in studying choice behaviour in markets ([23],[7],[19]). The novelty of the present
approach lies in the introduction and assessment of sample complexity. This has two main advantages. Firstly,
the sample size N(ε, δ) gaurantees robust estimates which are independent of the random process that generates
the data. Hence, the analyst/econometrician can safely rely on such a sample size to achieve a predetermined

1 See, for example, [6].
2 Regret is defined simply as the difference between the expected risk of the estimated choice probabilities and

the expected risk of the true choice probabilities.
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level of accuracy in estimates ε, δ > 0. This is the key consequence of uniform consistency. Indeed, it also implies
the usual consistency notion adopted in econometrics, where only convergence to the true parameter is required
without a robustness gaurantee in terms of sample sizes. Hence, in the usual definition of consistency, depending
on the data generating process, more or less number of samples may be needed for accurate estimation and a
priori, the analyst may not know how much data would be needed, for which the present approach would provide
gaurantees. Sample complexity yields uniform rates of convergence. Secondly, sample complexity also acts as
a measure of complexity for stochastic choice models. Different models would have different sample complexity
and the models with higher sample complexity, would need more samples for good estimation. Hence, in a sense,
we can compare different models based on such measures (say Logit v/s Probit) and this allows the analyst or
econometrician to make a formal judgement as to which stochastic choice models are simple and which ones are
complex.

We now discuss how the present work pertains to the theoretical literature on stochastic choice. Typically,
in theoretical work, the stochastic choice function is treated as the primitive and is itself interpreted as the
data ([20],[21]). However, real data sets only involve finitely many data points and typically, each data point
represents a choice made by an individual. This suggests a gap between the assumption and the nature of real
data sets and the logic that seems to justify the gap is that there is perhaps a ”law of large numbers” argument
that one could rely on. However, from a formal standpoint, it is not clear whether this logic can always be
implemented. For example, it may be that for some instances (such as observing a choice from a menu) there
may be enough data points to evoke a law of large numbers argument but not for other instances. Hence,
estimation of the entire map σ from finite data on choices seems far from obvious especially when keeping in
mind the wide variety of decision procedures that the theoretical literature considers and which lead to very
sophisticated stochastic choice models. Do all such models admit accurate estimation or predictability of choice
probabilities?

This last question also brings us to a point of contrast between the theoretical and empirical literature. On the
one hand, the theoretical models investigate varied contexts and decision procedures. If we assume these models
as plausible in understanding choice behaviour, then perhaps a framework such as the present one could provide
us a way to reason, in a simple manner, about the estimation and identification of all these models, allowing us
to make good predictions about choice. However, on the other hand, empirical work still largely deals with more
classical utility models and often for more complicated models, makes several distributional assumptions (on the
data generating process) which are needed to obtain consistency results. In the present approach, we show that
mild assumptions are needed for estimation. The main result of the paper is that in the context of stochastic
preferences, if the preference class has finite VC dimension, then the corresponding stochastic choice model is
predictable and allows us to recover the underlying distribution over preferences in the population, uniformly
over the data generating process. Under some conditions, with a modified definition of VC dimension with strict
preferences, we also obtain a converse result which says that a stochastic preference model is non-predictable if
the dimension of the underlying preference class is infinite. This allows us to conclude that for any prediction
method and any sample size, the worst case expected distance between true and estimated choice probabilities
(in ∆(A)) is at least half times the maximum distance i.e 1/

√
2. In situations involving choice between exactly

two alternatives, this lower bound expected error is above the error level guaranteed by a rule which always
makes the prediction that each alternative will be chosen with equal probability.

We provide several applications of our results for specific preference models commonly encountered in Industrial
organisation, Decisions under Risk/Uncertainty and Spatial voting. We derive general bounds on rates of
convergence based on Rademacher complexity. In particular, when the VC dimension is d (finite) and there are
|A| many alternatives to choose from, then the Rademacher complexity associated with the stochastic choice
model is at most O(

√
n−1|A| log(|A|)d log(d)), which gives us an upper bound on the uniform rate of convergence

of the estimator, which is defined via empirical risk minimisation with the quadratic scoring rule. We also show
that for homothetic preferences specifically, convergence takes place in a stronger sense, the consistent estimates
of the stochastic choice function converge in the sup norm, with a proportional rate of convergence. Lastly, we
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consider non-uniform learning and also address recoverability of cognitive heterogeneity in the setting of the
bounded rationality model of choice with consideration sets.

Related Literature We discuss here, in some more detail, the relationship with prior work in the related
literature. Typically, estimation of discrete choice models involves parametric or semi-parametric assumptions
([22],[23],[24]). The most widely used method for estimation is maximum likelihood. In our setting, maximum
likelihood arises as a special case when the scoring rule applied is the log rule. We also show that a variant of
Manski’s maximum score estimation method ([23] corresponds to use of an incentive compatible scoring rule.
Non-parametric approaches have also been studied in the economics literature ([31],[32]). The present paper
has a non-parametric approach as well. However, the estimation/learning problem considered here is different
in that we consider estimation of choice probabilities and our approach involves techniques and ideas from
statistical learning theory at the core. In addition, as noted earlier, the consideration of sample complexity
is one aspect that is novel in the present analysis. It is also interesting to compare the results of this paper
with [66]. The paper establishes that choice probabilities of a random utility model can be approximated by
choice probabilities corresponding to a mixed logit specification. In contrast, in the present setting, mixed
logit being a subset of linear preferences, would be uniformly predictable (with linear complexity), while all
continuous preferences would be non-predictable (with lower bounded predictive error). Hence, the dimensions
of preferences (V C and V C+ in this paper) play a critical role and its connection to predictability exhibits a
perhaps interesting difference between the mixed logit model and stochastic choice from more general continuous
preferences. Relatedly, [70] consider a Bayesian non-parametric approach to the problem of recovering preference
heterogeneity in the mixed logit framework via estimation of choice probabilities.

Scoring rules have been applied in prior work to study certain binary classification problems ([25],[26]) in other
settings with different objectives. In contrast, the problem considered here is of consistent uniform learning
for stochastic functions in the sense of PAC (probably approximately correct) learning ([27]). This paper is
hence, most closely related to prior work in probabilistic concept learning ([28],[29]) and learning stochastic
rules ([18],[30]). While the nature of the learning problem is similar, the present paper is different in that we
apply scoring rules to study the learning problem. For instance, one interesting feature is that the related papers
mention predictability with respect to specific divergences, which has a very natural connection to scoring rules.
We show in this paper how the present approach exploits this connection and this is indeed a key aspect of our
estimation strategy. Our approach is also more general and subsumes some of the learning problems studied in
previous work. We should also emphasise that we are primarily interested here in stochastic choice models in
economics and are motivated by problems in demand estimation.

The application of PAC learning in economics has been studied in different choice contexts in prior work
([33],[34],[35],[71]),[72], [38]). However, the literature has only considered deterministic choice models. The
distinguishing feature of the present work in relation to this strand of the literature is the consideration of
stochastic choice models. We should also say that the present paper contributes to the growing literature on
machine learning methods in economics ([69]).

The outline of the paper is as follows. In section 2, we present the model and the learning problem. In section
3, we discuss consistent prediction methods, which we construct on the basis of the principle of empirical risk
minimisation. Finally, in section 4, we apply our approach to a variety of stochastic choice models in economics.

2 Model

Let X ⊆ RK be a compact set of characteristics and A = {a1, a2, ..., am} denote a finite set indexing finitely
many alternatives. In certain contexts, x = (xI , xA) ∈ RK shall be a vector including both individual
characteristics (xI) and product characteristics (xA = (xa)a∈A). In other contexts, involving choice from menus,
X ⊆ 2A = {0, 1}A. Hence, at each x ∈ X which is a menu, a choice of an alternative is made, a ∈ x. We define
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Z = X ×A and will denote a typical element of Z as z.

A stochastic choice function is a map σ : X → ∆(A). The interpretation of σ is that at each x, σ(x) = {σa(x)}a∈A
is a probability vector where σa(x) denotes the probability that alternative a ∈ A will be chosen when the
underlying characteristics are given by x.

2.1 Data generating process

The analyst has access to a finite data set of choices from a population. Each data point consists of an individual’s
characteristic and the alternative chosen i.e (xi, ai) ∈ Z. Hence, a data set is a finite sequence

zn = {(x1, a1), (x2, a2), ...., (xn, an)}. (2.1)

Hence, a data set is a element zn = (z1, ..., zn) of Zn.

We now describe the data generating process. There is a probability measure π ∈ ∆(X )3 which defines the
distribution of characteristics in the population. Given π and a stochastic choice map σ, the data is generated as
follows. Independent across i, xi is drawn according to π and then ai is drawn according to the choice probablities
given by σ(xi). Note here that the analyst only observes the characteristic and the alternative chosen i.e. (xi, ai)
through the data in 2.1. The analyst knows neither the distribution π nor the stochastic choice function σ, but
assumes that it satisfies certain properties. We denote as π⊗σ, the probability measure induced by π, σ together
on the set X × A. This represents the joint distribution from which the data is generated, by taking n i.i.d.
samples from π ⊗ σ. We shall denote as π ⊗ σn, the n-fold product measure induced by π ⊗ σ on Zn. This is
essentially the distribution of the data zn.

2.2 Prediction

A model is any family of stochastic choice functions Σ. The objective of the analyst is to learn the true choice
probabilities based on the data and a model Σ represents the analyst’s hypothesis. Formally, a prediction method
is a map

σ̂ :
⋃
n≥1

(X ×A)n → Σ. (2.2)

Suppose now that the true choice probabilities are given by σ0 and suppose π0 governs the distribution over
characteristics. We shall require that a learning map σ̂ be so that with enough data, zn = {(xi, ai)}ni=1, the
estimate of the prediction method σ̂(zn) would be close to the true choice probabilities σ0. Here, our notion of
closeness between two choice probability maps σ, σ′ will be given by

dπ0(σ, σ′) =

∫
X
d(σ(x), σ′(x))dπ0(x), (2.3)

where d : ∆(A) × ∆(A) → R denotes a divergence function or metric on the space of all choice probability
vectors on A i.e ∆(A). For example, d could be squared Euclidean distance, KL divergence or the total variation
distance. This leads us to the following definition of consistency for prediction methods.

