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Understanding the traits related to species colonization and invasion, is a key
question for both pest management and evolution. One of the key components
is flight, which has been measured for a number of insect species through radar
and tethered flight mill systems, but a general understanding of insect flight at a
community level is lacking. In this study, we used flight mill experiments to quantify
flight abilities of moth species, and simulation experiments to study which moths in
mainland China have the potential for cross-island dispersal. We found that moths
from superfamily Geometroidea (family Geometridae) have the weakest flight ability
among the seven Lepidoptera superfamilies, which is characterized by the shortest
longest single flight (LSF), the shortest time corresponding to the longest single flight
(TLSF) (time corresponding to the longest single flight), the lowest total distance flown
(TDF), and the lowest average speed during the flight (VTDF). Surprisingly, the family
Pyralidae (superfamily Pyraloidea) has the highest flight endurance of all 186 species
of 12 families in this study, which is unexpected, given its small size and morphological
traits yet it shows the longest LSF and TLSF . The comparison between species common
to mainland and islands shows that flight distance (LSF) may be more important for
species spread than flight speed. The results of mainland-island simulations show that
when P(LSF>CD) (the proportion of individuals whose LSF is greater than the closest
distance (CD) between mainland and island to the total number of individuals in the
population) is less than 0.004, it is difficult for moth species to disperse to across
islands without relying on external factors such as airflow. Over extended periods, with
the immigration of species with strong flight abilities, islands are more likely to recruit
species with stronger flight abilities.

Keywords: lepidoptera, flight ability, flight mill, cross-island dispersal, simulation

INTRODUCTION

Insecta first evolved around 400 million years ago and was the first animal class to evolve the
ability to fly over 325MYA (Panian and Wiltschko, 2004; Ross, 2017). It is also the taxa with
the largest number of described species, currently estimated at around 5.5 million species (Stork,
2018). A major evolutionary advantage of flight is the ability to disperse, and flight is thought
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to have enabled rapid diversification within the group (Tihelka
et al., 2021). Lepidoptera and Coleoptera are the two largest
orders within the class Insecta (Stork, 2018; Zhuang et al., 2018).
As well as high diversity, both Lepidoptera and Coleoptera have
important ecological roles, for example, larvae and adults provide
prey for various predators, such as birds and bats, and adults
can be important pollinators for flowering plants. However, some
species have negative impacts on agricultural production, for
example, every year more than 40 billion dollars are expended
on chemical pesticides to control lepidopteran pests. Even single
species can have huge economic implications, for instance,
diamondback moth (Plutella xylostella) control in Brassica crops
alone costs approximately US$1.4 billion annually (Furlong et al.,
2013; Chattopadhyay et al., 2017). A clearer understanding of
flight ability or niche characters can be used to predict where
potentially invasive species may appear in the future and used to
help develop and apply preventative countermeasures (Hudgins
et al., 2017; Menchetti et al., 2019). Consequently, a large number
of studies were conducted on the dispersal and migration of
insects through radar observation methods (Chapman et al.,
2008a,b) and tethered flight mill systems (Hashiyama et al., 2013;
Hoddle et al., 2015; Jones et al., 2016).

Flight mills are widely used to study the flight abilities
of various insects. However most studies focus on the flight
ability of a single species (Ávalos et al., 2014; Hoddle and
Hoddle, 2016; Fu et al., 2017a,b; Lopez et al., 2017; Jyothi et al.,
2021), and there are few studies, which provide descriptions
of the flight ability of multiple species (Jones et al., 2016) or
a certain group. Some species of Lepidoptera have migratory
behavior, which can be detected by radar-based methods.
Such as the famous monarch butterfly (Danaus plexippus),
which exhibits seasonal intergenerational migration across the
continent (Gustafsson et al., 2015). Bogong moths of Australia
(Agrotis infusa) travel 1,000 km from eastern Australia to a
few caves in the Australian Alps to escape seasonally high
temperatures (Common, 1954; Warrant et al., 2016). Compared
to a few known species that have evolved relatively fixed long-
distance migration behaviors, short-distance dispersal is likely to
be more common (Nathan et al., 2008). In view of this short-
distance dispersal, it is important to clarify the basic traits related
to spread ability, such as the flight distance and flight speed
of each species.

