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Abstract
Datasets from single-molecule experiments often reflect a large variety of molecular behaviour.
The exploration of such datasets can be challenging, especially if knowledge about the data is
limited and a priori assumptions about expected data characteristics are to be avoided. Indeed,
searching for pre-defined signal characteristics is sometimes useful, but it can also lead to
information loss and the introduction of expectation bias. Here, we demonstrate how Transfer
Learning-enhanced dimensionality reduction can be employed to identify and quantify hidden
features in single-molecule charge transport data, in an unsupervised manner. Taking advantage of
open-access neural networks trained on millions of seemingly unrelated image data, our results
also show how Deep Learning methodologies can readily be employed, even if the amount of
problem-specific, ‘own’ data is limited.

1. Introduction

Studies of molecular behaviour at the single-molecule level have become routine in many areas of physics,
chemistry and biology [1–3]. Rather than focusing ensemble averages only, single-molecule data can be
‘information rich’ and reflect a variety of molecular behaviour, in terms of their structural, electronic and
other physical properties. For example, in charge transport studies individual molecules are usually ‘wired’
between two electrodes, in order to study their electric conductance or current-voltage characteristics [4, 5].
However, they can bind in different geometries, at different surface sites and display complex dynamic
behaviour, which is then reflected in the measured response. The presence of several molecules in the
junction at the same time can give rise to additional complexity, for example multiple conductance values
corresponding to one, two or more molecules wired in parallel or intermolecular interaction effects [6–8].
This complexity usually necessitates the recording of large datasets, often in an automated fashion, in order
to fully capture the behaviour of the system. Hence, datasets containing tens of thousands of individual
current-voltage, current-distance or current-time traces are now not uncommon. Analysing such datasets
can be rather challenging, especially when knowledge of the system under study is limited or when it is
undesirable for prior expectation to enter the analysis from the start. A hypothesis-driven approach, while
sometimes useful, risks missing important information (e.g. the data that do not follow the initial
expectation), is prone to user or confirmation bias and makes it more difficult to identify and quantify
potential sub-populations in the data. Hence, unsupervised approaches that do not require ‘labelled’ data
and avoid these pitfalls are preferable in those instances [9–13]. In some cases, the search for particular
‘target features’ may also be informed by theory and simulation, which can facilitate the identification of
underlying physical mechanisms [12].

Accordingly, dimensionality reduction techniques have proven to be a powerful tool in this regard. The
fundamental idea here is to represent high-dimensional data by a reduced number of descriptors or
classifiers that capture the data’s salient features. In this reduced dimensional vector representation, similar
data traces are thought to be in close proximity, whereas dissimilar traces are further apart. If several distinct
point clusters emerge, they can potentially be separated and quantified using suitable clustering methods,
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Figure 1. Schematics of the TL approach used here. (a) The input signal and its encoding into a one-dimensional array. (b)
Corresponding b/w image. (c) Trained AlexNet. (d) Autoencoder (AE) built on the feature extractor of AlexNet. (e)
Two-dimensional representation of the data after dimensionality reduction using AE.

such as k-means, Gaussian Mixture Models, density- or density-gradient-based methods, and the constituent
data traces be further analysed and interpreted [14]. Thus, rather than defining an expected outcome prior to
the analysis, common features in the data emerge as such during or after the clustering step.

Various dimensionality reduction techniques are available, including principal component analysis
(PCA) and its variations, t-distributed stochastic neighbour embedding (t-SNE), and specifically developed
in the context of charge transport data, multi-parametric vector classification (MPVC), and many others
[9, 15–17]. Autoencoders (AE) are another method that can be employed to this effect, with close relations to
PCA [18, 19]. AEs are neural networks composed of multiple layers of neurons, which are first trained to
represent the data in layers with a progressively smaller number of neurons/dimensions (encoder stage), to
produce a low-dimensional ‘code’ layer, and then to re-construct the original data, layer-by-layer with
increasing number of neurons, towards the output (decoder stage). For example, in the case of tunnelling
current-distance data containing 2000 data points per trace, the first input layer of the AE may contain 2000
neurons, a number that is reduced in a step-wise fashion with each layer to potentially only two or three at
the ‘code’ stage. Extraction of the numerical output at this point thus provides a low-dimensional
representation that should capture the salient features of the input data (but not every detail), and can be
used for classification. However, the training of the network, and multi-layer (‘deep’) AEs in particular, can
be difficult and optimisation via back-propagation often ends up in local minima and hence poor
performance [18, 20]. Accordingly, we have found in our results reported here, that an AE applied directly to
the raw input data did not yield satisfactory classification results (in contrast to a recent report [21]).