3 Throughout the paper, for any metric space Y , we will denote as ∆(Y ), the set of all Borel probability
measures on Y . For any ν ∈ ∆(Y ), we shall denote as νn, the n-fold product measure on Y n defined by
νn := ν × ν × ....× ν︸ ︷︷ ︸

n

.
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Definition 2.1. A prediction method σ̂ is consistent (with respect to d and Σ) if for all 0 < ε, δ < 1, there
exists N(ε, δ) such that for all n ≥ N(ε, δ),

(∀π0 ∈ ∆(X ))(∀σ0 ∈ Σ)
(
π0 ⊗ σn0

(
{zn : dπ0(σ̂(zn), σ0) < ε}

)
≥ 1− δ

)
. (2.4)

We say that a model Σ is predictable with respect to d if there exists a prediction method σ̂, which is consistent
with respect to d and Σ. Finally, for a given ε, δ > 0, we denote as N(ε, δ), the smallest n for which 2.4 holds.
The function N : (0, 1)2 → N is called the sample complexity of Σ (with respect to σ̂).

The above definition of predictability is based on PAC predictability (see, for example, [27],[18]). In what follows,
we shall discuss consistent prediction methods for various stochastic choice models.

3 Consistent Prediction Methods

3.1 Empirical risk minimization

We shall construct consistent prediction methods based on the principle of empirical risk minimization. For a
detailed treatment, see [5]. Much of this section contains standard ideas from machine learning. However, one
should acknowledge Proposition 3.2, which provides a novel way to solve the problem of PAC learning stochastic
functions w.r.t divergences via the use of scoring rules (see [18],[28],[29] [30]).

For the learning problem, we first define a loss function V : Σ×X ×A→ R. Suppose the true distribution and
choice probabilities are given by π0, σ0. Then, the expected risk corresponding to σ ∈ Σ is defined as

V̄ (σ) =

∫
X×A

V (σ, x, a)dπ0 ⊗ σ0(x, a). (3.1)

A minimizer of expected risk σ∗ is defined as

σ∗ ∈ arg min
σ∈Σ

V̄ (σ). (3.2)

We shall consider loss functions V for which it will hold that σ∗ = σ0 i.e the true choice probabilities would
minimise the expected risk (a property also known as Fisher consistency). In the next section, we will introduce
risk in a specific manner via the application of incentive compatible scoring rules. The principle of empirical
risk minimization involves estimating the expected risk by the empirical risk on the sample zn = {(xi, ai)}ni=1.
For each σ ∈ Σ, the empirical risk is given by

V̂ (σ) =
1

n

n∑
i=1

V (σ, xi, ai) (3.3)

The prediction method that corresponds to empirical risk minimization, denoted by σ̂E , is defined as

σ̂E(zn) ∈ arg min
σ∈Σ

V̂ (σ) (3.4)

The minimum in 3.4 need not always exist. However, if it holds for some M that V (σ, x, a) ≥ M for all σ ∈ Σ
and (x, a) ∈ Z, then the infimum exists and we can define an almost-ERM prediction method as follows. We
have {εn}n such that εn > 0 and limn→∞ εn = 0 . The almost-ERM rule selects σ̂E(zn) such that

V̂ (σ̂E(zn)) ≤ inf
σ∈ΣM

V̂ (σ) + εn (3.5)

In this context, consistency relies on σ̂E(zn) being close to the true choice probability function σ∗ as the function
V̂ approximates V̄ , for large enough n. Consistency here is defined as follows, in terms of V .
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Definition 3.1. A prediction method σ̂ is said to be consistent (with respect to V and Σ) if for all 0 < ε, δ < 1,
there exist an N(ε, δ) such that for all n ≥ N(ε, δ), it holds that

(∀π0 ∈ ∆(X ))(∀σ0 ∈ Σ)
(
π0 ⊗ σn0

(
{zn : V̄ (σ̂(zn)) < inf

σ∈Σ
V̄ (σ) + ε}

)
> 1− δ

)
. (3.6)

We say that a model Σ is predictable with respect to V if there exists a prediction method σ̂, which is consistent
with respect to V and Σ.

It turns out that a model Σ is predictable if the family of real-valued functions V ◦ Σ = {V (σ, ., .) : σ ∈ Σ}
is a uniform Glivenko-Cantelli class of functions (see, for example, [5]; [6]). Each f ∈ V ◦ Σ is a function of the
form f : X ×A→ R. We provide a definition below (see also [39]).

Definition 3.2. A class of real valued functions F on Z is said to be a uniform Glivenko-Cantelli class of
functions if for all ε, δ > 0, there exists N(ε, δ) such that for all n ≥ N(ε, δ), for all ν ∈ ∆(Z),

νn
(
zn : sup

f∈F
|1/n

n∑
i=1

f(zi)− Eν(f)| < ε
)
≥ 1− δ, (3.7)

where Eν(f) denotes the expectation of f under ν.

A necessary and sufficient condition for a class of real-valued functions to be a uniform Glivenko-Cantelli class of
functions is that it have finite Vγ-dimension for each γ > 0 (see, for example, [4]). Other combinatorial measures
and notions of dimensions and capacity also guarantee the uniform Glivenko-Cantelli property for a class of
functions for. eg. VC-dimension, Pollard’s pesudodimension, Pγ-dimension, Covering numbers and Rademacher
Complexity. We shall define and apply these notions and their study implications for sample complexity bounds
in the subsequent sections.

3.1.1 Scoring rules

In this section, we will define loss functions based on scoring rules. A scoring rule is a function S : ∆(A) →
RA (see, for example, [10], [11]). The interpretation of S is that it is a mechanism for eliciting subjective
probability judgements. If p is a probabalistic prediction about the alternative to be chosen in A and suppose
a is the alternative chosen, then Sa(p) is the reward obtained. For each p, q ∈ ∆(A), we can define S(p, q) :=∑
a∈A Sa(p)qa to be the expected score when q is the true distribution over A. A scoring rule is said to be

incentive compatible if

S(q, q) ≥ S(p, q) for all p, q ∈ ∆(A) (3.8)

i.e p = q maximises the function S(., q). We say that S is strongly incentive compatible 4 if additionally, p = q
is the unique maximizer for each q ∈ ∆(A).

We now define a loss function based on S.

V S(σ, x, a) := −Sa(σ(x)) (3.9)

We can now prove the following lemma.

Lemma 3.1. Let π0 ∈ ∆(X ) be the true distribution over characteristics and let σ0 ∈ Σ be the true choice
probability function. Suppose S is incentive compatible. Then, σ0 minimises V̄ S(σ). Furthermore, if S is
strongly incentive compatible and σ∗ ∈ Σ minimizes V̄ S(.), then σ∗(x) = σ0(x) with probability one according to
π0.

4 We use the terminology of [11]. Incentive compatible (strongly) scoring rules are also referred to as proper
(strictly) scoring rules. See, for example, [12]
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Proof. For any σ′ ∈ Σ, we have

V̄ S(σ′) =

∫
X×A

V S(σ′, x, a)dπ0 ⊗ σ0(x, a)

= −
∫
X

[∑
a∈A

Sa(σ′(x))σ0,a(x)
]
dπ0(x)

= −
∫
X
S(σ′(x), σ0(x))dπ0(x)

≥ −
∫
X
S(σ0(x), σ0(x))dπ0(x) (3.10)

= V̄ S(σ0),

where the inequality 3.10 follows from the fact that S is an incentive compatible scoring rule. Now, suppose
σ∗ minimizes V̄ S(.) and let E = {x : σ∗(x) 6= σ0(x)} . Since S is strongly incentive compatible, note that
S(σ0(x), σ0(x)) > S(σ∗(x), σ0(x)) for all x ∈ E. We already have that S(σ0(x), σ0(x)) ≥ S(σ∗(x), σ0(x)) for all
x ∈ X. Hence, if π0(E) > 0, then we will have that V̄ S(σ0) < V̄ S(σ∗). This contradicts that σ∗ minimizes
V̄ S(.).

The above result shows that σ0 is the minimiser of expected risk. Each incentive compatible scoring rule leads
to a divergence function

dS(p, q) = S(q, q)− S(p, q) for all p, q ∈ ∆(A). (3.11)

Hence, from Lemma 1, it follows that

V̄S(σ)− inf
σ∈ΣM

V̄S(σ) = V̄S(σ)− V̄S(σ0)

=

∫
X
dS(σ(x), σ0(x))dπ0(x).

Hence, if we can construct consistent prediction methods with respect to V̄S , then we can construct consistent
prediction methods with respect to the divergence function dS .

The prediction method based on empirical risk minimisation corresponds to maximising the empirical score
based on the data D = {(xi, ai)}ni=1. Hence, σ̂E maximises

−V̂ S(σ) =
1

n

n∑
i=1

Sai(σ(xi)), (3.12)

which can be thought of as the empirical score. For a scoring rule S and stochastic choice function σ, we define
the function S ◦ σ(x, a) := Sa(σ(x)). Consistency of the prediction method σ̂E with respect to dS relies on the
nature of the real-valued function class

S ◦ Σ = {S ◦ σ|σ ∈ Σ}.

The following is a key result.

Proposition 3.2. Let Σ be a model of stochastic choice and let S be an incentive compatible scoring rule.
Suppose the class of functions S ◦Σ is bounded above i.e. there exists an M such that f(z) ≤M for all f ∈ S ◦Σ
and z ∈ Z. If S ◦ Σ is a uniform Glivenko-Cantelli class, then the model Σ is predictable with respect to the
divergence function dS.
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Proof. The proof is in the appendix. It follows from the fact that the ERM rule yields consistency (see [5]) in
the sense of Definition 3.1 and from Lemma 3.1.