It remains a challenge to determine which traits are related
to dispersal adaptation in island biogeography (Whittaker
et al., 2017). Lepidopteran insects provide an ideal model
to solve this problem, because of its high species diversity
and convenience of flight ability measurement. At present,
the research on the flight ability of Lepidoptera is usually
limited to a few specific species and does not provide a
general understanding of other Lepidopteran species, especially
to understand the behavior of species dispersal and migration
between mainland and islands at the community level. In
this study, we aimed to: (1) investigate whether there are
differences in flight capability of species between mainland
and islands moth communities; and (2) explore mechanisms
of island recruitment of more capable flyers of moths by
dispersal simulations.

MATERIALS AND METHODS

Collecting Samples of Lepidoptera Adult
A total of 1,531 moth samples were collected in summers
of 2017 (Chang, 2018; Jiang, 2018), 2018 (Jia, 2019), and
2020 from the Dongling Mountain (∼39◦51′07′′N, 115◦29′13′′
E) in Beijing, Zhoushan Island (∼30◦5′22′′N, 122◦3′15′′E) in
Zhejiang Province, and Weihui city (∼35◦39′18′′ N, 113◦59′2′′E)
in Henan Province, China, respectively(Figure 1A). In the
following, samples collected from Beijing, Zhejiang, and Henan
are represented by BJDLS, ZSDXG, and HNYHG, respectively.
All adult moths were captured at night by setting light traps
between 8 and 12 p.m. (Yang et al., 2012).

Tethered Flight Experiments
SUN-FL tethered flight mills (Beijing Taichi Pengcheng
Electronics Company, China) were used to perform hanging
flight experiments. This device records: total distance flown
(TDF), total flight duration (T), the average speed during
flight (VTDF, VTDF =

TDF
T ), longest single flight (LSF), the

time corresponding to the longest single flight (TLSF), and
average speed corresponding to the longest single flight
(VLSF, VLSF =

LSF
TLSF

) (Ávalos et al., 2014). The captured moths
were subjected to a hanging flight experiment in a closed
dark room. In the 2017 and 2018 experiments, each moth was
included in a continuous 24-h hanging flight experiment without
energy supplementation, while in the 2020 experiment, each
experiment lasted under 10 h (moths generally became inactive
before the end of the 10-h experimental period in all cases). We
chose four parameters; VTDF , LSF, TLSF , and VLSF, which may be
less affected by hanging flight times (though in the subsequent
analysis since we found most moths become inactive in less than
10-h hanging flight, thus experiment durations over this do not
impact results).

Identification of Lepidopteran
Specimens
All specimens collected from BJDLS (2017) and ZSDXG (2018)
were transported at 0◦C to the laboratory in Capital Normal
University for DNA extraction and PCR amplification for
subsequent DNA barcode identification (Hao et al., 2020).
Experimental samples from HNYHG were identified based
on morphology by Associate Professor Jianxin Cui of the
School of Resources and Environment, Henan Institute of
Science and Technology.

