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ABSTRACT 
 

Salinity, along with drought, is one of the key abiotic stressors that has posed a danger to the 
advancement and evolution of cereal crops like rice and wheat. Water shortage and a lack of 
irrigation water availability are the main causes of salty soil formation. Rice is salt sensitive and 
glycophyte, wheat is moderately salt tolerant. Wild tolerant cultivars like Oryza coarctata and Oryza 
alta are more tolerant than traditional cultivars such as Pokkali and Nona Bokra in rice. Salt stress 
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affects crop plants’ processes like ionic imbalance, osmotic and oxidative stress. Na
+
 should be low 

in the shoots of the plant which is restricted by various transporters in the cell membrane of the 
roots in soil. High K

+
 & Na

+
/K

+
 homeostasis should be maintained. Many RILs and NILs have been 

developed which acts as a donor for salinity tolerant genes. FL478 is a recombinant inbred line in 
which candidate genes are situated in the Saltol region of chromosome 1 region which is obtained 
by a cross between Pokkali x IR29. Increase in world’s population, rice output must be increased 
by at least 25% by 2030 and 50% by 2050.Salinity stress is a polygenic character which involves 
several genes works in harmony. For evolution of salinity tolerant cultivars, we need to access the 
physiological, biochemical genetic responses of the crop plant which helps in transfer of candidate 
genes from donor parents to elite high yielding salt sensitive cultivars. Especially in rice salt tolerant 
mechanisms like, Ion equilibrium regulation, Adjustment of osmotic potential, Reduction of ROS, 
Nutrient disequilibrium, and Regulation of PGRs. Conventional, MABC, MAS and direct gene 
transfer by transgenic methods. This review paper's main objective is to understand the 
mechanisms of the crop plants to salinity effects and development of salt tolerant cultivars by 
modern approaches which fulfill the food scarcity of staple food crops with increasing population. 
 

 
Keywords: Saltol QTL; salinity; anti-transporters; salt tolerance; PUFs; profiling. 
 

1. INTRODUCTION 
 

Salinity affects crop plants by various processes 
like mainly development of osmotic stress, ionic 
toxicity and next to it oxidative stress and 
indirectly affects photosynthetic process by 
pigment damaging [54]. Mainly in cereals rice 
and wheat are the salt sensitive crops which are 
affected easily because these are the essential & 
staple food crops for more than 80% of the 
world's people. To produce high-yielding, salt-
tolerant cultivars we need to understand various 
mechanisms and physiological, biochemical 
epigenetic responses of the plants [26]. Electrical 
conductivity (Ec) is used to estimate salinity [54]. 
In rice, salinity mainly affects at germination, 
seedling stage and reproductive stage, in which if 
Ec is 3 dS/m yield start reducing with a 12% 
decrease in output per unit as Ec rises [9 and 
65]. Plants have three primary processes. a) 
ionic removal, b) osmotic resilience, and c) 
cellular resilience to salinity stress [54]. Salinity 
stress in rice mainly build upon Na

+
 

concentration and transporter’s like OsHKT1;5 is 
a main determinant factor for salinity resilience. 
The genetic variability present within crop 
species of cultivated cereals like rice for salt 
resiliance is less or narrow, we use donors like 
land races Pokkali, FL478 and Nona Bokra which 
also has Saltol gene in the respected QTL region 
mainly in salinity endurance of seedlings [4]. 
Progress of varieties which have seedling stage 
salinity tolerance leads to growth of leaves, 
stems and roots that can increase yield [29]. In 
India 7mha land is pretentious by salt [59]. Due 
to the frequent use of brackish water from 
groundwater for irrigation, the inland is salinized 
[12]. FL478 is a recombinant inbred line which is 

salt tolerant used as a donor and it is evaluated 
from a cross between IR29 x Pokkali [31]. In 
cross Nona Bokra / Koshihikari a transporter 
called OsHKT1;5 that regulates K