We now give some examples of incentive compatible scoring rules and their associated divergence functions.

1. (Log Rule) : S(p, a) = ln(pa). The log scoring rule is incentive compatible and its divergence function

corresponds to KL divergence S(p, q) = dKL(p||q) =
∑
a∈A

ln(pa)
ln(qa)

pa. Note that maximisation of the
empirical score with respect to the log rule corresponds to choosing choice probability functions according
to the conditional maximum likelihood procedure .

2. (Brier/Quadratic Scoring Rule) : S(p, a) = 2pa−
∑
b p

2
b . The scoring rule is called the Brier or quadratic

scoring rule and is strongly incentive compatible. The divergence function associated with S is the square
of the euclidean distance between p and q i.e. dS(p, q) = ||p− q||22.

Since all Lp metrics on Rd are equivalent (as all norms on a finite dimensional vector space are equivalent),
it follows that consistency of a prediction method with respect to dS implies consistency with respect to
any other Lp metric. Further, from Pinsker’s inequality, we have that

||p− q||TV ≤
√

1

2
dKL(p||q).

Recall the total variational norm is equal to half times the L1 distance i.e. ||p − q||TV = 1
2
||p − q||1.

Hence, the above inequality implies that empirical score maximisation using the log scoring rule, which
corresponds to conditional maximum likelihood, leads to consistency with respect to all Lp metrics.

3. (Manski’s score with tie breaking) : Let � be a complete strict order on A and let p ∈ ∆(A). Now, define
another strict order �p on A as follows : a �p b if either pa > pb or it is the case that pa = pb and a � b.
Finally, we let W (1) ≤W (2) ≤ .... ≤W (|A| − 1).

The Manski scoring rule with tie breaking is defined as S(p, a) = W (|{c|a �p c}|). Note that a �p b
implies both pa ≥ pb and S(p, a) ≥ S(p, b). Now, by the rearrangement inequality, this means that that
S(q, q) ≥ S(p, q) for all p, q ∈ ∆(A) i.e. S is an incentive compatible scoring rule.

4. (Subgradient of a convex function) : Suppose we have a convex function f : ∆(A) → R. Let ∇f(x) :
∆(A)→ RA be a subgradient for the function f . We can now define a scoring rule based on f as follows.

Sa(p) = f(p) +∇f(p)(δa − p).

S is incentive compatible and its associated divergence function corresponds to the Bregman divergence
of f . Moreover, any incentive compatible scoring rule corresponds to some convex function. For example,
f(p) = ||p||2 leads to the Brier score.

3.2 Dimension and sample complexity

In this section, we discuss sufficient conditions for a class of real valued functions to be uniform Glivenko-Cantelli.
These place bounds on the capacity or complexity of the function class. There exist several alternative measures
to quantify such complexity and we will discuss the central notions here. In particular, we discuss two notions
we will use extensively : Rademacher complexity and Pollard Dimension.

Rademacher Complexity. Consider a real-valued function class F defined on the set Z. For the sample
zn, the empirical Rademacher complexity is defined as

Rzn(F) = Eη
[

sup
f∈F

1

n

n∑
i=1

ηif(zi)
]
.
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Here, each ηi is an independent bernoulli random variable which takes value 1 with 0.5 probability and −1 with
0.5 probability. Rademacher complexity of the function class F (with respect to a distribution ν ∈ ∆(Z)) is
defined as

Rn(F) = Eνn [Rzn(F)].

Now, it turns out that the Rademacher complexity of a function class is closely related to its Glivenko-Cantelli
properties. Suppose F is uniformly bounded i.e. there exists a real number M > 0 such that |f(z)| ≤M for all
z ∈ Z and f ∈ F . Then, we have that (see, for example, [6]), for each ν ∈ ∆(Z)

νn
(
zn : sup

f∈F
|1/n

n∑
i=1

f(zi)− Eν(f)| < 2Rzn(F) + 6M

√
log 4/δ

2n

)
≥ 1− δ,

Hence, if the empirical Rademacher complexity Rzn(F) converges to zero (say irrespective of the sample zn),
then we obtain the uniform Glivenko-Cantelli property for the function class F . For example, if one shows that
Rzn(F) ≤ C/

√
n, where C is an absolute constant, then we get that the above inequality is satisfied for sample

size n above

1

ε2

[
2C + 6M

√
log 4/δ

2

]2
.

This has implications for the sample complexity of stochastic choice models. Indeed, the proof of Proposition 3.2
shows that for a stochastic choice model, the sample complexity N(ε, δ), is at most max{3/ε,N ′(ε/3, δ)}, where
N ′(ε/3, δ) is the threshold sample size that guarantees inequality 3.7 for values (ε/3, δ) in the Glivenko-Cantelli
definition. We next discuss Pollard dimension, which is related to Rademacher complexity.

Pollard Dimension. We say that a real-valued function class F shatters a set of points (z1, ..., zn) if there
exists a vector (t1, ..., tn) ∈ Rn such that for all B ⊆ {1, ..., n}, there exists fB ∈ F such that

fB(zi) > ti for all i ∈ B
fB(zi) ≤ ti for all i /∈ B

The Pollard dimension of F , denoted as P (F), is defined as

P (F) = max{n | ∃(z1, ..., zn) which can be shattered by F}.

This complexity measure was introduced by [43]. It is a generalisation of the VC dimension (see [50],[5]), which
is defined for sets. Indeed, for a class of 0-1 functions, the Pollard and VC dimensions coincide. Hence, for a
collection of sets P, we have that V C(P) = P (P). The more standard (equivalent) definition would involve the
notion of shattering for sets. A class of sets P shatters a set of points (z1, ...., zn) if for each B ⊆ {1, ..., n}, there
exists P ∈ P such that zi ∈ P if and only if i ∈ B. Then, the VC dimension of P is defined as

V C(P) = max{n | ∃(zi)ni=1 which can be shattered by P}.

For the function class F with Pollard dimension d, the empirical Rademacher complexity is

Rzn(F) ≤ C
√
d

n
,

where C > 0 is an absolute constant (see [43]). Hence, an immediate implication of this is that finite Pollard
dimension implies the uniform Glivenko-Cantelli property. In view of Proposition 3.2, the sample complexity
of a stochastic choice model Σ, to be learned with respect to dS , is upper bounded by a linear function of the
Pollard dimension of S ◦ Σ.
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4 Stochastic Choice Models

In this section, we will consider a variety of stochastic choice models. In particular, we are interested in the
recoverability of heterogeneity. By heterogeneity, we mean the distribution over preferences or parameters of the
model, that leads to the stochasticity in choice. The main result of the paper is that when we consider stochastic
preferences, we can recover preference heterogeneity if the support of the distribution has finite VC dimension.
We discuss several familiar examples for which the result applies. We also establish a converse result on the
non-predictability of such models. Lastly, we also consider choice with consideration sets and the recoverablity
of cognitive heterogeneity.

4.1 Stochastic preferences

Let X ⊆ Rk be a set of alternatives. Suppose P is a class of continuous preference relations (complete and
transitive) on X. We are interested in defining stochastic choice functions where preferences are random in P.
Formally, we have a probability measure µ on P i.e. µ ∈ ∆(P)5 .

In this setting, the characteristic vector shall be a vector of alternatives. Hence, X ⊆ XA, as in earlier.
We shall assume that for each x = (xa)a ∈ X we have xa 6= xb for all a 6= b. Further,

µ(
⋃
a∈A

{%∈ P : xa � xb for all b 6= a}) = 1. (4.1)

These assumptions ensure that in the random choice process, there are no ties with probability one. This is
natural and simplifies the analysis. We now define the stochastic choice function corresponding to µ as

σa(x;µ) = µ({%∈ P : xa � xb for all b 6= a}),

which is the probability of choosing a given characteristics x and the distribution µ over preferences. The
stochastic choice model corresponding to a random preference model on the class of preferences P is defined as
follows.

ΣP = {σ(.;µ) | µ ∈ ∆(P) satisfies (4.1) for all x ∈ X}.

We show the following result.

Theorem 4.1. Suppose P is a class of continuous preferences with finite VC dimension d. Then, ΣP is
predictable with respect to euclidean distance. Moreover, for the Quadratic scoring rule Sbr, the Rademacher
complexity of Sbr ◦ ΣP is at most O(

√
n−1|A| log(|A|)d log(d)).

Proof. Firstly, we shall define a class of deterministic choice rules based on P. Then, we will show that ΣP is
derived by taking continuous convex combinations of the deterministic class. We will then bound the Rademacher
complexity corresponding to Sbr ◦ ΣP .

For each %∈ P and a ∈ A, define the 0-1 valued function

σa(x;%) =

{
1 if xa � xb for all b 6= a

0 otherwise

By assumption (4.1), we get that for all µ, and a ∈ A,

σa(x;µ) =

∫
P
σa(x,%)dµ(%).

5 The set ∆(P) denotes the set of all Borel probability measures on P, which has the subspace topology
generated by the closed convergence topology on the closed subsets of X ×X. See also the appendix.
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We will now show that for each a, the class of functions SPa = {σ(.;%) |%∈ P} also has finite VC dimension.

Consider a finite set of n points D = {x1, ..., xn} ⊆ X . Suppose that D can be shattered by SPa . Then,
all 2n possible 0-1 valued labellings of D can be generated by P. Now, consider the following set of points in
X ×X.

D′ = {(xia, xib)}i∈{1,...,n},b∈A\a.