For all samples collected from BJDLS and ZSDXG, total
genomic DNA was extracted individually from 2 to 3 legs,
using QIAamp DNA Mini kit (Qiagen, Venlo, the Netherlands)
following the protocol of manufacturer. PCR amplification was
performed using standard DNA barcoding primers LCO1490
(GGTCA ACAAA TCATAA AGATA TTGG) and HCO2198
(TAAAC TTCAG GGTGA CCAAA AAATCA) (Folmer et al.,
1994). The PCR products were bidirectionally sequenced at
Beijing Zhongkexilin Biotechnology Co., Ltd., using an ABI
3730XL analyzer. All sequences of samples ∼658 bp were
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FIGURE 1 | Phylogenetic relationships above the family level and the differences of flight ability among the superfamilies were analyzed in this study. (A) Sample sites
in this study. BJDLS, HNYHG, and ZSDXG samples were collected in 2017, 2018, and 2020, respectively; (B) the phylogenetic tree of all Lepidoptera samples in this
study, redrawn according to Triant et al. (2018); (C) comparison of flight abilities among moths from different superfamilies and heat maps of p-value for Wilcoxon
rank-sum test of the one-tailed hypothesis of the difference in flight ability between certain superfamilies (row) and other superfamilies (column). (Ca–d) The X-axis
are indicators from all filtered data, and the Y-axis gives logarithmic conversion result of flight capabilities (VTDF , VLSF , LSF, TLSF ), respectively. The color of the box
represents the strength of the flight ability, red represents the strongest, blue represents the weakest, and gray represents the medium level. (Ce–h) P-value of
Wilcoxon rank-sum test of the one-tailed hypothesis (less) (*:0.01 ≤ p < 0.05, **: 0.001 ≤ p < 0.01, ***: p < 0.001), respectively, the results corresponding to
(Ca–d). (Ci–l) P-value of Wilcoxon rank-sum test of the one-tailed hypothesis (greater) (*:0.01 ≤ p < 0.05, **: 0.001 ≤ p < 0.01, ***: p < 0.001), respectively,
corresponding to (Ca–d).

submitted to the BOLD system1 for taxonomic identification
(Ratnasingham and Hebert, 2007).

Data Analysis
We removed the total flight distance parameter below the lower
quartile. One of the reasons for these data could be that the wings
of some moths are glued in the process of experiment, reducing
their willingness or ability to fly. If these data were included,
we would underestimate the fly ability of moths (Jantzen and
Eisner, 2008; Combes et al., 2010). All calculations and statistical
tests involved in this article are implemented by R (v4.0.4) (R
Core Team, 2013). For the flight parameters of species level,
family level, and superfamily level, the shapiro.test function in
R was used to check for the normal distribution of the data,
and the Wilcox.test function in the stats package to compare the
differences among species, families, and superfamilies. The lm
and predict functions in R were used for fitting and prediction
of unary linear regression, respectively.

Simulation of Species Spread Between
Mainland and Island
After obtaining the flight data of 36 (n≥ 10) moth species from 10
different families, we simulated the migration of different species
between mainland and island (see below) in R. In the simulation,

1http://www.boldsystems.org/

we approximate Zhoushan Island and its adjacent mainland
(Ningbo) into two circular regions, and the minimum distance
between the two circles (e.g., the shortest distance between
Ningbo and Zhoushan Island) is about 8.3 km measured based
on Map World on National Platform for Common Geospatial
Information Services2.

Basic Assumptions of the Dispersal Model
We assume that the initial moth population consists of a male
and a female, and that they exist in an environment with
evenly distributed resources. The female lays eggs somewhere
after mating, and the larvae will only feed near the hatching
place due to limited dispersal ability, so on a large spatial scale,
we believe that the offspring produced by the same female
moth will not spread during the larval and pupal stage, that
is, the position where the female moth lays eggs is the initial
position of the progeny adult’s spread (Considering natural
enemies, climate, and other factors, it is assumed that only
rmax (assuming rmax = 10) individual offspring produced by
each female moth can successfully emerge, and the sex ratio is
1:1; Supplementary Figure 1). The offspring will spontaneously
spread to the surrounding environment in random directions
following metamorphosis into the adults and form an extended
second-generation distribution range with an area of S. The

2https://www.tianditu.gov.cn/
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mating females in this population lay eggs nearby, to produce
the second generation, and the offspring continue to circulate
this process. According to the logistic population growth model
(Pearl and Slobodkin, 1976), the density of species is limited
by the carrying ability K (assuming K = 30, that is, 30 adults
per square kilometer, though of course, it may be higher than
this for many species). The number of offspring produced by
each female in the population is restricted by the population
density of the current generation, and all adults can mate with
a sex ratio of 1:1. Supposing the number of fertile females in this
generation is Nff and regardless of limitation in species spawning
ability, females can produce the largest number of individuals
r, so the number of fertile offspring (adult offspring) produced
by fertile females in each generation (r) should satisfy the
following inequality:

r ≤
K × S

Nff

Its ecological meaning is that the females are restricted by density
during the larval stage, leading to a difference in the amount
of food, then changing the number of eggs produced after
emergence and mating (Rivero et al., 2001; Telang et al., 2006).

