
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Machine learning in physics: the pitfalls of poisoned training sets
To cite this article: Chao Fang et al 2020 Mach. Learn.: Sci. Technol. 1 045001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 122.172.173.154 on 29/06/2023 at 10:54

https://doi.org/10.1088/2632-2153/aba821


Mach. Learn.: Sci. Technol. 1 (2020) 045001 https://doi.org/10.1088/2632-2153/aba821

OPEN ACCESS

RECEIVED

17 March 2020

REVISED

3 July 2020

ACCEPTED FOR PUBLICATION

21 July 2020

PUBLISHED

11 September 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Machine learning in physics: the pitfalls of poisoned training sets
Chao Fang1,3, Amin Barzeger1,2 and Helmut G Katzgraber2
1 Department of Physics and Astronomy, Texas A&M University, College Station, Texas TX 77843-4242, United States of America
2 Microsoft Quantum, Microsoft, Redmond, Washington WA 98052, United States of America
3 Author to whom any correspondence should be addressed.

E-mail: fangchao118@gmail.com

Keywords: poisoned training sets, spin glasses, phase transitions, condensed matter physics

Abstract
Known for their ability to identify hidden patterns in data, artificial neural networks are among the
most powerful machine learning tools. Most notably, neural networks have played a central role in
identifying states of matter and phase transitions across condensed matter physics. To date, most
studies have focused on systems where different phases of matter and their phase transitions are
known, and thus the performance of neural networks is well controlled. While neural networks
present an exciting new tool to detect new phases of matter, here we demonstrate that when the
training sets are poisoned (i.e. poor training data or mislabeled data) it is easy for neural networks
to make misleading predictions.

1. Introduction

Machine learning methods [1–3] have found applications in condensed matter physics detecting phases of
matter and transitions between these on both quantum and classical systems (see, for example,
references [4–9]). Different approaches exist, such as lasso [10, 11], sparse regression [12, 13], classification
and regression trees [14–16], as well as restricted Boltzmann machines [51], boosting and support vector
machines [17–21]. Neural networks [22, 23] are the most versatile and powerful tools, which is why they are
commonly used in scientific applications.

Convolutional neural networks (CNNs), in particular, are specialized neural networks for processing data
with a grid-like topology. Familiar examples include time-series data, where samples are taken in intervals,
and images (two-dimensional data sets). The primary difference between neural networks and convolutional
neural networks lies in how hidden layers are managed. In CNNs, a convolution is applied to divide the
feature space into smaller sections emphasizing local trends. Because of this, CNNs are ideally-suited to study
physical models on hypercubic lattices. Recently, it was demonstrated that CNNs can be applied to the
detection of phase transitions in Edwards-Anderson Ising spin glasses on cubic lattices [24]. It was shown
that the critical behavior of a spin glass with bimodal disorder can be inferred by training the model using
data that has Gaussian interactions between the spins. The use of CNNs also results in a reduced numerical
effort, which means one could potentially access larger system sizes often needed to overcome corrections to
scaling in numerical studies. As such, pairing specialized hardware to simulate Ising systems [25–27] with
machine learning techniques might one day elucidate properties of spin glasses and related systems.
However, as we show in this work, the use of poor input data can result in erroneous or even unphysical
results. This (here inadvertent) poisoning of the training set is well known in computer science where small
amounts of bad data can strongly affect the accuracy of neural network systems. For example, Steinhardt
et al [28] demonstrated that already small amounts of bad data can result in a sizable drop in the
classification accuracy. References [29–31] furthermore demonstrate that data poisoning can have a strong
effect in machine learning. Reference [32] focuses on adversarial manipulations [33, 34] of simulational and
experimental data in condensed matter physics applications. In particular, they show that changing
individual variables (e.g. a pixel in a data set) can generate misleading predictions. This suggests that results
from machine learning algorithms sensitively rely on the quality of the training input.
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Table 1. Parameters for the training samples with Gaussian disorder. L is the linear size of a system with N= L3 spins, Nsa is the number
of samples, Nsw is the number of Monte Carlo sweeps for each of the replicas for a single sample, Tmin and Tmax are the lowest and
highest temperatures simulated, NT is the number of temperatures used in the parallel tempering Monte Carlo method for each system
size L, and Ncon is the number of configurational overlaps for a given temperature in each instance.