Note that D′ is a set of n(|A| − 1) points. Let d be the VC dimension of P. On the one hand, from Sauer’s

Lemma (see [68]), we have that at most ( en(|A|−1)
d

)d many labellings in D′ can be generated by P. On the other
hand, we have that since SPa shatters D, at least 2n labellings are obtained by P in D′. For large n, we obtain
a contradiction as (en(|A| − 1)

d

)d
< 2n. (4.2)

Hence, we establish that SPa has finite VC dimension, say da. Now, from a well known result (see [43]), it
follows that there is an absolute constant Ca such that the Rademacher complexity of SPa , say Rxn(SPa ), is at
most Ca

√
da/n for all xn. Now, consider the probability of a in the stochastic choice model i.e. the function

class ΣPa = {σa(.;µ)|µ satistfies (4.1)}. Since, ΣPa is essentially derived by taking convex combinations (including
continuous combinations) from SPa (see Lemma 5.4 in the appendix), we obtain that the Rademacher complexity
of ΣPa is at most equal to that of SPa . Hence, we have Rxn(ΣPa ) ≤ Ca

√
da/n.

We now complete the proof by applying the Quadratic scoring rule and bounding the Rademacher complexity
of the class F = Sbr ◦ ΣP . Firstly, consider the function class Fa = {f(., a) | f ∈ Sbr ◦ ΣP}. Note that

f(x, a) = 2σa(x;µ)−
∑
b∈A

σb(x;µ)2

for some µ. Since Rademacher complexity is additive (applied to {ΣPa }a) and has nice lipschitz composition
properties (in this case y2), we get that Rzn(Fa) ≤ 2Ca

√
da/n +

∑
b 2Cb

√
db/n (see [49] and also [6]). Define

C′ = maxa∈A 2Ca
√
da +

∑
b 2Cb

√
db. Now, for a given zn = (xi, ai)

n
i=1, define xna = (xi)i∈{i|ai=a} and

na = |{i | ai = a}|. Using Lemma 5.5 in the appendix, we get

Rzn(F) ≤
∑
a∈A

na
n
Rxna (Fa)

≤
∑
a∈A

na
n

(C′/
√
na)

≤
∑
a∈A

√
na
n

(C′/
√
n)

≤ (C′/
√
n)
∑
a∈A

√
na
n

≤ (C′/
√
n)
√
|A|. (4.3)

The last inequality follows from the fact that
√
y is concave. Hence, we establish that ΣP is predictable with

respect to any Lp metric.

Finally to obtain the sample complexity bound, consider the inequality 4.2. Based on the inequality, we can in
fact say that the following holds.

da ≤ 4
d

log 2
log
( 2d

log 2

)
+ 2d

log e(|A| − 1)

log 2
. (4.4)
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The above follows from a fact of arithmetic that x ≥ 4a log(2a) + 2b implies x ≥ a log(x) + b (see, for example,
[6]) whenever a > 1 and b > 0. Hence, the derived inequality in 4.4, together with the conclusion in 4.3 implies
that the Rademacher complexity of F is at most O(

√
n−1|A| log(|A|)d log(d)).

The above result also allows us to recover the distribution over preferences. For this, we will define the following
notion of distance between distributions.

d∆(µ, µ′) :=

∫
X
d(σ(x;µ)), σ(x;µ′)))dπ0(x).

Then, the following result holds.

Corollary 4.2. (Recovering heterogeneity) Suppose P is a class of continuous preferences with finite VC
dimension. Then, there exists an estimator µ̂ (based on a prediction method σ̂ derived from almost-ERM with
the Quadratic scoring rule) of the true distribution µ0 over preferences such that

d∆(µ̂, µ0)→p 0,

uniformly over π0 and µ0. Moreover, the rate of convergence is given by the sample complexity bound derived
from Theorem 4.1.

In this setting, the class of preferences P would depend on the context. Stochastic preferences supported on
linear utility would, for example, lead to the random coefficients model. Several canonical utility based models
such as Cobb-Douglas or CES preferences may be considered. If preferences are over risky prospects, then we
may have stochastic preferences over expected utility models and models exhibiting ambiguity aversion. We
would bound the VC dimension of the preference class (see also [71]) and then apply the above result to obtain
predictability of the corresponding stochastic choice model supported on the preferences.

Applications We discuss some applications of the above result below.

1. (Linear Preferences) Consider the model of preferences PLIN defined as follows. For each %∈ PLIN there
exists a vector v ∈ Rk such that

x % y if and only if v.x ≥ v.y.

Such preferences satisfy the well-studied independence axiom from decision theory. This means that for
all x, y, z ∈ X and λ ∈ [0, 1],

x % y if and only if λx+ (1− λ)z % λy + (1− λ)z.

From a result in [71]), it follows that the VC dimension of the set of preferences that satisfy the
independence axiom is at most k + 1. Hence, it follows that V C(PLIN ) ≤ k + 1. From Theorem 4.1,
it follows that the corresponding stochastic choice model, in which the vector of coefficients is random,
would be predictable.

Consider the following widely used econometric specification. The utility from an alternative a is

u(x; θ, ε) = θ.xa + εa,

where θ ∈ Rk and ε = (εa)a∈A ∈ RA are vectors that are randomly drawn according to the probability
measure µ. For example, for the Logit model, θ is deterministically fixed and each εa independently
follows a logistic distribution (similarly for Probit). For Mixed Logit, we would have that θ would follow
an unknown distribution for eg. multivariate normal. Here we have v = (θ, ε) and one may rewrite
alternatives as x′a = (xa, ea), where ea is the unit vector in RA where the value corresponding to a is one.
This also ensures that x′a 6= x′b for all a 6= b. Note that our formulation here essentially pertains to the
case where x is independent of ε.
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2. (Random Utility) Suppose now that preferences are defined by an underlying utility function. Hence,
suppose we have a class of utility functions U ⊆ {u | u : X → R}. For an given utility function u ∈ U ,
the corresponding preference relation %u is defined as

x %u y if and only if u(x) ≥ u(y).

The model of preferences generated by U is then defined as PU := {%u| u ∈ U}. It turns out that if the
class of utility functions has finite Pollard dimension, say d, then the VC dimension of PU is also finite,
and is of the order O(d). It can be shown that utility classes corresponding to canonical models such as
Cobb-Douglas and CES preferences have finite Pollard dimension.

3. (Decisions under Risk/Uncertainty) Suppose that the set of alternatives X corresponds to a set of
monetary acts over a finite state space (uncertainty) i.e X ⊆ RΩ or the lotteries over a finite set of
consequences Z i.e. X ⊆ ∆(Z) (risk). Such contexts have been studied extensively in decision theory
(see, for example, [45] or [44]). Several studies have investigated different models of preferences based
on different notions of expected utility. As was shown in [71], the standard expected utility and choquet
expected utility models had finite VC dimension, where the latter has VC dimension exponential in
|Ω|. In the context of risk, one may show that expected utility and Quadratic expected utility (see [48])
preferences have finite VC dimension. Indeed, the study of [42] consider random preferences with expected
utility. The related model of random choice with private information due to [46] can be studied within
our framework of linear preferences as well.

Finally, one should note that the nature of axioms of the model and VC dimension bounds are closely
related. As was noted earlier, in [71], we show the preferences satisfying the independence axiom have
finite VC dimension, linear in |Ω|. In that paper, it was also argued that if preferences satisfy comonotic
independence and admit existence of certainty equivalents, then the VC dimension would be finite and
upper bounded by a function exponential in |Ω|. Hence, for Choquet Expected Utility, denoted by PCEU ,
the bounds

( |Ω|
|Ω|/2

)
≤ V C(PCEU ) ≤ (|Ω|!)2(2|Ω|+ 1) follow.

4. (Euclidean Preferences) Consider the context of spatial voting (see [47]) where X ⊆ Rk is an ideological
space and each candidate in an election is represented by a point in X (alternative). In this voting
setting, preferences are defined through an ideal point x∗ such that candidates closer to the ideal point
are preferred by the voter. Hence, we have that

x %x∗ y if and only if ||x− x∗|| ≤ ||y − x∗||.

Hence PEUC = {%x∗ | x∗ ∈ X}. In this case, the probability measure µ essentially gives us a distribution
over ideal points, which is also referred to as voter heterogeneity. Since euclidean preferences can be
defined by finitely many arithmetic computations (see Proposition 5.6 in the appendix), it follows that
the VC dimension is finite and of the order O(k). Our estimation results provide us a way to recover
voter heterogeneity in these settings.

4.2 Non-predictability

We now establish a result on the non-predictability of ΣP . With some additional conditions, we may prove
that a result converse to Theorem 4.1 follows. This requires defining a notion of shattering based on strict
preferences. We say that a model of preferences P strictly shatters a set of pairs of alternatives ((xi, yi))

n
i=1 if

for any labelling (ai)
n
i=1 ∈ {0, 1}n of the pairs, there exists a preference relation %∈ P such that

xi � yi whenever ai = 1 and ;

yi � xi whenever ai = 0

We now consider the following modified definition of VC dimension, which we will call V C+(P). It is defined
as follows.

V C+(P) = max{n | ∃((xi, yi))ni=1 which can be strictly shattered by P}.
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We will assume here for simplicity that X = Rk and that X = {x ∈ XA | xa 6= xb for all a 6= b} 4 . A preference
relation % is said to be monotonic if x >> y implies that x � y. We now state and prove the result.

Theorem 4.3. Let P be a class of monotone continuous preferences such that V C+(P) = +∞. Furthermore,
suppose that there exists a probability measure satisfying 4.1 that has full support in P. Then, the following hold.

1. The stochastic choice model ΣP is not predictable with respect to any Lp metric.

2. Suppose we fix the euclidean distance on ∆(A). Then, for any prediction method σ̂ and sample size n,
the worst case expected distance (error) between true and estimated choice probabilities is at least 1/

√
2,

which is half of the maximum possible distance. For |A| = 2, this lower bound for error is above what can
be achieved by predicting that each alternative will be chosen with probability 1/2.

Proof. The proof applies the probabilistic method where we randomly choose a stochastic choice function from
ΣP and show that expected error is bounded away from zero. Then, we argue that there exists some function
in ΣP that generates error above a threshold level.