Key Parameters Implemented in R Program
The population dispersal simulation is analyzed using several
steps in R: (a) Determination of population distribution area.
Theoretically, the distribution range of a population is composed
of the largest convex polygon formed by all individuals in
the population; however, it is a challenge to determine the
actual distribution range of a certain population under natural
conditions. The R function boxplot.stats (package grDevices) was
used to determine the outliers of all the individual abscissas
and ordinates (R Core Team, 2013). According to the outliers,
irregular population distribution is simplified into an area
composed of two concentric rectangles. The core rectangle
is the population core distribution area and is recorded as
Score. The rectangular area at the edge of the population
distribution is recorded as Sedge. (b) Determination of the
fertile females of the population. Supposing that the female
moth mates with only one male moth in its lifetime, and the
male does the same. Therefore, the number of fertile females
in the population is the minimum number of males and
females, and fertile females are determined without repeated
sampling among all females according to this minimum. If
the minimum value is 0, the population will be extinct in
the next generation. (c) The production of offspring. The
new individuals are generated from the locations of fertile
females of the previous generation. The dispersal angle is
random, and dispersal distance is the LSF of each species
measured in the actual experiment (see above), and its
value is determined to conform to the logarithmic normal
distribution. The number of offspring produced by a female
(R) is controlled by an inequality r ≤ K×S

Nff
. When r > rmax,

R = rmax; when 1 < r ≤ rmax, R = r = K×S
Nff

; and when r <

1, R = 1. The distribution area of the core population and
the marginal population is calculated independently. If the
population distribution is a point or a straight line, the number

of adult offspring that a female can produce is calculated
by rmax .

Simulation of Species Spread Across
Islands
We assume that the ability of moths to cross the strait to complete
the spread between the mainland (island) and the island depends
on the LSF. Regardless of airflow, human factors, and more
stochastic natural factors, species can complete migration only
when the LSF is greater than the shortest distance between the
islands (but the stepping stones that exist between the islands
reduce the difficulty of crossing the islands.

According to the LSF of the wild populations of the moth
species that we measured, we simulated the spread of each
species from the center of the area through computer simulations
and observed the spread of offspring individuals across islands
within 500 generations (two generations per year (Hao et al.,
2020), it will take about 250 years). In our data, there are a
total of 36 species with at least 10 individuals (Supplementary
Table 1), of which the LSF data of 34 species (94.4%) had a log-
normal distribution, thus the LSF data of all moths are assumed
to correspond with log-normal distribution in the simulation.
We simplified Ningbo (with an area of about 9,816 km2) and
Zhoushan Island (with an area of about 502 km2) into two
circular areas with radius of 56 and 12 km, and the closest
distance (CD) between the two circles is 8.3 km. Here we defined
a new concept P_(LSF > CD) to explain the dispersal ability of
species, and its specific definition is that the proportion of the
number of individual that LSF is longer than the closest distance
(CD) between mainland and island to the population size.