The performance was enhanced significantly, however, when the AE was combined with neural networks
trained on seemingly unrelated image data. As an example of transfer learning (TL), the network identifies
characteristic features in the measured traces, even though it had not been trained on this type of data. One
such neural networks we employed here was AlexNet [22]. AlexNet has been trained on ImageNet, a dataset
containing millions of images manually classified into 1000 real-world classes (such as animals,
constructions and vehicles). It can formally be separated into two parts, namely feature extractor and
classifier. Here we only exploit the capabilities of the former, namely to recognise certain features in our
charge transport data, and use the feature extractor output as input for dimensionality reduction, e.g. via an
AE, figure 1. If passed on to the classification part, the network would formally identify one of the real-world
classes it had been trained on, such as a nematode—but these are of no relevance in the present context.

The fact that feature recognition did not rely on training data from the actual classification task
highlights an important factor, namely that training data may be ‘borrowed’ from other contexts, where they
are more abundant or easier to obtain. This significantly relaxes the requirement of obtaining large amounts
of task-specific data, with a view on network training.

Hence, we have pursued several objectives in the present work, based on both simulated and
experimental charge transport data [23, 24]. Firstly, we apply several dimensionality reduction techniques to
the data and compare the results, noting the complexities of a like-for-like performance comparison.
Secondly, we show how TL can enhance the classification performance and assess the generality of the
approach. In our case, we have used three different neural networks for feature extraction, namely AlexNet
[22], the winner of the ICLR-2012 image recognition context, ResNet and VGGnet16 [25, 26]. Thirdly, we
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Figure 2. TL approach on simulated nucleotide data. (a) Typical sample trace with 112× 112= 12 544 points. (b) Corresponding
224× 224 b/w image used as an input of the feature extractor for the trained neural network. (c–e) Scatter plots for all 2000
simulated traces after applying AE-based dimensionality reduction approach on the features extracted using trained
convolutional neural networks: AlexNet, VGG-16 and ResNet-18, respectively. (f–h) Scatter plots for all 2000 simulated traces
after applying ‘classical; dimensionality reduction approaches: MPVC, PCA and AE, respectively. The color-coding is the same for
all figures (c–h).

demonstrate for a molecular system, MBdNC, how such advanced classification methodologies can help
extract additional, physically meaningful information from the data that were previously undetected, and
also identify which global features in the data are most likely responsible for the classification result.

2. Results and discussion

We first illustrate the working principle with simulated data, similar to those obtained in quantum
tunnelling-based nucleotide recognition experiments [9, 23, 27–32]. In these experiments, a tunnelling
junction composed of two electrodes with gap sizes in the low nanometre range and with a well-defined bias
voltage are created, for example in an STM configuration in solution. If DNA nucleotides or other analytes
are present and the electrode gap size is suitable, the analyte can diffuse into and temporarily bridge the
electrode gap, thereby causing a measurable change in the tunnelling conductance. This leads to
current-time (I(t)) traces that feature short-lived spikes, corresponding to individual binding events, as
shown in figure 2(a). Since different nucleotides in the electrode junction produce different event
characteristics, the corresponding tunnelling modulation can be used to differentiate between the different
nucleotides. Here, we employ simulated data (2000 traces per nucleotide), to facilitate the systematic
variation of the input data and the validation of the classification results. The procedure for data preparation
is described in the Methods section below as well as in section 2 of the SI (which also includes the simulation
parameters for the nucleotide data).