Fix any prediction method σ̂ and suppose that 0 < ε <
√

2 − 1 and 0 < δ < 1 − 1/
√

2. Also, let n ∈ N
be a sample size. Now, further fix k ∈ N such that k ≥ 2. Since V C+(P) = +∞, there exists a strictly shattered
set ((xi, yi))

kn
i=1. Finally, let t ∈ (0, 1) such that tn ≥ 0.5. We will show then, that there exists a set of points

(xi)kni=1 ⊆ X such that for all B ⊆ {1, 2, ..., kn}, there exists σB ∈ ΣP such that

σBa (xi) ≥ t for all i ∈ B and ;

σBa (xi) ≤ 1− t for all i /∈ B, (4.5)

where a ∈ A is fixed beforehand. We now show how to construct the set of points (xi)kni=1 ⊆ X . Let b ∈ A\{a}.
We first define xia := xi and xib := yi. Further, for each i we let {xic}c∈A\{a,b} ⊆ Rk be such that all the vectors
in {xic}c∈A are distinct and also that xia >> xic and xib >> xic for all c ∈ A\{a, b}. Due to monotonicity, this
ensures that from the set of alternatives in xi either xia or xib is maximal.

Since P strictly shatters ((xia, x
i
b))

kn
i=1, for each B ⊆ {1, 2, ..., kn}, there exists a preference relation % such

that

xia � xib whenever i ∈ B and ;

xib � xia whenever i /∈ B.

Now, consider the set of preferences Q = {%| xia � xib for all i ∈ B and xib � xia for all i /∈ B}. It is open in P
under the closed convergence topology. Hence, it is measurable in the corresponding Borel sigma algebra. Now,
consider a probability measure µ ∈ ∆(P) that satisfies the regularity condition in 4.1 and has full support in P.
Then, since Q is open, we must have that µ(Q) > 0. We will now construct another probability measure µB
satisfying 4.1 such that its corresponding stochastic choice function σB satisfies 4.5. Firstly, let β > 0 be such
that βµ(Qc) ≤ 1 − t. Then, let α := 1−βµ(Qc)

µ(Q)
. This implies that αµ(Q) + βµ(Qc) = 1 and αµ(Q) ≥ t. Now,

define the probability measure µB(E) := αµ(Q∩ E) + βµ(Qc ∩ E). Note that µB(E) = 0 if and only if µ(E) = 0,
which implies that µB also satisfies 4.1. By definition, it now follows that the corresponding stochastic choice
function σB satisfies 4.5.

We now proceed with the proof of non-predictability. Since all Lp metrics are equivalent on ∆(A), it suffices to
show the claim for euclidean distance. Let π be the uniform distribution over the set of points {xi}kni=1. Also,

6 This assumption is not crucial for the result.
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let ζ be the uniform distribution over all stochastic choice functions in {σB}B⊆{1,2,...,kn}. We will lower bound
the expected error after n samples.

EζEπ⊗σnEπ
[
||σ̂(zn)(x)− σ(x)||

]
.

Now, from Fubini’s theorem, we will change the order of expectations. The above expectation then becomes

EπnEπEζ
[
‖σ̂(zn)(x)− σ(x)||

]
= Eπn+1

[
Eζ ||σ̂(zn)(x)− σ(x)|| | x ∈ xn

]
Pπn+1(x ∈ xn)

+ Eπn+1

[
Eζ ||σ̂(zn)(x)− σ(x)|| | x /∈ xn

]
Pπn+1(x /∈ xn).

Since π is uniform, it follows that Pπn+1(x /∈ xn) ≥ k−1
k

. We will now simply lower bound the conditional

expectation Eπn+1

[
Eζ ||σ̂(zn)(x) − σ(x)|| | x /∈ xn

]
. Consider some fixed x /∈ xn. Now, let us write the

expectation Eζ
[
||σ̂(zn)(x)− σ(x)||

]
more explicitly as

Eσ∼ζEcn∼σ(xn)

[
||σ̂(xn, cn)(x)− σ(x)||

]
.

where σ(xn) is the joint distribution induced on {a, b}n by the product of the choice probabilities in (σ(y))y∈xn .
Consider some fixed σB for some B ⊆ {1, 2, ...2n}. Now, let d(B, xn) ∈ {a, b}n be such that for each j ∈ {1, ...., n}
we define dj(B, x

n) = a if and only if xj ∈ (x1, ...., xn) = xn is such that xj = xi for some i ∈ B. Now, recall
that for i ∈ B, we have σa(xi) ≥ t and for i ∈ {1, 2, ...2n}\B, we have σBa (xi) ≤ 1 − t. Hence, by definition, it
follows that σB(xn) draws the vector d(B, xn) with probability at least tn. This gives us

Ecn∼σB(xn)

[
||σ̂(xn, cn)(x)− σB(x)||

]
≥ tn

[
||σ̂(xn, dn(B, xn))(x)− σB(x)||

]
,

which implies

Eσ∼ζEcn∼σ(xn)

[
||σ̂(xn, cn)(x)− σ(x)||

]
≥ tnEσB∼ζ

[
||σ̂(xn, dn(B, xn))(x)− σB(x)||

]
.

Now, note in the latter expectation, since ζ is uniform and x /∈ xn, it follows that the random variable
σ̂(xn, dn(B, xn))(x) is independent of the event ”σBa (x) ≥ t”, with the latter event having probability 0.5.
This is because dn(B, xn) only depends on the set of indexes B(xn) = {i | xi ∈ xn}. Hence, conditional on
σ̂(xn, dn(B, xn))(x), the expectation

EσB∼ζ
[
||σ̂(xn, dn(B, xn))(x)− σB(x)|| | σ̂(xn, dn(B, xn))(x)

]
is such that with probability 0.5 we have ||σ̂(xn, dn(B, xn))(x) − σB(x)|| with σBa (x) ≥ t and with probability
0.5 we have ||σ̂(xn, dn(B, xn))(x) − σB(x)|| such that σBa (x) ≤ 1 − t . This implies that value of the above
conditional expectation is at least 0.5||(t, 1− t)− (1− t, t)|| = 0.5

√
2|1− 2t| . Combining these, we get the lower

bound

Eπn+1

[
Eζ ||σ̂(zn)(x)− σ(x)|| | x /∈ xn

]
≥ 0.5tn

√
2|1− 2t|.

Finally, since, Pπn+1(x /∈ xn) ≥ k−1
k

, we get that

EζEπ⊗σnEπ
[
||σ̂(zn)(x)− σ(x)||

]
≥ k − 1

k
0.5tn

√
2|1− 2t|.
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This means that there exists σ ∈ {σB}B⊆{1,2,...,2n} such that

Eπ⊗σnEπ
[
||σ̂(zn)(x)− σ(x)||

]
≥ k − 1

k
0.5tn

√
2|1− 2t|. (4.6)

Taking k → +∞ and t→ 1, we get that the RHS converges to 0.5
√

2 = 1/
√

2. Since 1√
2
||σ̂(zn)(x)−σ(x)|| ∈ [0, 1],

by an application of Markov’s inequality 7 , it follows that for any 0 < ε <
√

2(1 − 1/
√

2) =
√

2 − 1 and
0 < δ < 1− 1/

√
2, we can choose k → +∞ and t→ 1 so that

Pπ⊗σn

(
Eπ
[
||σ̂(zn)(x)− σ(x)||

]
> ε

)
≥ δ.

Hence, the result obtains. From the lower bound derived in the RHS of 4.6, we can say that

inf
σ̂

sup
π0∈∆(X ),σ0∈ΣP

Eπ0⊗σn
0
Eπ0

[
||σ̂(zn)(x)− σ0(x)||

]
≥ 1/

√
2,

where the infimum is taken over all possible prediction methods σ̂. Finally, note that when |A| = 2, a rule which
always predicts probabilities σa(x) = 1/2 on each alternative a, achieves expected error at most 1/

√
2.

One can argue that the class of all monotone, continuous and convex preferences P has V C+(P) = +∞. In
the context of uncertainty from a result in [37], it follows that Max-min preferences (MEU) have infinite VC
dimension whenever |Ω| ≥ 3 8 . However, the arguments can be modified to show that V C+(PMEU ) = +∞
as well. Of course, non-monotonic preferences can be non-predictable as well. Consider again the following
econometric specification : an alternative has utility u(xa, θ) + εa, where each εa independently follows a normal
distribution with (µa, σ

2
a) as mean and variance. Suppose that for the utility class U = {u(.; θ)}θ∈Θ, the

corresponding preference class has V C+(PU ) = +∞. We define now preferences of the form x′a = (xa, ea) %ε,θ
(yb, eb) = y′b if and only if u(xa, θ) + εa ≥ u(xb, θ) + εb. Then , it follows that V C+({%ε,θ}(ε,θ)∈RA×Θ) = +∞.

Preference heterogeneity could be specified by a product probability measure ζθ ⊗ ζε ∈ ∆(Θ × RA), where ζε
follows a multivariate normal distribution as a product of independent normal distributions with parameters
{(µa, σ2

a)}a∈A. Then, without any restrictions on ζθ and not restricting {(µa, σ2
a)}a∈A, it obtains that the

implied stochastic choice model would be non-predictable. This follows from the same arguments as in the proof
of Theorem 4.3.

For these models, the above result establishes non-predictability or irrecoverability of heterogeneity in a certain
sense (uniform). The dimension being infinite has the consequence that the preference class is complex enough
to significantly affect the predictability of the model. The variability in choice behaviour permitted by the model
is large enough to deter good worst case guarantees on out-of-sample estimation error.

4.3 Cognitive heterogeneity

In this section, we will study stochastic choice in the setting where there is data on choice from menus of
alternatives. As before, A is a finite set of alternatives. Hence, we will have X = 2A\{∅}. For a choice
probability function σ : X → ∆(A), for each menu of alternatives x = A ∈ X , the probability vector σ(A) has
full support in A. For each a ∈ A, the quantity σa(A) denotes the probability of alternative a being chosen from
the menu A. We will assume the following holds for σ.