+
 regulation 

[66]. Early maturation, semi-dwarf, and 
exceptional culinary quality Saltol QTL from DP 
of FL478 was transmitted through Marker 
Assisted Backcross Breeding (MABB) into 
recurrent parent Pusa Basmati 1509 [83]. Until 
now only two high producing Basmati rice types, 
Pusa Basmati 1 [70] and Pusa Basmati1121 [3] 
developed for improved seedling stage salinity 
tolerance through MABC [83]. The rice output 
must be increased by at least 25% by 2030 and 
50% by 2050 with the increase in population 
growth [44]. Salinity exposure for long term in the 
ionic phase of plants is characterised by the 
buildup of Na+ and the early loss of earlier 
leaves [68]. Despite their lower output and 
inferior seed quality, landraces have salt tolerant 
genes which can’t be used in commercial 
production [63]. At the early growth or seedling 
stage in rice, the Saltol QTL maintains Na+/k+ 
equlibrium and exhibits tolerance [80]. The 
advancement of salt-tolerant cultivars using both 
traditional breeding methods [37] and marker-
assisted selection [69] MAB avoids linkage drag 
by limiting the donor parent region through 
precise transfer of genes in selection of trait [69]. 
On chromosome 1 of the rice crop, a few 
molecular markers aid in the identification of 
salinity resilience genes, and some Saltol-linked 
markers, including RM 3412, RM8094, AP3206, 
RM493 and RM10793, have been found for MAB 
& screening [32]. Pusa44 and Sarjoo52, are two 
high-yielding rice cultivars from India's northwest 
that are vulnerable to saline conditions at the 
seedling stage. So, increases in salt tolerance in 
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these varieties through introgression of Saltol 
QTL which is present on chromosome number 1. 
In most of the plants, roots exclude Na

+
 and cl

-
 

effectively while water is taken from soil [56]. 
Long-term salt exposure in plants causes ionic 
stress, which accelerates the aging process and 
causes grain deformation and yellowing of the 
leaves [38]. With the effect of salinity there is 
interference in water transport and nutrient 
homeostasis which leads to osmotic stress and 
nutrient imbalance [23 and 87]. In cereals like 
rice is sensitive, wheat is moderately, and barley 
is most tolerant to salts [14]. Crops which are 
sensitive to saline stress are glycophytes and 
tolerant ones are called halophytes [28]. Salinity 
induces stomatal closure, which rises leaf 
temperature and limits the development of 
shoots [62]. 
 

2. IMPLICATIONS OF SALT STRESS ON 
CROP PLANTS 

 
Excess amount of Na

+
 ion directly causes cellular 

damage and inhibits K
+
 uptake due to which 

hampers photosynthetic pathway [82]. Ionic or 
mineral stress lead the way to Na

+
 and Cl

-
 

deposits in plant cells, which causes early 
dropping of leaves and plant death [49]. Excess 
Na

+
 in plant cell cytosol inhibits enzymatic 

activity, disrupting different cellular metabolisms 
such as synthesis of proteins, bio-molecular 
activities and chloroplast functions [30]. Excess 
Na

+
 also hampers other macro and 

micronutrients in cytoplasm [6]. Salt induced 
stress also dismisses cell turgor pressure in 
plants [36]. Reducing the cytoplasmic Na

+
 level is 

critical to improve the saline tolerance 
mechanism in cereal grains like rice and wheat 
[30]. Osmotic stress also causes a decline in the 
CO2 assimilation capacity of plants [55]. Ionic 
imbalances harden oxidative stress, which 
results in the build-up of reactive oxygen species 
(ROS) which damages lipids, enzymes, DNA & 
RNA [41]. 
 
Two mechanisms exist for plants to be                 
stressed by high salt: Higher concentrations of 
salinity in soil disrupt the root’s ability to                   
absorb water, as well as within the plant                   
can be harmful, inhibits physiological and 
biochemical processes such as nutrition 
absorption and acclimatization [27,55,54 and 57]. 
Shoot growth is affected by salinity, as illustrated 
by reduced leafy area and stunted shoot growth 
[43]. Na

+
 deposits effects photosynthetic 

components like enzymes, chlorophyll, and 
carotenoid pigments in photosynthetic cells             
[10]. 