As described in the Methods section below, we converted each of the 2000 simulated I(t) traces into the
corresponding images, figure 2(b). These images were then passed through the (unmodified) feature
extractor component of pre-trained image recognition networks AlexNet, VGG-16 and ResNet-18. In the
case of AlexNet, feature extraction yielded 2000 9216-dimensional feature vectors, which were then used as
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input for an AE as an unsupervised dimensionality reduction method, ultimately producing a
two-dimensional representation in the code layer, cf figure S1 in the supporting information (SI) (available
online at https://stacks.iop.org/mlst/1/035013/mmedia). These value pairs were then plotted in the (x,y)
plane for clustering and classification, panels c-e). The same procedure was repeated several times with newly
generated data as well as with the same data after re-initializing the AE In all cases, the obtained
two-dimensional cluster representation turned out to be robust in that all nucleotides, except for C and G,
formed well-separated clusters. The inability to separate C and G was rooted in the fact that the simulation
parameters were very similar, hence resulting in significant overlap, in terms of the event characteristics. We
note that, in comparison to VGG-16 and ResNet-18, AlexNet is the least complex network and requires less
computing power for feature extraction. For comparison, we also applied more classical dimensionality
reduction techniques, such as an AE with the raw data as input (i.e. without feature extraction), PCA and
MPVC, panels f-h). In terms of cluster separation, PCA and the ‘direct’ AE show similar results, even though
they are performing worse than the AlexNet-based approach. At least for this dataset, MPVC appears to show
the best separation, an observation that is however not borne with other datasets, as shown below.

From these initial tests, it is however apparent that the incorporation of the feature extractor lead to
improved separation, compared to the ‘direct’ AE approach and conventional PCA, as employed here. Out of
the three feature extractor networks, AlexNet displayed the best performance with least computational cost.
We will therefore focus on the AlexNet/AE combination in the following, when analysing experimental
molecular break-junction junction data.

To this end, we apply the TL approach to conductance-distance traces, G(d), measured using a
mechanically controlled break-junction (MCBJ) in solution for three different molecules,
1,4-benzenediisocyanide (BdNC), 2,5-dimethyl-1,4-benzenediicyanide (MBdNC) and
2,5-di-tert-butyl-1,4-benzenediisocyanide (tBuBdNC) [24]. In this case, each conductance trace contained
224 conductance values (in units of log(G/G0), where G0 = 2e2/h= 77.5 µS is the conductance quantum).
Every point of the trace corresponds to the relative displacement of the electrodes from−2 Å to 20.3 Å, with
a step of 0.1 Å. Overall, 1425 conductance traces were analysed, namely a mixture of 481 traces for BdNC,
379 traces for MBdNC and 565 traces for tBuBdNC.

First, we converted each trace into a 224× 224 RGB image, as standard input for AlexNet. To do this,
each conductance trace was reshaped into a two-dimensional array with 112× 112 bins, which was then
upscaled to a resolution of 224×224, figure 3(a). In the next step, the images were passed through the feature
extractor of AlexNet, resulting in the 9216-dimensional feature vector as above, which again served as input
to the AE The AE was trained with a learning rate of 0.0001 using an Adam optimizer [33]. Finally after
training, the neural activations in the middle hidden (code) layer were extracted and used as reduced
dimensional representation of the data, as shown in figure 3. For comparison, we also employed MPVC,
PCA, and direct AE, as well as t-distributed t-SNE on the raw data, see figure S2 in the SI.

Some observations are appropriate in relation to these results, before proceeding further with the
discussion. Firstly, a detailed physical interpretation of the experimental results can be found in the original
work reported in reference [24]; we will mainly focus on the data analysis aspects here. It is nevertheless
important to note that conductance values below−5.5 on the logarithmic scale are slightly above the
sensitivity limit of the amplifier used (which corresponds to the value of−6.0 on the logarithmic scale), and
strongly affected by discretization of the data acquisition set-up. Thus, while data points in this region are
‘seen’ by the classification algorithm, further physical interpretation is problematic. Secondly, it is worth
noting that the shape of individual G(d) traces cannot be inferred from the characteristics in the 2D
histogram, as the latter represents a convolution of conductance and distance information and is potentially
made up of sub-populations with different event characteristics. Therefore, this aspect requires further
analysis, as shown below.