L Nsa Nsw Tmin Tmax NT Ncon

8 20000 50000 0.80 1.21 20 100
10 10000 40000 0.80 1.21 20 100
12 20000 655360 0.80 1.21 20 100
14 10000 1050000 0.80 1.21 20 100
16 5000 1050000 0.80 1.21 20 100

In this work, we demonstrate that the use of poorly-thermalized Monte Carlo data or simply mislabeled
data can result in erroneous estimates of the critical temperatures of Ising spin-glass systems. As such, we
focus less on adversarial cases, but more on accidental cases of poor data preparation. We train a CNN with
data from a Gaussian Ising spin glass in three space dimensions and then use data generated for a bimodal
Ising spin glass to predict the transition temperature of the same model system, albeit with different disorder.
In addition, going beyond the work presented in reference [32], we introduce an analysis pipeline that allows
for the precise determination of the critical temperature. While good data results in a relatively accurate
prediction, the use of poorly-thermalized or mislabeled data produce misleading results. This should serve as
a cautionary tale when using machine learning techniques for physics applications.

The paper is structured as follows. In section 2 we introduce the model used in the study, as well as
simulation parameters for both training and prediction data. In addition, we outline the implementation of
the CNN as well as the approach used to extract the thermodynamic critical temperature, followed by results
and concluding remarks.

2. Model and numerical details

To illustrate the effects of poisoned training sets we study the three-dimensional Edwards-Anderson Ising
spin glass [35–39] with a neural network implemented in TensorFlow [40]. The model is described by the
Hamiltonian

H=−
∑
⟨i,j⟩

Jijsisj, (1)

where each J ij is a random variable drawn from a given symmetric probability distribution, either bimodal,
i.e.± 1 with equal probability, or Gaussian with zero mean and unit variance. In addition, si =± 1 represent
Ising spins, and the sum is over nearest neighbors on a cubic lattice with N sites.

Because spin glasses do not exhibit spatial order below the spin-glass transition, we measure the
site-dependent spin overlap [41–43]

qi = Sαi S
β
i , (2)

between replicas α and β. In the overlap space, the system is reminiscent of an Ising ferromagnet, i.e.
approaches for ferromagnetic systems introduced in references [6, 7] can be used. For low temperatures,
q= (1/N)

∑
i qi → 1, whereas for T→∞, q→ 0. For an infinite system, q abruptly drops to zero at the

critical temperature Tc. Therefore, the overlap space is well suited to detect the existence of a phase transition
in a disordered system, even beyond spin glasses. In the overlap space, the spin-glass phase transition can be
visually seen as the formation of disjoint islands with identical spin configurations. As such, the problem of
phase identification in physical systems is reminiscent of an image classification problem where CNN’s are
shown to be highly efficient compared to fully-connected neural networks (FCN).

2.1. Data generation
We use parallel tempering Monte Carlo [44] to generate configurational overlaps. Details about the
parameters used in the Monte Carlo simulations are listed in table 1 for the training data with Gaussian
disorder. The parameters for the prediction data with bimodal disorder are listed in table 2.

2.2. CNN implementation
We use the same amount of instances used in references [45] with 100 configurational overlaps at each
temperature for each instance. Because the transition temperature with Gaussian disorder is Tc≈ 0.95
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Table 2. Parameter for the prediction samples with bimodal disorder. L is the linear size of the system, Nsa is the number of samples, Nsw

is the number of Monte Carlo sweeps for each of the replicas of a single sample, Tmin and Tmax are the lowest and highest temperatures
simulated, NT is the temperature numbers used in parallel tempering method for each linear system size L, and Ncon is the number of
configurational overlaps for a given temperature in each instance.

L Nsa Nsw Tmin Tmax NT Ncon

8 15000 80000 1.05 1.25 12 500
10 10000 300000 1.05 1.25 12 500
12 4000 300000 1.05 1.25 12 500
14 4000 1280000 1.05 1.25 12 500
16 4000 1280000 1.05 1.25 12 500

Table 3. CNN architecture, parameters, and hardware details.

Number of Layers 1

Channels in each layer 5
Filter size 3× 3× 3
stride 2
Activation function ReLU
Optimizer AdamOptimizer(10−4)
Batch size 103

Iteration 104

Software TensorFlow (Python)
Hardware Lenovo x86 HPC cluster with a dual-GPU

NVIDIA Tesla K80 GPU and 128 GB RAM

[45–47], following references [6–8] for the training data, we label the convolutional overlaps with
temperatures above 0.95 as ‘1’ and those from temperatures below 0.95 as ‘0’.

The parameters for the architecture of the convolutional neural network are listed in table 3. We inherit
the structure with a single layer from reference [8]. All the parameters are determined by extra validation
sample sets, which are also generated fromMonte Carlo simulations.

Note that we use between 4000 and 10000 disorder instances for the bimodal prediction data, which is
approximately 1/3 of the numerical effort needed when estimating the phase transition directly via a
finite-scaling analysis of Monte Carlo data, as done for example in reference [45]. As such, pairing
high-quality Monte Carlo simulations with machine learning techniques can result in large computational cost
savings.