 

 
Fig. 1. Schematic representation showing morphological, anatomical, physiological, biological 

and yield related responses of salt sensitive cereals under salinity 
Source: [6] 
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3. NA+ AND K+ CONTENT IN SHOOT 
AND ROOT OF RICE VARIETIES 

 
Ionic concentrations of Na

+
 and K

+
 in the shoot 

and root portions of certain rice cultivars show no 
apparent difference in unstressed conditions but 
when certain varieties like PB1509 (RP) and 
FL478 (DP) and NILs are grown under salt stress 
condition show significant variation in growth of 
the plant. Here are some of the results in which 
Na

+
 concentration in shoots and roots among 

NIL’s substantially less than RP (recurrent 
parent), but similar to DP (donor parent). 
Nevertheless, concentration of K

+
 in shoots and 

roots of NIL’s is compellingly higher than 
recurrent parent but similar to donor parent. So, 
root and shoot Na

+
/ K

+
 ratio of NIL’s was 

significantly lower than PB1509 but comparable 
and similar to FL478 [83]. Wild species like 
Oryza coarctata and Oryza alta are highly 
tolerant to salinity stress than check cultivars 
which are tolerant such as FL478, Pokkali and 
Nona Bokra. Tolerant native species lines 
displayed greater levels of Na

+
 in the foliage and 

lower levels of accumulated Na
+
 in the root 

region. Less Na
+
 concentration in the                       

shoot is used as a criterion for choice when 
breeding salinity resilience varieties in cereals 
[60]. 
 

4. SALTOL QTL ORIGIN AND 
STRUCTURE 

 

Genome wide transcriptome analysis between 
various rice genotypes is known for spotting of 
required target genes in saltol region in Pokkali 

[39]. Saltol QTL (Quantitative trait loci) is located 
on short arm of chromosome number 1 of an 
Pokkali and IR29 were crossed to create the F8 
RIL population (Recombinant Inbred Line) at 
IRRI. The Na

+
/ K

+
 ratio and salt endurance at the 

sprouting of seed or seedling stage are the two 
primary effects of the Saltol QTL [22 and 4] and 
also observed that under salt stress, rice 
seedlings have less Na

+
 and higher K

+
 

engrossment, and lower Na
+
/ K

+
 ratio [21]. For 

FL478 a (RIL) Recombinant Inbred Line, pokkali 
is the source for positive alleles [4]. Rather the 
saltol region in FL478 was donated by IR29 [79]. 
Profiling has been done for finding of required 
target genes in the Saltol region which codes for 
signalling related proteins (SRPs) in different 
genotypes of rice. Salinity Induced factors also 
known as PUFs (Proteins of unknown function) 
which codes for genes Which are also helpful in 
providing salinity tolerance, growth of leaves, 
roots and stems, viability, fertility, and early 
blossoming [71]. 
 
In addition to these in the saltol region “OSAP1” 
zinc finger proteins and transcription factors like 
“HBP1b” gives salinity inducible genes [39 and 
40]. MABC and MAS are the major two methods 
through which salt tolerant cultivars are 
developed like FL478 and Line IR61920 
respectively. In (MABC), simple sequence 
repeats (SSR) and single nucleotide 
polymorphisms (SNP) are used in tight linkage 
with traits for salinity tolerance and biotic stress 
[25]. MAS was used in the introduction of Saltol 
QTL from IR61920 (DP) to Novator (RP) by 
microsatellite markers [77]. 

 

 
 

Fig. 2. Chromosome 1 in which Saltol QTL (purple colour) is present on short arm, bound by 
simple sequence repeats (SSR) like RM1287 and RM6711.Central circle portion is Centromere. 

A) There are 15 SSR markers are aligned within the QTL region in a position of 10.8 Mb to 
16.4 Mb from RM1287 to RM6711 respectively 

Source: [81] 
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5. SALT TOLERANCE MECHANISMS IN 
RICE 

 
a) Regulation of ionic balance 
 
More concentration of Na

+
 and Cl

+
 causes 

salinity stress in the soil [33 and 55]. The ions 
are imported into the crop plants by various 
transporters at organ and cellular levels [11]. Na

+
 

and K
+
 are entranced by same transporters in the 

cell but compete with each other for space [20]. 
K

+
 is essential for catalytic enzymes, regulation 

of osmosis, production of proteins, turgor 
pressure in cell wall and photosynthesis in leaves 
therefore its necessary to maintain Na

+
/ K

+
 

homeostasis which helps in growing of plants in 
salt stress conditions [48,16, 2 and 15]. 
Moreover, mechanisms like decrease in cytosolic 
Na