In terms of the classification results, however, neither of these five approaches is able to separate all three
different molecules, figure 3(b) (AlexNet/AE) and S2 (MPVC, PCA, direct AE., t-SNE). While BdNC and
tBuBdNC generally formed well-separated clusters, MBdNC data tended to overlap with at least one or both
of the previous datasets. This broadly reflects the characteristics of the G(d) traces, including the variance
inherent to all three datasets.

However, closer inspection of the individual molecular datasets lead to a rather unexpected result. While
the BdNC and tBuBdNC datasets only yielded single clusters each (see however below), two separate
sub-clusters emerged for MBdNC after 300 epochs of training, figure 3(c). For these two subpopulations,
(two-dimensional) conductance-displacement histograms and (one-dimensional) conductance histograms
were calculated, figures 3(d)–(f). In relation to the former, it is apparent that traces in cluster 0 produce a
single, well-defined plateau at approximately log(G/G0)≈−2 with significant variance during drop-off at
larger displacements. The conductance-displacement histogram from cluster 1 features two high point
density regions, one at−2.5 < log(G/G0) <−2 and one below−5.5 at larger displacements, i.e. close to

4

https://stacks.iop.org/mlst/1/035013/mmedia


Mach. Learn.: Sci. Technol. 1 (2020) 035013 A Vladyka and T Albrecht

Figure 3. Transfer learning approach applied to molecular junction data. (a) Typical conductance trace converted into
224× 224 b/w image. (b) AlexNet-based dimensionality reduction approach applied to the molecular junction data for three
molecules. (c) Two clusters for MBdNC molecule, determined by the Spectral Clustering algorithm.( d-e) Combined 2D/1D
conductance histograms for clusters 0 and 1, respectively. (f) Conductance histograms for clusters 0 and 1.

sensitivity limit of the amplifier. Overall, the traces in this cluster displayed a better defined (lower variance)
and shorter drop-off towards larger displacements. The high-conductance plateau in cluster 1 appears to be
slightly shifted towards a lower conductance value, as shown in the one-dimensional histogram in
figure 3(f).

We will return to this point later, but first discuss the effect of training on the classification. For this
purpose, the training of the AE component was re-run for 10 000 epochs for all three molecules and the state
of the analysis tracked during the process, as in shown in figures 4(a)–(i) for 100, 300 and 1000 epochs (no
further evolution was observed for epochs > 1000).

For BdNC and MBdNC, the outcome after this renewed and extended training was the same as before,
namely a single population for the former and two sub-populations for the latter molecule. For tBuBdNC,
however, the dataset did progressively separate into two groups, as the number of epochs increased to 1000,
and analysed as before, figures 4(j)–(l). This time, the conductance-displacement histogram for cluster 0
showed two high point density regions, one at log(G/G0)≈−3 and another one below−5 at longer
displacements, panel j). On the contrary, the conductance-displacement histogram determined from cluster
1 only contained one apparent high point density region at approximately−3, but none at longer
displacements, panel k). Notably, the (1D) conductance histograms for clusters 0 and 1 showed the main
conductance peaks at log(G/G0)≈−3.4, i.e. with similar shape and location (even though the peak from
cluster 1 appears to be somewhat narrower).

As for MBdNC above, the main apparent differences between the 2D histograms again appear to be the
different steepness of the decay and the high point density region at low conductance values.

Hence, in the final step of the analysis, we tried to identify for the MBdNC data as an example (cf figure
3), whether specific global features in the data traces have an effect on the classification. For this purpose, we
modified the input data for cluster 1 mathematically and compared the separation between clusters 0 and 1
before and after the modification, cf section 5 in the SI for further details. Specifically, this was done by A)
removing the low-conductance region log(G/G0) <−5.5; B) adjusting the slope in the decay region
(log(G/G0) <−3) to nominally the same value as in cluster 0; and C) by doubling the height of the
conductance plateau in the region−3 < log(G/G0) <−2 (to the value observed for cluster 0). The
high-conductance region is characterised by the formation of the Au/Au contact and is similar for clusters 0
and 1. It can therefore not be an important factor in the classification and was not considered further in the
present analysis. As a quantitative measure for the cluster separation, we use the Fisher criterion, as shown in
equation (1) [34].