2.3. Data analysis
Because the configurational overlaps (equation (2)) include the information about phases, we expect that
different phases have different overlap patterns similar to grid-like graphs. Therefore, in the region of a
specific phase, it is reasonable to expect that the classification probability for the CNN to identify the phase
correctly should be larger than 50%. As such, it can be expected that when the classification probability is 0.5,
the system is at the system-size-dependent critical temperature. A thermodynamic estimate can then
obtained via the finite-size scaling method presented below.

Let us define the classification probability as a function of temperature and system size: p(T, L) which can
be used as a dimensionless quantity to describe the critical behavior. From the scaling hypothesis, we expect
p(T, L) to have the following behavior in the vicinity of the critical temperature Tc:

⟨p(T,L)⟩= F̃
[
L1/νml (T−Tc)

]
, (3)

where the average is over disorder realizations. Note that the critical exponent νml is different from the one
calculated using physical quantities. Due to the limited system sizes that we have studied, finite-size scaling
must be used to reliably calculate the critical parameters at the thermodynamic limit. Assuming that we are
close enough to the critical temperature Tc, the scaling function F̃ in equation (3) can be expanded to a
third-order polynomial in x= L1/νml (T−Tc).

⟨p(T,L)⟩ ∼ p0+ p1x+ p2x
2+ p3x

3. (4)
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Figure 1. Classification probabilities for different linear system sizes L as a function of temperature T for the prediction of the
critical temperature of the bimodal Ising spin glass via a CNN trained with data from a Gaussian distribution. (a) Prediction
probability for different system sizes L near the phase transition temperature. The different data sets cross at Tc ∼ 1.122. (b)
Measurement of νml by performing a linear fit in a double-logarithmic scale using the extremum points of the derivative of the
prediction error with respect to the temperature. (c) Estimate of the critical temperature Tc using the coefficient of the linear term
in equation (4) (normalized to 1) with L1/νml as the independent variable. The vertical dashed line shows the temperature where
the slope vanishes, which corresponds to Tc. (d) Finite-size scaling of the data using the previously-estimated value of νml and Tc.
The data collapse onto a universal curve indicating that the estimates are accurate.

First, we evaluate νml by noting that to the leading order in x, the derivative of ⟨p(T,L)⟩ in equation (4) with
respect to temperature has the following form:

d⟨p(T,L)⟩
dT

∼ L1/νml

[
p1+ 2p2L

1/νml (T−Tc)+ 3p3L
2/νml (T−Tc)

2
]
. (5)

Therefore, the extremum point of d⟨p(T,L)⟩
dT scales as

d⟨p(T,L)⟩
dT

|T=T∗ ∼ L1/νml . (6)

A linear fit in a double-logarithmic scale then produces the value of νml (slope of the straight line), which is
subsequently used to estimate Tc. To do so, we turn back to equation (4) where we realize that the coefficient
of the linear term in L1/νml as the independent variable is proportional to (T−Tc) that changes sign at
T= Tc. Alternatively, we can vary Tc until the data for all system sizes collapse onto a common third-order
polynomial curve. This is true because the scaling function F̃ as a function of L1/νml (T−Tc) is universal. The
error bars can be computed using the bootstrap method.

3. Results using data without poisoning

Figure 1 shows results from the CNN trained with well-prepared (thermalized) data from a Gaussian
distribution, predicting the phase transition of data from a Bimodal disorder distribution. Figure 1(a) shows
the prediction probabilities for different linear system sizes L as a function of temperature T. The curves cross
the p= 0.5 line in the region of the transition temperature for the bimodal Ising spin glass. Figures 1(b) and
(c) show the estimates of the exponent νml and the critical temperature Tc, respectively, using the methods
developed in section 2.3. The critical temperature Tc = 1.122(6) is in good agreement with previous
estimates (see, for example, reference [45]). Finally, in figure 1(d), the data points are plotted as a function of
the reduced variable x= L1/νml (T−Tc) using the estimated values of the critical parameters. The
universality of the scaling curve underlines the accuracy of the estimates.

4. Results using poisoned training sets

Although we have shown that the prediction from a convolutional neural network can be precise, we still
need to test how poisoned data sets impact the final prediction. First, we randomly mix the classification
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Figure 2. Classification probabilities for different system sizes L for an Ising spin glass with bimodal disorder. 1% of the labels
have been mixed on average. There is no clear sign of the transition.

Figure 3. Classification probabilities for different system sizes L for an Ising spin glass with bimodal disorder. The Gaussian
training data are not thermalized. There is no clear sign of a phase transition.

labels of the training sample with a probability of 1%, i.e. with a training set of 100 samples, this means only
one mislabeled sample on average. Then we train the network and use the same samples in the prediction
stage. Compared to figure 1, figure 2 shows no clear sign of a phase transition. This means that mislabeling a
very small portion of the training data can strongly affect the outcome. Given the hierarchical structure of
CNNs, errors can easily be amplified in propagation [48, 49], which is a possible explanation of the observed
behavior.