RESULTS

Data Filtering and Taxonomy
Identification
A total of 1,142 (∼74.4%) experimental flight data samples were
analyzed, i.e., including 222 samples from BJDLS (the minimum
TDF is 18.84 m), 409 samples from ZSDXG (the minimum
TDF is 67.23 m), and 511 samples from HNYHG (the
minimum TDF is 33.91 m). Filtered data were collected from
seven Lepidoptera superfamilies (Noctuoidea, Bombycoidea,
Zygaenoidea, Geometroidea, Drepanoidea, Lasiocampoidea, and
Pyraloidea), 12 families (Erebidae, Noctuidae, Notodontidae,
Saturniidae, Sphingidae, Zygaenidae, Limacodidae, Geometridae,
Drepanidae, Lasiocampidae, Crambidae, and Pyralidae), and
186 species, and among them, 81 species with at least 3
individuals and 36 species with at least 10 individuals. A total
of 631 individuals from BJDLS and ZSDXG were identified by
comparison with the BOLD system database. Among them, 547
individuals had best hits with similarity scores of at least 98 (part
1), and the remaining individuals had similarity scores between
90.43 and 97.99% (part 2). The remaining 511 individuals from
HNYHG were identified using morphology (part 3). Part 1
contains 134 species, part 2 contains 40 species, and part 3
contains 39 species. There are 13 common species in parts 1 and
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3, but only one common species, Catocala kaki (Noctuidae) in
parts 2 and 3.

Comparison of Flight Capabilities at
Different Taxon Levels
We compared the difference in flight abilities (VTDF , LSF,
TLSF, and VLSF) at different taxon levels in all filtered data. First,
we checked whether the flight data at different taxon levels
conformed to a normal distribution and found that only a small
proportion of the data conformed (at the superfamily level, only
0–42.9% data of the above four parameters conform to a normal
distribution; at the family level, only 8.3–41.7% data of the above
four parameters conform to a normal distribution; only 12.5–
55.6% of the flight capability data at family level captured from
different sampling sites show a normal distribution. Therefore,
the Wilcoxon rank-sum test of the one-tailed hypothesis is
selected to compare the sample differences between different
classification levels and different sampling sites.

The lowest VTDF , VLSF , LSF, and TLSF were found in moths
from superfamily Geometroidea, which were lower than
those in the other five superfamilies except for no significant
difference with superfamily Lasiocampoidea (Figure 1C).
Superfamily Drepanoidea is significantly higher than the other
five superfamilies (p < 0.05) on the flight parameter VTDF except
that it does not show any significant difference from superfamily
Zygaenoidea. In VLSF . Bombycoidea is significantly higher than
the other five superfamilies (p < 0.05) with the exception of
Drepanoidea. While superfamily Pyraloidea has the longest LSF
and VLSF among seven superfamilies in our study (p < 0.05).

Correlation analysis between flight parameters and moth
morphological data showed that VTDF and VLSF had a significant
positive correlation with the increase in moth body size
[body length (BL), total wing area (TWA), forewing area
(FA), and hind-wing area (HA)], while TLSF had a weak
negative correlation with moth TWA and HA (Supplementary
Figure 2), highlighting the importance of individual wing-traits
in determining flight performance and ability.

Comparison of Flight Capabilities of
Species at Different Taxon Levels and
Captured From Different Sampling Sites
Comparison of Common Families of Flight
Capabilities of Mainland and Island Samples
A total of six families of species appeared in the three sampling
sites (BJDLS, HNYHG, and ZSDXG). We selected samples from
three families (Geometridae, Erebidae, and Notodontidae) for
flight ability comparison. The data collected from BJDLS and
HNYHG were combined into Mainland Dataset and that from
ZSDXG was used as an Island Dataset. These three families satisfy
that the number of samples collected on the island is more than
20. The three families on the mainland and island are composed
of more than 10 species, but there are few overlapping species
between different sites (Figure 2E). The speed parameters (VTDF
and VLSF) of the mainland and the island samples did not show
a consistent pattern. Our results suggested that only the Erebidae
showed significant differences between mainland and island in

the term of speed, and island individuals were significantly faster
(p < 0.05) than mainland individuals. Notodontidae is only in
the VTDF parameter showing that the mainland is significantly
stronger (p < 0.05) than the island samples (Figures 2A,B). The
average values of LSF and TLSF of Geometridae and Notodontidae
show that the islands are higher than the mainland samples, but
only Geometridae shows significant differences (p < 0.05) in the
TLSF (Figures 2C,D). The LSF and TLSF of Erebidae are stronger
than those of island samples and only one parameter, TLSF, has
statistical significance.