F=
wTSBw

wTSWw
(1)
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Figure 4. Effect of training time on the data classification. (a-i) Scatter plots for the points learnt by the AE after 100 (left
column), 300 (middle) and 1000 (right) epochs of training for all three molecules: BdNC (top row); MBdNC (centre) and
tBuBdNC (bottom). In (i) the two clusters determined by the spectral clustering algorithm are shown in colour. For tBuBdNC: (j)
Combined 2D/1D conductance histogram for the traces from cluster 0. (k) Combined 2D/1D conductance histogram for the
traces from cluster 1. (l) Comparison of 1D conductance histograms for clusters 0 and 1.

where SB and SW are the between-class covariance matrix and the within-class covariance matrix,
respectively:

SB = (m0 −m1)(m0 −m1)
T

SW =
∑

cluster 0

(xi −m0)(xi −m0)
T
+

∑
cluster 1

(
xj −m1

)(
xj −m1

)T
and w= S−1

W (m0 −m1). m0 and m1 are the respective cluster means.
The results are shown in figure 5, namely the unmodified MBdNC dataset in panel a) (F = 0.066) and

the datasets with modifications A), B) and C) in panels b) to d), respectively. Starting with case A, the
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Figure 5. Effect of input data characteristics on classification results, MBdNC dataset. (a) 2D histogram of original dataset from
cluster 1. Clockwise, left side: 2D histograms after modifying three global aspects of the input data, namely the removal of the
low-conductance region (log(G/G0) <− 5.5, panel (b)), after adjusting the slope in the decay region (−5.5 < log(G/G0) <− 3,
panel (c)) and after doubling the height of the conductance plateau (−3 < log(G/G0) <− 2, panel (d)). On the right:
Corresponding effect on the clustering result. Cluster 0 (red dots) remains unchanged in all cases; cluster 1 unmodified (brown
crosses) and after modification (black triangles). Black arrows on panels (b-d) indicate the shift of the cluster 1 mean after
corresponding data transformation.

removal of the low-conductance region (log(G/G0) <−5.5) in the traces belonging to cluster 1 leads an
increase of the variance in this cluster as well as a minor shift away from cluster 0 (F = 0.099). Comparing
this observation with the results shown in figures 3(d) and (e), this is at first glance surprising, given that the
2D histogram for cluster 1 shows a feature with high point density in this conductance region, while cluster 0
does not. It needs to be borne in mind, however, that the emergence of this feature is related to the relatively
low variability of all parts of the traces in cluster 1, in comparison to cluster 0. Every individual trace still
possesses a low-conductance region. Its removal reduces the similarity to the original, unmodified traces,
while other global features are retained. This is why the association with cluster 1 becomes worse (cluster
variance increases), but overall does not become more similar to traces in cluster 0.

A different picture emerges in case B), when the conductance traces are modified in such a way that the
decay region (log(G/G0) <−3) is less steep and hence more similar to traces in cluster 0. Now all points in
cluster 1 move towards cluster 0, figure 5(c), with substantial overlap between the two point groups. F
decreases substantially from 0.066 to 0.003. Notably, the high-conductance region including the plateau
feature at−2 < log(G/G0) <−3 remains unchanged during this operation.

Finally, we increased the average plateau height for traces in cluster 1 by a factor of 2 (case C). In this case,
the decay and low-conductance regions remained unchanged, as in the original dataset. As before, the data
points in cluster 1 on average move towards cluster 0, albeit to a lesser extent than in case B). The F-value
decreases to 0.041.

Taken together, this assessment would suggest that the most important factor for the classification into
the two groupings is indeed the slope of the decay region, followed by the plateau height. The
low-conductance region appears to have the least influence on the overall classification result out of these
three factors.