Definition 4.1. (Positivity) A stochastic choice function σ satisfies positivity if for each menu A and a ∈ A,
we have σa(A) > 0.

7 From Markov’s inequality, one can show that for a random variable X ∈ [0, 1] and ε ∈ (0, 1), we have that
if E[X] ≥ 1− ε2, then P[X > 1− ε] ≥ 1− ε.

8 When |Ω| = 2, the Max-min model has VC dimension equal to 2.
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In this context, the choice probabilities from the Logit or the Luce model are as follows. There exists a function
w : A → R++, which assigns weights to the various alternatives. For each menu A, the alternative a ∈ A is
chosen with probability

σa(A) =
w(a)∑

b∈A

w(b)
.

It is well-known that under positivity, a stochastic choice map σ has the Luce representation if and only if σ
satisfies the Independence of Irrelevant Alternatives axiom (IIA). The IIA axiom says that if A and B are two
menus and we have two alternatives a, b ∈ A ∩B. Then,

σa(A)

σb(A)
=
σa(B)

σb(B)
.

Another example is the stochastic choice model involving consideration sets ([16]). The model is defined as
follows. There is a function γ : A → (0, 1) and a strict order � on A. The choice probabilities are given as
follows.

σγ,�a (A) := (1− γ(a))
∏

b∈A:b�a

γ(b).

The interpretation is that 1 − γ(a) is the probability with which alternative a will be considered in choosing
from a given menu A. Once the considered alternatives are determined, the agent chooses according to the strict
order �. The following result obtains in this setting.

Proposition 4.4. Suppose Σ is either the Logit/Luce model or the model with consideration sets. Then, under
the log rule Slog, the Pollard dimension of Slog ◦ Σ is at most O(|A|2).

Proof. The proof is in the appendix and applies a result on the VC dimension of neural networks (see Proposition
5.6). The bound is derived by computing the total number of arithmetic operations needed to express the choice
probabilities in the respective models. Given that the expressions can be written via addition, multiplication and
division of real numbers, the number of operations, is at most linear in |A|. Together with the dimensionality
of the parameter space, which is also linear in |A| (every strict order has a one-to-one numeric representation),
we get the quadratic bound.

The techniques from the previous section can be extended to allow recoverability of cognitive heterogeneity.
This type of heterogeneity corresponds to a distribution µ over (γ,�). By arguments similar to the proof of
Theorem 4.1, one shows that finite pollard dimension of Slog ◦ Σ allows for consistent estimation of the true
distribution µ0, if we place a restriction that the choice probabilities are bounded below. Since we are applying
the log scoring rule, the estimator is essentially based on the conditional maximum likelihood procedure.

4.4 Non-uniform prediction

The notion of consistency considered above requires that convergence should take place uniformly over both the
distribution over characteristics π0 and the true stochastic choice function σ0. The main advantage of such a
requirement is that it leads to estimates that are robust with respect to the data generating process. Suppose,
we instead consider non-uniform consistency which only requires that the divergence between true and estimated
choice probabilities converges to zero. We provide a definition.

Definition 4.2. A prediction method σ̂ is pointwise consistent (with respect to d and Σ) if for all 0 < ε, δ < 1,
and for all π0 ∈ ∆(X ), σ0 ∈ Σ, there exists N(ε, δ, π0, σ0) such that for all n ≥ N(ε, δ, π0, σ0),

π0 ⊗ σn0
(
{zn : dπ0(σ̂(zn), σ0) < ε}

)
≥ 1− δ.

We say that a model Σ is pointwise predictable with respect to d if there exists a prediction method σ̂, which
is pointwise consistent with respect to d and Σ.
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The above is also a kind of PAC criterion but only requires that the random variable dπ0(σ̂(zn), σ0) converge in
probability to zero. Note that we had a stronger notion of consistency before. Hence, if a stochastic choice model
is predictable according to Definition 2.1, then it is also pointwise predictable. It turns out that one can study
pointwise predictability via a weaker definition of Glivenko-Cantelli classes called universal Glivenko-Cantelli
classes (see, for example, [52],[51]). This requires that for a real-valued function class F (defined on a set Z) we
have that supf∈F |1/n

∑n
i=1 f(zi)−Eν [f ]| converges to zero for each probability measure ν ∈ ∆(Z). In contrast

to uniform Glivenko-Cantelli classes, the convergence need not be uniform over ν. Note, however, we still have
uniformity over F as we have convergence of the supremum. This would also be closer to the uniformity criterion
typically required in extremum estimation (see [53]). Similar to the proof of Proposition 3.2, one can argue that
for a stochastic choice model Σ and scoring rule S, if S ◦ Σ is universal Glivenko-Cantelli, then Σ is pointwise
predictable w.r.t dS .

A useful characterisation of universal Glivenko-Cantelli classes is given by [51] in terms of Boolean σ-independence.
A sequence of functions {fj}j∈N ⊆ F is Boolean σ-independent at levels β > α > 0 if for every subset F ⊆ N,⋂

j∈F

{z | fj(z) < α} ∩
⋂
j /∈F

{z | fj(z) > β} 6= ∅.

It then holds that a function class is universal Glivenko-Cantelli if and only if there exists no Boolean σ-
independent sequence in F for any α, β. From this, it follows that a parametrised function class F = {f(., θ) |
θ ∈ Θ}, where Θ is a compact metric space and f(z, .) is continuous in θ for each z, is a universal Glivenko-
Cantelli class. We can then show that under some conditions, a stochastic preference model supported on
continuous preferences would be pointwise predictable. As before, it will be convenient to work with the closed
convergence topology on continuous preferences (see appendix). We state the result below.

Proposition 4.5. Let PCONT be the set of all continuous preferences over the set of alternatives X, equipped
with the closed convergence topology. Further, let M⊆ ∆(PCONT ) be any set of probability measures satisfying
the condition 4.1, that is closed in the topology of weak convergence. Then, ΣPCONT (M) := {σ(.;µ | µ ∈M} is
pointwise predictable with respect to any Lp metric.

Proof. Can be found in the appendix.

It is interesting to compare the above result with the results in Theorem 4.1 and Theorem 4.3. Firstly, there may
be continuous preferences with infinite VC dimension (for eg. all continuous convex preferences) and there may be
discontinuous preferences with finite VC dimension (for eg. lexicographic preferences). Secondly, conditional on
considering only continuous preferences, which allows pointwise predictability, robust estimation is characterised
by the dimension of the preference classes (V C and V C+). If the dimension is finite, we get uniform consistency
but for infinite dimension, the estimates are non-robust, to an extent that the same estimation procedure that
would guarantee pointwise learning, would lead to erroneous out-of-sample predictions in the worst case. Lastly,
the techniques for obtaining rates of convergence for pointwise predictability, would involve deriving bounds on
the bracketing or covering numbers of the function class S ◦ Σ (see [52]). This would also be similar to PAC
learning problems in the deterministic case with a non-uniform predictability criterion (see [55],[54],[6]) and also
structural risk minimisation (see [56] and [5]).

5 Conclusion

This paper presents new learning rules for estimation of choice probabilities in various stochastic choice models.
The main feature of preferences that is taken in account is its model complexity, for example, the VC dimension
of the model. Perhaps interestingly, given that VC dimension is a characteristic of the collection of sets that
defines the model, it also characterises uniform learning involving distributions over the collection, leading to
random discrete choice. We also present a wide class of models and learning rules, allowing for applicability to
discrete choice models used in statistics.
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[52] Dudley RM, Giné E, Zinn J. Uniform and universal Glivenko-Cantelli classes. Journal of Theoretical
Probability. 1991;4(3):485-510.

[53] Amemiya T. Advanced Econometrics. Harvard university press; 1985.

[54] Benedek GM, Itai A. Nonuniform learnability. Journal of Computer and System Sciences. 1994;48(2):311-
323.

[55] Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK. Occam’s razor. Information processing letters.
1987;24(6):377-380.

[56] Vapnik V, Chervonenkis A. Theory of pattern recognition. Published online 1974.

[57] Aliprantis CD, Border KC. Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer Science Business
Media; 2006.

[58] Kannai Y. Continuity properties of the core of a market. Econometrica (pre-1986). 1970;38(6):791.

[59] Hildenbrand W. On economies with many agents. Journal of economic theory. 1970;2(2):161-188.

[60] Hildenbrand W. Core and Equilibria of a Large Economy.(PSME-5). Princeton university press; 2015.

[61] Molchanov I. Theory of Random Sets. Vol 19. Springer; 2005.

[62] Mas-Colell A. On the continuous representation of preorders. International Economic Review. Published
online 1977:509-513.

[63] Kechris A. Classical Descriptive Set Theory. Vol 156. Springer Science Business Media; 2012.

[64] Talagrand M, Others. The Glivenko-Cantelli problem. The Annals of Probability. 1987;15(3):837-870.

[65] Van Der Vaart AW, Wellner JA. Weak convergence. In: Weak Convergence and Empirical Processes.
Springer; 1996:16-28.

[66] McFadden D, Train K. Mixed MNL models for discrete response. Journal of applied Econometrics.
2000;15(5):447-470.

[67] Border KC, Segal U. Dynamic consistency implies approximately expected utility preferences. Journal of
Economic Theory. 1994;63(2):170-188.

[68] Kearns MJ, Vazirani U. An Introduction to Computational Learning Theory. MIT press; 1994.

[69] Athey S, Imbens GW. Machine learning methods that economists should know about. Annual Review of
Economics. 2019;11.

[70] De Blasi P, James LF, Lau JW, Others. Bayesian nonparametric estimation and consistency of mixed
multinomial logit choice models. Bernoulli. 2010;16(3):679-704.

[71] Basu P, Echenique F. On the falsifiability and learnability of decision theories. Theoretical Economics.
2020;15(4):1279-1305.

[72] Chambers CP, Echenique F, Lambert NS. Recovering preferences from finite data. Econometrica.
2021;89(4):1633-1664.