Comparison of the Flying Ability of Common Species
Captured From HNYHG and ZSDXG
Among the sampling sites in the three regions, only Henan
(HNYHG) and Zhejiang (ZSDXG) samples have more than three
individuals shared (Figure 3E), and the common species data
of Beijing (BJDLS) and Zhejiang (ZSDXG) do not meet the
minimum requirement of at least three individuals. These three
species are Biston panterinaria (B. panterinaria; Geometridae),
Thyas juno (T. juno; Erebidae), and Uropyia meticulodina
(U. meticulodina; Notodontidae). Our results showed that only
the VTDF of T. juno showed significant differences (p < 0.05)
between the two sampling sites (Figure 3A), and the mean values
of VLSF , TLSF, and LSF of the three species between the two
sampling sites were relatively close, and no significant differences
were detected (Figures 3B–D). The mean values LSF and TLSF
of species B. panterinaria and T. juno collected from ZSDXG
were higher than those from HNYHG, while the opposite results
were observed for U. meticulodina collected from the two sites
(Figures 3C,D).

Simulation Results of Species Spread
Across Islands
Cross Island Simulation Results of Species Within a
Limited Generation
We selected 14 species from the above 36 species according
to the LSF gradient from high to low for simulations. The
results showed that as the LSF of the species decreases, the
number of cross-island migrations (from the mainland to
island) in the offspring will decrease significantly. Locastra
muscosalis (L. muscosalis) has the strongest dispersal ability,
P(LSF>CD) = 0.1516, and an average of 166.7 individuals
in each generation have successfully spread (Figure 4A).
Cydalima perspectalis (C. perspectalis) with the second strongest
dispersal ability, P(LSF>CD) = 0.0415, and an average of 38.3
individuals in each generation have successfully spread. When
the P(LSF>CD) is between 0.0127 and 0.0021 (from high to low),
the average number of cross-island individuals per generation
drops from 6.6 to 1.1. When the P(LSF>CD) of the species
≤0.0012, almost no offspring individuals can complete cross-
island migration.

When the P(LSF>CD) is greater than 0.05, in the 500-
generation expansion of the simulated population, far more
than half of the generations (∼75–99%) will occur cross-
island migration of individuals in the population (Figure 4B).
When the P(LSF>CD) is between 0.002 and 0.05, the ratio
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FIGURE 2 | Comparison of flight capabilities between mainland and island (Geometridae, Erebidae, and Notodontidae). (A–D) Box plot of comparing the flight
capabilities of mainland and island samples. The difference between the samples is calculated by the Wilcoxon rank-sum test of the two-tailed hypothesis
(∗ : 0.01 ≤ p < 0.05, **: 0.001 ≤ p < 0.01, ***: p < 0.001),only the samples with significant differences between Mainland and Island are marked with *, ** or *** in
this figure. (E) Venn diagram of species in three families captured from mainland and island.

will increase from 25.2 to 44.8%. When the P(LSF>CD) is
lower than about 0.001, at most only 24 generations (4.8%
of all generations) have individuals which perform cross-
island migration.

Comparison of the Flying Ability (LSF) of Cross-Island
Individuals and Stranded Mainland Populations
We selected the 50th generation of cross-island dispersal data
from eight species with strong flight abilities and compared
the difference in flight ability between populations composed
of cross-island individuals (the number of individuals in each
species population is 160, 34, 1, 7, 2, 1, 1, and 1) and populations
stranded on the mainland (random sampling is used to select data
of 5,000 individuals from the mainland population; Figure 5).
Our results show that the flying ability of the cross-island
populations of each species is significantly stronger than that
of the mainland populations. Among them, the LSF of the
cross-island populations of L. muscosalis, C. perspectalis, and
P. changmei in particular is significantly higher (p < 0.001) than
that of the mainland stranded populations. The other five species

also showed the same pattern with significant differences between
mainland and island populations in each (p < 0.05).