Finally, we return to the question of how to interpret the emergence of the two sub-populations for
MBdNC and tBuBdNC, but not for BdNC, as opposed to a continuous distribution of molecular
characteristics in all three cases. For MBdNC and tBuBdNC, we compared individual traces from the border
region between the two clusters and found distinct differences in the steepness of the decay region, i.e. not a
continuous variation. This supports the notion that the different clusters indeed represent distinct physical
behaviour. To this end, our conclusions must remain somewhat speculative in the absence of further
theoretical and/or experimental characterisation. However, it is well-known that longer and less steep decays
in G(d) data can be associated with either structural reorganisation of the electrodes or lateral interactions
between multiple molecules or sliding in the junction during the breaking process. Accordingly, steeper,
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better defined decay curves with a somewhat lower molecular conductance plateau could represent junctions
formed by individual molecules. This could well be the case here: BdNC lacks bulky side groups and should
therefore be more prone to lateral intermolecular interactions, making the formation of multi-molecule
junctions with a wider and continuous distribution of junction properties more likely. On the other hand,
side groups in both MBdNC and tBuBdNC could render this scenario less likely and the formation of
well-defined single-molecule junctions could constitute a distinct sub-population in the data. Hence, in this
specific case further work is needed for a more detailed, physical interpretation of the results. However, the
ability of the TL/AE method to provide this level of detail is clearly of broader significance.

3. Conclusions

Here, we demonstrate an approach to unsupervised data classification, based on a TL methodology
combined with dimensionality reduction. We exploit the capabilities and, importantly, prior training of
openly available image recognition networks, and in particular AlexNet, to extract salient features in different
types of single-molecule data (both simulated and experimental). We subsequently used AEs and other
dimensionality reduction techniques to produce low-dimensional representations, as a basis for clustering
and further analysis and interpretation. The combined AlexNet/AE approach performed well, compared to
other dimensionality reduction techniques, such as PCA and AEs directly applied to our simulated and
experimental data. Notably, the feature extractor did not rely on our own data for training, but rather used a
large body of seemingly unrelated image data. This shows that training data for feature recognition can
effectively be ‘borrowed’ from other applications, relaxing the need for large amounts of application-specific
data. In the case of the MCBJ data shown above, we provide evidence for which global features formed the
basis for the differentiation of data traces into different sub-populations. More generally, this depends on the
ability of the feature extractor to recognise salient features in the data, against a background of
non-distinctive features and noise, and of the dimensionality reduction component to subsequently preserve
those features in the analysis.

4. Methodology

As mentioned in the main text, AlexNet can be separated into two main parts, the feature extractor and the
classifier. The feature extractor, takes a 224× 224 RGB image as an input and via the sequence of
convolutional, relu and maxpool layers extracts ‘features’ and generates 9216-dimensional feature vector for
every image, which is then used for classification.

To apply the feature extractor directly to the molecular data, the latter must be presented as RGB images,
or, in other words, as 3x224x224 numeric arrays. To do so, we generated tunnelling traces with
112× 112= 12 544 points in each which were represented as 12 544-dimensional vector. All values were
then scaled into the range of [0,255], and line-by-line reshaped into 112× 112 matrices. In the last step,
matrices were upscaled to 224× 224 size and repeated three times for R, G and B channels. The final
representation of every simulated trace is 3x224x224 array of real values from the range between 0 and 255.
All steps of the approach are shown in figures 1(a)–(c).

For dimensionality reduction of the extracted feature vectors, we designed an AE containing seven
hidden layers with 1024, 512, 128, 2, 128, 512, 1024 neurons, respectively (figure 1(d)). As an input and
output we used layers with 9216 neurons, matching the output of the feature extractor of AlexNet. The
weights of the code layer with two neurons were used for the two-dimensional representation of the data. For
other networks, namely, VGG-16 and ResNet-18 we used the same architecture of the AE, except the number
of neurons in the input and output layers was 25 088, matching the dimensionality of the feature extractors
of mentioned networks. All networks were implemented in Python programming language using the
PyTorch deep learning framework. The weights of all neurons of all trained networks were taken from
torchvision package.

The low-dimensional data obtained after training of the AE were used for visualisation as well as for
clustering (figure 1(e)). To compare the efficiency of proposed approach with classical machine learning and
dimensionality reduction techniques, we used PCA, t-SNE, MPVC, and AE built on raw data. The
preparation, processing and modification of the simulated nucleotide data and the experimental MCBJ data
are described in detail in the SI.
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