Finally, we test the effects of poorly prepared training data–in this case, the training data are not properly
thermalized. Figure 3 shows the prediction results using data with only 50% of the Monte Carlo sweeps
needed for thermalization of the Gaussian training samples. Although 50% might seem extreme at first sight,
it is important to emphasize that thermalization times (as well as time-to-solution) are typically distributed
according to fat-tail distributions [50]. In general, users perform at least a factor 2 of additional
thermalization to ensure most instances are in thermal equilibrium. As in the case where the labels were
mixed, a transition cannot be clearly identified. This is strong indication that the training data need to be
carefully prepared.

We have also studied the effects of poorly-thermalized prediction data paired with well-thermalized
training data (not shown). In this case, the impacts on the prediction probabilities are small but not
negligible.
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5. Discussion

We have studied the effects of poisoned data sets when training CNNs to detect phase transitions in physical
systems. Our results show that good training sets are a necessary requirement for good predictions. Small
perturbations in the training set can lead to misleading results.

We do note, however, that we might not have selected the best parameters for the CNN. Using
cross-validation or bootstrapping might allow for a better tuning of the parameters and thus improve the
quality of the predictions. Furthermore, due to the large number of predictors, overfitting is possible. This,
however, can be alleviated by the introduction of penalty terms. Finally, the use of other activation functions
and optimizers can also impact the results. This, together with the sensitivity towards the quality of the
training data that we find in this work suggest that machine learning techniques should be used with caution
in physics applications. Garbage in, garbage out …
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[37] Mézard M, Parisi G and Virasoro M A 1987 Spin Glass Theory and Beyond (Singapore: World Scientific)
[38] Young A P ed 1998 Spin Glasses and Random Fields (Singapore: World Scientific)
[39] Stein D L and Newman C M 2013 Spin Glasses and Complexity, Primers in Complex Systems (Princeton, NJ: Princeton University

Press)
[40] Abadi M et al 2016 TensorFlow: A System for Large-Scale Machine Learning (http://tensorflow.org)
[41] Sherrington D and Kirkpatrick S 1975 Phys. Rev. Lett. 35 1792
[42] Parisi G 1980 J. Phys. A 13 1101
[43] Parisi G 1983 Phys. Rev. Lett. 50 1946
[44] Hukushima K and Nemoto K 1996 J. Phys. Soc. Jpn. 65 1604
[45] Katzgraber H G, Körner M and Young A P 2006 Phys. Rev. B 73 224432
[46] Marinari E, Parisi G and Ruiz-Lorenzo J J 1998 Phys. Rev. B 58 14852
[47] Katzgraber H G and Campbell I A 2005 Phys. Rev. B 72 014462
[48] Rumelhart D E, Hinton G E and Williams R J 1988 Learning Representations by Back-Propagating Errors (Cambridge, MA: MIT

Press) p 696
[49] Hecht-Nielsen R 1992 Theory of the Backpropagation Neural Network (Orlando, FL, USA: Harcourt Brace & Co.) p 65
[50] Steiger D S, Rønnow T F and Troyer M 2015 Phys. Rev. Lett. 115 230501
[51] Azizi A and Pleimling M 2020 Machine learning generated configurations in presence of a conserved quantity: a cautionary tale

arXiv:2007.09764

7

https://arxiv.org/abs/1910.13453
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1103/RevModPhys.58.801
https://doi.org/10.1103/RevModPhys.58.801
http://tensorflow.org
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1088/0305-4470/13/3/042
https://doi.org/10.1088/0305-4470/13/3/042
https://doi.org/10.1103/PhysRevLett.50.1946
https://doi.org/10.1103/PhysRevLett.50.1946
https://doi.org/10.1143/JPSJ.65.1604
https://doi.org/10.1143/JPSJ.65.1604
https://doi.org/10.1103/PhysRevB.73.224432
https://doi.org/10.1103/PhysRevB.73.224432
https://doi.org/10.1103/PhysRevB.58.14852
https://doi.org/10.1103/PhysRevB.58.14852
https://doi.org/10.1103/PhysRevB.72.014462
https://doi.org/10.1103/PhysRevB.72.014462
https://doi.org/10.1103/PhysRevLett.115.230501
https://doi.org/10.1103/PhysRevLett.115.230501
https://arxiv.org/abs/2007.09764

	Machine learning in physics: the pitfalls of poisoned training sets 
	1. Introduction
	2. Model and numerical details
	2.1. Data generation
	2.2. CNN implementation
	2.3. Data analysis

	3. Results using data without poisoning
	4. Results using poisoned training sets
	5. Discussion
	Acknowledgments
	References