+
 intake, assortment of Na

+
 into the vacuole 

and increment in Na
+
 outflow, and also salt 

inducible enzymes, anti-transporter like OsSOS1 
helps in carrying away cytoplasmic Na

+ 
ions into 

the apoplast and outflow of Na
+
 from shoot 

respectively by increasing salinity tolerance [84 
and 13]. The H

+
 ion translocating enzyme 

(OsVP1) in vacuole transport H
+
 from 

cytoplasmic fluid into vacuoles by increase in 
inducible H

+
 gradient potential between them and 

promotes Na
+
/ H

+
 exchange which enhance 

saline tolerance in rice [47]. When plants are 
exposed to high levels of salt, their molecular 

signalling mechanisms are triggered, which 
activate both drought-induced and sodium-
specific pathways [74]. 
 
In rice Na

+
/ H

+
 anti-transporter (OsSOS1) 

situated in cell membrane helpful in lowering the 
Na

+
/ K

+
 ratio at tissue level whereas the vacuole 

Na
+
/ H

+
 anti-transporters (OsNHX1, OsNHX2, 

OsNHX3, OsNHX4, OsNHX5 and 
OsARP/OsCTP) has a role of 
compartmentalization of Na

+
/ K

+
 to determine 

and development of saline tolerance in rice crop 
[13,50,47,17 and 76]. 
 
In cereals some genes like Nax1 and Nax2 used 
as molecular markers in breeding of salinity 
resilience, which are situated in 2A and 5A 
chromosomes respectively helpful in control of 
Na

+
 accumulation [34 and 35] and vascular Na

+
/ 

H
+
 anti-transporters like TNHX1, TNHX2, and 

TVP1 are helpful in growth and development of 
seedlings in wheat through Na sequestration and 
PH balance [6]. 
 
In rice and wheat, many genes are                          
helpful in control of salt tolerance includes a) 
Ionic balance b) Nutrients disparity c) ROS 
scavenging d) Osmotic adjustment. The genes in 
the middle light-yellow colour are functional 
genes and the outer brown colour has regulatory 
genes. 

 

 
 

Fig. 3. Genes involved in control of saline resilience in rice 
Source: [46] 
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The functional genes and its proteins directly 
protect membranes of the cell, other cell 
organelles and macromolecules such as DNA, 
RNA, proteins, carbohydrates, and fats under 
salinity stress conditions. The regulatory genes 
and its products such as activators protects crop 
plants from adverse effects by controlling 
expression of functional gene to abiotic stress 
[46]. 
 
b) Osmotic potential adjustment 
 
Osmotic stress is caused by salt stress and 
synthesis of osmolytes which has an impact on 
osmotic modification it leads to regulation of cell 
turgor pressure for metabolic activity of the plant 
and strengthens proteins and cellular frameworks 
while lowering cell osmotic potential [48]. To 
maintain osmotic equilibrium at the cellular level, 
osmolytes like proline, polyamines, soluble 
carbs, & proteins such as betaine and glycine 
from the late embryogenesis abundant (LEA) 
family are present [24]. As a physiological 
indication of salinity tolerance, proline levels are 
employed [45]. Proline synthesis genes like 
OsP5CS1 and OsP5CR, monosaccharide 
transporter OsGMST1 and glycine betaine by 
OsCMO and OsBADH1 in rice would enhance 
the salt tolerance by accumulation [72 and 73]. 
So as to maintain the equilibrium of sugar 
carbohydrates in rice under dry conditions and 
salinity circumstances, the outflowing 
transporters like OsSWEET13 and OsSWEET15 
control the transit and dispersal of sugars like 
sucrose [51]. In wheat betaine helps in inhibit the 
Na

+
 & Cl

-
 from roots and promotes K

+
 transport 

to enhance salinity tolerance [8]. Plant specific 
membrane protein which encodes gene 
OsSALP1 develops salt stress tolerance by 
enhancing OsP5CS and proline synthesis in 
amply to salt stress [86].  
 
c) Reactive oxygen species scavenging 
 
Oxygen is essential in cellular metabolism which 
is converted to ROS during plant metabolic 
process. Excess of ROS is produced during the 
under-salt stress conditions e.g.: O2, O2