144



Basu; Asian J. Prob. Stat., vol. 26, no. 9, pp. 123-150, 2024; Article no.AJPAS.121667

Appendix

A.1. Technical

When dealing with preferences in economic contexts, a popular topology on the space of preference relations
is that given by the topology of closed convergence ([58], [59]). We provide some general definitions in this
section and note some important results from the literature that will be useful in our setting. Let (Y, τY ) be
a topological space. Let C denote the set of all closed subsets of Y . The closed convergence topology on C is
defined as follows (see also [57]). For any compact K ⊆ Y and finitely many open sets {Ui}i∈I in Y , we define
the following subset of C.

O(K, {Ui}i) = {F ∈ C | F ∩K = ∅ and F ∩ Ui 6= ∅ for each i ∈ I}.

All sets of the form O(K, {Ui}i) constitute a basis for the closed convergence topology on C. We will denote
this topology as τC. When Y is a locally compact and seperable metric space, then it turns out that (C, τC) is a
compact metrizable space (see [60]). Further, it also holds that (C, τC) is second countable (see [61]).

We now note how the closed convergence topology provides us a way to topologize the space of continuous
preferences. Let (X, τX) be a topological space of alternatives. A preference relation on X is a binary relation
%⊆ X × X which is complete and transitive. A continuous preference relation % is a preference relation that
is closed in X × X (under the product topology). Hence, a class of continuous preferences P ⊆ 2X×X can be
endowed with the subspace topology, say τP , generated by the topology of closed convergence on closed subsets
of 2X×X .

The following theorem, due to [62], provides conditions under which a utility representation exists that is
jointly continuous in the alternatives and the preferences.

Proposition 5.1. ([62]) Let X be a locally compact and second countable space of alternatives. Further, let
PCONT denote the set of all continuous preference relations on X, equipped with the subspace topology induced
by the closed convergence topology. Then, there exists a utility function U : X × PCONT → R, which is jointly
continuous and each %∈ PCONT is represented by U(.,%).

An immediate corollary of the above result is the following. For any finite set of alternatives (xa)a∈A, the set of
preferences {%∈ PCONT | xa % xb for all b 6= a} is closed and {%∈ PCONT | xa � xb for all b 6= a} is open with
respect to the closed convergence topology.

Now, consider a subspace of preferences P ⊆ PCONT . We denote as ∆(P), the set of all Borel probability
measures defined on P. We will endow ∆(P) with the topology of weak convergence (see [57]). Hence, for a
sequence {µn}n and probability measure µ in ∆(P) we have that µn → µ in the weak convergence topology if and
only if for every bounded continuous function f : P → R, the convergence Eµn [f(%)]→ Eµ[f(%)] holds. Now, if
the space of alternatives X is a locally compact and seperable metric space, then it is also the case that X ×X
is a locally compact and seperable metric space. Hence, the subspace PCONT ⊆ 2X×X is a secound countable
compact metric space. This means that for any subspace P ⊆ PCONT , the set of probability measures ∆(P)
with the weak convergence topology is a seperable metrizable space (see [57]). We now show some measurability
and continuity properties of the stochastic choice probabilities σa(x;µ).

We will first define the regularity condition that we assume on µ ∈ ∆(P). Consider the set of preferences where
xa is strictly preferred from a menu of alternatives x = (xb)b∈A i.e. Q(x, a) = {%∈ P | xa � xb for all b 6= a}.
The regularity assumption imposes on µ that we have µ(∪a∈AQ(x, a)) = 1. Also, by the definition of choice
probabilities, σa(x, µ) = µ(Q(x, a)). The following lemma is useful.

Lemma 5.2. Let X be a locally compact, seperable metric space of alternatives and let X ⊆ XA be such that
xa 6= xb for all x = (xc)c∈A ∈ X . Suppose P ⊆ PCONT and let ∆r(P) ⊆ ∆(P) be the set of all probability
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measures on the preference class P satisfying the regularity condition. The stochastic choice function σa(x;µ)
is continuous in µ for each x ∈ X ; continuous in x for each µ ∈ ∆r(P). Hence, σa(x;µ) is jointly measurable
under the Borel sigma-algebra induced by the product topology on X ×∆r(P).

Proof. Consider a fixed x ∈ X and let {µn}n be a sequence and let µ be a probability measure in ∆r(P) such
that µn → µ in the weak convergence topology. It suffices to argue that Q(x, a) is a continuity set according to
the measure µ i.e. µ(∂Q(x, a)) = 0, where the set ∂Q(x, a) is the boundary of the set Q(x, a). Suppose we have a
convergent seqeuence {%n}n in Q(x, a) with limit %. As µ satisfies the regularity condition µ(∪a∈AQ(x, a)) = 1,
it suffices to show that %∈ {%′∈ PCONT | xa %′ xb for all b 6= a}. But this is true since the latter set is closed
and contains the set Q(x, a) as noted above. It now follows that σa(x; .) is continuous.

Now, let µ ∈ ∆r(P) and suppose {xn} ⊆ X is a convergent sequence with limit x ∈ X . Note that since preferences
are continuous, we have that Q(x, a) ⊆ lim infnQ(xn, a). This implies that µ(Q(x, a)) ≤ µ(lim infnQ(xn, a)) ≤
lim infn µ(Q(xn, a)). Hence, σa(.;µ) is lower semi-continuous. We now show upper-semicontinuity. Define the set
Q(x,A\{a}) := ∪b∈A\{a}Q(x, a). Note that since µ satisfies regularity, we have µ(Q(y, a)) = 1−µ(Q(y,A\{a}))
for all y ∈ X . Now, let xn → x. Again, as preferences are continuous, we obtain that Q(x,A\{a}) ⊆
lim infnQ(xn, A\{a}) which means µ(Q(x,A\{a})) ≤ µ(lim infnQ(xn, A\{a})) ≤ lim infn µ(Q(xn, A\{a})).
But this implies that µ(Q(x, a)) ≥ lim supn µ(Q(xn, a)). Hence, the function σa(.;µ) is continuous as it is both
lower and upper semi-continuous.

The two facts established above imply that σa(x;µ) is a Caratheodory function (see, for example, [57], [63]).
Hence, σa(x;µ) is jointly measurable in (x;µ).

Now it follows that under the conditions satisfied by the above lemma, we obtain appropriate measurability of
the function class F = Sbr ◦ΣP for the Glivenko-Cantelli theorems to apply. From [65], a sufficient condition is
a seperability condition called pointwise measurability. It requires that there exist a countable subset F ′ ⊆ F
such that for any f ∈ F , there exists a sequence in F ′ which converges to f pointwise. Since ∆(P) is a seperable
metric space, it follows that ∆r(P) is a seperable metric space as well. Let Π ⊆ ∆r(P) be a countable dense
subset. Since from Lemma 5.2 above, the choice probability σa(x, µ) is continuous in µ and from the definition of
the Quadratic scoring rule Sbr, it follows that the countable set F ′ = {Sbr ◦ σ(.;µ) | µ ∈ Π} makes F pointwise
measurable. Alternatively, [64] requires that F belong to L1(ν), for each ν ∈ ∆(X ×A).

We will now discuss the existence of probability measures µ which satisfy the regularity condition. The following
result applies when preferences are defined through a parametrised utility function u : X×Φ→ R. For any such
function u and φ ∈ Φ, we will denote as %φ, the preference relation u induces on X. Hence, we define x %φ y if
and only if u(x, φ) ≥ u(y, φ). We will say that a probability measure ξ ∈ ∆(Φ) satisfies the regularity condition
for u if for all x = (xb)b∈A ∈ XA with xa 6= xb for all a 6= b, we have ξ(∪a∈A{φ | u(xa, φ) > maxb 6=a u(xb, φ)}) = 1.

The following result holds. We will assume that preferences are locally strict (see [67]).

Lemma 5.3. Let X be a locally compact and seperable metric space of alternatives, PCONT be the set of all
continuous preference relations on X (endowed with the topology induced by the closed convergence topology)
and Φ be a metric space of parameters. Let u : X × Φ → R be a jointly continuous utility function. Further,
suppose that u is locally strict i.e. for all φ, if u(x, φ) ≥ u(y, φ), then every neighbourhood of (x, y) contains a
pair (x′, y′) such that u(x′, φ) > u(y′, φ). Then, the function ζ : Φ→ PCONT defined as

ζ(φ) =%φ,

is a continuous function. Now, suppose ξ ∈ ∆(Φ) is a Borel probability measure on the space Φ which satisfies
the regularity condition for u. Also suppose that the class of preferences Pu = {%φ}φ∈Φ is Borel. Then, the
induced probability measure µξ on the Borel subsets of PCONT , defined as

µξ(B) = ξ(ζ−1(B)),
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satisfies the regularity condition on Pu. If Pu is also closed in PCONT and ξ has full support on Φ, then µξ has
full support on Pu.

Proof. To show that ζ is continuous, it will suffice to show that the pre-image of any basic open set is open in
Φ. Let O(K, {Ui}i∈I) be a basic open set. Now, each Ui is open in X × X. Hence, from local strictness of u
it follows that for any φ, if u(x, φ) ≥ u(y, φ), where (x, y) ∈ Ui, there exists another pair (x′, y′) ∈ Ui such that
u(x′, φ) > u(y′, φ). For convenience, define the function ∆u(x, y, φ) = u(x, φ) − u(y, φ). Then, we get that the
pre-image of O(K, {Ui}i∈I) can be written as

ζ−1(O(K, {Ui}i∈I)) = {φ ∈ Φ | max
(x,y)∈K

∆u(x, y, φ) < 0 and sup
(x,y)∈Ui

∆u(x, y, φ) > 0 for each i ∈ I}.

Now, as K is compact, from the theorem of the maximum, it follows that max(x,y)∈K ∆u(x, y, φ) is continuous in
φ. Hence, the set ΦK = {φ ∈ Φ | max(x,y)∈K ∆u(x, y, φ) < 0} is open in Φ. Now, note that sup(x,y)∈Ui

∆u(x, y, φ)
is a supremum of lower semi-continuous functions and is hence, lower semi-continuous in φ. Hence, the set
Φi = {φ | sup(x,y)∈Ui

∆u(x, y, φ) > 0} is open, for each i ∈ I. To conclude, observe that ζ−1(O(K, {Ui}i∈I)) =
ΦK ∩ (∩i∈IΦi) is open as an intersection of finitely many open sets. Hence, ζ is continuous.

We now argue that µξ satisfies the regularity condition if ξ satisfies the regularity condition for u. Let
B = ∪a∈AQ(x, a). Then µξ(B) = ξ(∪a∈A{φ | u(xa, φ) > maxb 6=a u(xb, φ)}) = 1. Now, further assume that ξ has
full support on Φ and Pu is closed. Suppose for contradiction that there exists a closed strict subset P ( Pu
such that µξ(P) = 1. But this means that ξ(ζ−1(P)) = 1 where the set ζ−1(P) is closed as ζ is continuous and
P is closed in PCONT . But ζ−1(P) ( ζ−1(Pu) = Φ, where both sets are closed but ξ(ζ−1(P)) = 1 meaning that
ξ does not have full support, which is a contradiction.

A.2. Proofs from section 3

The following is the proof for Proposition 3.2.

Proof. We show that Σ is predictable with respect to dS . We shall construct an almost-ERM learning σ̂E , which
would be consistent with respect to d and Σ. For each n ∈ N, define εn := 1/n. Now, for zn = ((xi, ai))

n
i=1 ∈ Zn,

let σ̂E(zn) be such that

V̂S(σ̂E(zn)) ≤ inf
σ∈Σ

V̂S(σ) + εn,

where recall that for any σ ∈ Σ, V̂ (σ) := 1/n
∑n
i=1 Sai(σ(xi)). Note that the infimum exists in the above

definition since S ◦ Σ is bounded above by M . Hence, the σ̂E is well-defined. We now show it is consistent.

Let (ε, δ) ∈ (0, 1)2. Since S ◦ Σ is a Glivenko-Cantelli class of functions, for (ε/3, δ) ∈ (0, 1)2, there exists
N ′(ε/3, δ) such that for all n ≥ N ′(ε/3, δ), for all ν ∈ ∆(Z)

νn
(
zn : sup

f∈S◦Σ
|1/n

n∑
i=1

f(zi)− Eµ(f)| < ε/3
)
≥ 1− δ. (5.1)

Now, let N(ε, δ) := max{3/ε,N ′(ε, δ)}. Now, suppose n ≥ N(ε, δ). Let π0 ∈ ∆(X ) be a distribution
over characteristics and suppose the true choice probabilities are given by σ0 ∈ Σ. For convenience, denote
Ezn(f) = 1/n

∑n
i=1 f(zi).

Now suppose zn is such that supf∈S◦Σ |Ezn(f) − Eπ0⊗σ0(f)| < ε/3. Note that this happens with probability
at least 1 − δ under π0 ⊗ σn0 . Consider the almost-ERM rule σ̂E . Define also fE,zn(x, a) := S(σ̂E(zn)(x), a),
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f0(x, a) := S(σ0(x), a) and ν0 = π0 ⊗ σ0. It follows that

|Eν0(fE,zn)− Eν0(f0)| = Eν0(f0)− Eν0(fE,zn) (5.2)

= Eν0(f0)− Ezn(fE,zn) + Ezn(fE,zn)− Eν0(fE,zn)

≤ Eν0(f0)− Ezn(fE,zn) + ε/3 (5.3)

≤ Eν0(f0)− Ezn(f0) + 1/n+ ε/3 (5.4)

≤ ε/3 + ε/3 + ε/3 (5.5)

= ε.

Here, 5.2 follows since σ0 minimises expected risk as S is incentive compatible (Lemma 3.1). The inequality
5.3 follows by assumption that supf∈S◦Σ |Ezn(f) − Eν0(f)| < ε/3. This yields Ezn(fE,zn) − Eν0(fE,zn) < ε/3.
Also, 5.4 follows since σ̂E is almost-ERM. Lastly, 5.5 follows since n ≥ 3/ε and again from our assumption that
supf∈S◦Σ |Ezn(f)− Eν0(f)| < ε/3, which yields Ezn(f0)− Eν0(f0) < ε/3.

Now, since we have

Eν0(f0)− Eν0(fE,zn) =

∫
X
dS(σ̂E(zn)(x), σ0(x))dπ0(x),

it follows that σ̂E is consistent with respect to dS and Σ.

A.3 Proofs from section 4

The following two lemmas will be useful.

Lemma 5.4. Suppose F is a uniformly bounded class of real-valued functions defined on the set Z and let
M⊆ ∆(F). For µ ∈ ∆(F). Define the function fµ as

fµ(z) =

∫
F
f(z)dµ(f).

Consider the function class FM = {fµ | µ ∈M}. Then,

Rzn(FM) ≤ Rzn(F).

for all zn ∈ Zn.

Proof. We first develop some notation. For zn and a real-valued function f , define f(zn) = (f(z1), ..., f(zn)) ∈
Rn. From the definition of Rademacher Complexity, it suffices to show that for any real vector α ∈ Rn,

sup
µ∈M

∫
F
α · f(zn)dµ(f) ≤ sup

f∈F
α · f(zn). (5.6)

Suppose for contradiction that 5.6 does not hold. Then, supµ∈M
∫
F α · f(zn)dµ(f) > supf∈F α · f(zn). Then,

there exists µ∗ ∈M such that
∫
F α · f(zn)dµ∗(f) > supf∈F α · f(zn). But this means that there exists f∗ such

that α · f∗(zn) > supf∈F α · f(zn). This is a contradiction and hence, the result follows.

The following is another useful lemma.

Lemma 5.5. Suppose, as in the present context, Z = X × A, where |A| < ∞. Further, let F be a real-valued
function class defined on Z. For each a ∈ A, define the following function class on X :

Fa = {f(., a) | f ∈ F}.

This is the set of all probability measures on F .
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Then, for all zn = (xi, ai)
n
i=1 ∈ Zn,

Rzn(F) ≤
∑
a∈A

na
n
Rxna (Fa),

where xna = (xi)i∈{i|ai=a} and na = |{i | ai = a}|.

Proof. Let zn ∈ Zn. Define Na = {i | ai = a} and then na = |Na|. Then,

Rzn(F) = Eη
[

sup
f∈F

1

n

n∑
i=1

ηif(xi, ai)
]

= Eη
[

sup
f∈F

1

n

∑
a∈A

∑
i∈Na

ηif(xi, a)
]

≤ Eη
[∑
a∈A

sup
f∈F

1

n

∑
i∈Na

ηif(xi, a)
]

=
∑
a∈A

Eη
[

sup
f∈F

1

n

∑
i∈Na

ηif(xi, a)
]

=
∑
a∈A

na
n

Eη
[

sup
f∈F

1

na

∑
i∈Na

ηif(xi, a)
]

=
∑
a∈A

na
n
Rxna (Fa).

A.4 Proofs from section 4.3

Proposition 4.4 follows straightforwardly from the following result on the VC dimension of neural networks.

Proposition 5.6. ([17]) Let Θ ⊆ Rp. Suppose F = {f(w, θ) : θ ∈ Θ} is a parametrized class of 0-1 valued
functions defined on a set W ⊆ Rk. Further, suppose, for each f ∈ F and each (w, θ) ∈ Θ, computing the value
of f(w, θ) takes no more than t many operations from the following

1. The arithmetic operations +,−,× and \ defined on real numbers.

2. Pairwise comparisons of two real numbers involving the relations ≥, >,≤, < and =, 6=.

3. Output 0 or 1.

Then, the VC dimension of F is at most 4p(t+ 2).

We now prove Proposition 4.5.

Proof. We will first show that if we have a parametrised function class F = {f(z, θ) | θ ∈ Θ}, where Θ is a
compact metric space and f(z, .) is continuous in θ for z, then F contains no Boolean σ-independent sequence
for any α, β. Suppose not. Then, there exists a sequence of parameters {θn}∞n=1 ⊆ Θ such that {f(., θn)}n is
a Boolean σ-independent sequence in F for some 0 < α < β. Since Θ is compact, there exists a convergent
subsequence {θnk}

∞
k=1. It then follows that {f(., θnk )}k is also a Boolean σ-independent sequence at α, β. Now

consider the sets KO = {k | k odd } and KE = {k | k even }. The following set is non-empty.⋂
k∈KO

{z | f(z, θnk ) < α} ∩
⋂

k∈KE

{z | f(z, θnk ) > β} 6= ∅.

Consider an element z in the above intersection. Further, let θ∗ ∈ Θ be the limit of {θnk}
∞
k=1. Then,

limk→∞ f(z, θnk ) = f(z, θ∗). However, from the above intersection, it follows that f(z, θnk ) < α for k odd
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and f(z, θnk ) > β for k even. Hence, we have two subsequences {f(z, θnk )}k∈KO and {f(z, θnk )}k∈KE with
different limits. But this is a contradiction as all subsequences of a convergent sequence must have the same
limit.

We now show the pointwise predictability of continuous preferences. Note that PCONT = {%⊆ X × X |%
closed in X ×X}. With the the topology of closed convergence on PCONT , which is also the topology induced

by the Hausdorff metric on PCONT (see, for example, [57]), it follows that PCONT is compact. Hence, ∆(PCONT )
is compact in the weak convergence topology which can metrized by the Prokhorov metric. Since M is now a
closed subset of a compact metric space, it also compact. Now, we will define Θ :=M.

Consider the Quadratic scoring rule Sbr and the stochastic choice model ΣPCONT (M). Then, for any f ∈
Sbr ◦ ΣPCONT (M), we have

f(x, a;µ) = 2σa(x;µ)−
∑
b∈A

σb(x;µ)2.

Now we need only show that if µn → µ, then f(x, a;µn)→ f(x, a;µ). This follows from Lemma 5.2.
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