 -
,
 
H2O2 

and OH
-
 [52 and 61]. Salt stress reactions can be 

triggered by low ROS production, and excessive 
build-up results in destruction of plasma 
membranes, phytotoxic reactions such as DNA 
mutation, peroxidation of carbs, lipids, and 
proteins, permanent metabolic failure, and 
ultimately death of cells [1 and 52]. Crop plants 
use antioxidants to mollify ROS stress which is 
two types of mainly a) enzymatic b) Non-

enzymatic [85]. Some of the enzymes that act as 
antioxidants are nicotinamide adenine 
dinucleotide phosphate oxidases (NOXs, also 
called as respiratory burst oxidase homologs 
[Rbohs]), ascorbate peroxidase (APX), catalase 
(CAT), glutathione peroxidase (GPXs) [84,58,53 
and 75]. Non-enzymatic antioxidants include 
glutathione (GSH), ascorbic acid (ASH), phenolic 
compounds, tocopherol, carotenoids, glutathione 
(GSH), flavonoids and alkaloids [19 and 5]. CAT 
and APX enzymes help in removing of H2O2 for 
crop tolerance [2]. Due to salt stress, rise in ROS 
causes lipid peroxidation in cell membranes, 
which makes MDA a critical product for reducing 
oxidative stress and boosting rice salinity 
tolerance [42]. From the above these studies 
state that removing of ROS would effectively 
increase the rice salt tolerance. 
 
d) Nutrients disparity 
 
Due to salinity stress nutritional deficiencies 
occur and reduces transportation of the nutrients 
within the plant body [64]. Magnesium ion 
transport in root zone increases OsHKT1;5 that 
limits Na

+
 cumulation in shoots which leads to 

enhance in saline tolerance [7]. In rice 
aminotransferase and cytokinin type -B response 
regulator control stress associated proteins and 
Zn-transporter genes respectively which 
maintains salinity tolerance [18]. 
 
e) Plant growth regulators’ adjustment 
 
In addition to above mechanisms the PGRs also 
help in salt tolerance. Phytohormones vary 
during untimely salt stress and also salinity 
induced signalling cascade which leads to 
adaptive responses. PGRs control plant growth 
and development in tough and difficult 
environmental conditions [78]. To manage and 
adjust to salt stress, multiple PGRs must be 
integrated and coordinated like (IAA) Indole 
acetic acid, (GA) Gibberellic acid, abscisic acid 
(ABA), cytokinin (CK), ethylene (ETH), 
brassinosteroids (BR), jasmonic acid (JA), 
triazoles (TR), salicylic acid (SA), which control 
standard growth and moderate counter to salt 
stress [67]. 
 

6. CONCLUSION 
 
Salinity stress increases in salt sensitive cereals 
like rice and wheat which leads to a decrease in 
growth, development, and excess of it causes 
death of crop plants. So, to demonstrate salt 
stress there is a need to development of various 
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tolerant varieties through MABC and MAS               
which stands in adverse climatic conditions. 
Some of the nutrients like Na+ and K+ plays 
important role in control of abiotic or salt stress. 
As Na+ increases in shoot of the crop plant 
which causes an imbalance in ions, oxygen 
levels and PGRs. In rice various transporters and 
genes are able to cope with salt stress by 
developing mechanisms like ionic homeostasis, 
ROS scavenging, osmotic adjustment. Genes 
like OsHKT1;5 located in Saltol QTL region is 
incorporated from salt tolerant fewer yielding 
landraces like pokkali, Nona Bokra to cultivate 
salt sensitive high yielding varieties by wide 
transcriptome analysis. Even though the 
mechanisms within the plant and the various 
conventional breeding techniques as well as 
modern Marker Assisted Backcross and Marker 
Assisted selection techniques are developing 
new varieties and direct transfer of targeted 
genes into selected plants through genome 
editing like CRISPR/CAS9 and transgenic 
methods, as they do not accomplish the                
required need of growing populations and 
increase in salinity soils. Therefore, in staple           
food crops like rice and wheat, further research 
must be carried out to elucidate various 
biochemical, molecular mechanism and 
physiological mechanisms of salinity tolerance by 
modern approaches to develop climate               
resilient crops. There is a further need to study 
how to enhance and develop salinity tolerant 
crops.  
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