Simulate the Relationship Between P(LSF>CD) and
Cross-Island Individuals per Generation in the
Process of Species Spreading From Mainland to
Island
By establishing the direct relationship between the species ability
to spread P(LSF>CD) and the average number of successful
cross-island (spreading from mainland to island) individuals
per generation (Figure 6), we found that when P(LSF>CD) <
0.004, almost no cross-island individuals would appear [When
P(LSF>CD) = 0.004, the number of cross-island individuals per
generation is predicted to be around 0.47, and the prediction
lower and upper limit is (−16.8, 17.7); When P(LSF>CD) = 0.003,
the predicted value is −0.53, and the prediction lower and upper
limit is (−17.8, 16.7)]. Considering that the area of the habitat
may directly affects the size of the species population and finally
affect the dispersal efficiency of the species, we also performed
the same regression analysis on data which species spreading
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FIGURE 3 | Comparison of flight ability of common species (Biston panterinaria, Thyas juno, and Uropyia meticulodina) between HNYHG and ZSDXG. (A–D) Box
plot of comparing the flight capabilities of common species captured from HNYHG and ZSDXG. The difference between the samples is calculated by the Wilcoxon
rank-sum test of the two-tailed hypothesis (∗ : 0.01 ≤ p < 0.05, **: 0.001 ≤ p < 0.01, ***: p < 0.001), only the samples with significant differences between HNYHG
and ZSDXG are marked with *, ** or *** in this figure. (E) Sample size of three species between two sampling sites [species photo source: T. juno (license holder:
Unspecified, University of Oslo, Natural History Museum), U. meticulodina (license holder: Unspecified), and Biston panterinaria (license holder: Axel Hausmann,
SNSB, Zoologische Staatssammlung Muenchen)].

from the island to the mainland (Supplementary Figure 6).
The regression equation obtained is y = −3.73+ 1330x (p <
0.001, R2

adj = 0.98). When P(LSF>CD) < 0.003, almost no cross-
island individuals are generated. [When P(LSF>CD) = 0.003,
the predicted value of the number of cross-island individuals
is −0.26, and the prediction lower and upper limit is (−15.7,
16.2). When P(LSF>CD) = 0.002, the predicted value of the number
of cross-island individuals is−1.07, and the prediction lower and
upper limit is (−17.0, 14.9)].

DISCUSSION

The Differences of Flight Abilities Among
Seven Superfamilies of Lepidoptera
Previous studies on the flight ability of insects using a flight
mill system mainly focused on agricultural pests (Hashiyama
et al., 2013; Sappington and Burks, 2014; Hoddle and Hoddle,
2016; Fu et al., 2017a,b; Lopez et al., 2017; Babu et al., 2020).

This study is the first to use a unified method to study the
flight ability in Lepidoptera families and superfamilies to explore
traits related to possible invasion and colonization ability. In this
experiment, 1,142 specimens of seven Lepidoptera superfamilies
were collected. In total 186 species had their flight ability
measured in the experiment. Superfamily Geometroidea showed
no significant difference with superfamily Lasiocampoidea but
was significantly weaker than the other five superfamilies
(Figures 1Ca–d). A total of 197 samples of superfamily
Geometroidea were used for data analysis, accounting for 17.3%
of the total samples, and only family Geometridae species are
included in this superfamily. Geometrid moths are frequently
flattened when in a static state, and the color of body and wing
is often very similar to the surrounding environment. One of
the best known Geometrid moths is the peppered moth (Biston
betularia). The initial phenotype of this moth was speckled
black and white, but industrialization in Britain and other
regions in the nineteenth century increased the proportion of
melanic individuals (Cook et al., 2012; Cook and Saccheri, 2013).
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FIGURE 4 | The average number of individuals with different LSF levels of species dispersal from the mainland to island (A) and the number of generations (B) within
500 generations. LSF, longest single flight. P(LSF>CD) refers to the proportion of individuals with LSF greater than the CD between the two islands in the offspring of
a species in the total population.
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FIGURE 5 | Comparison of the flight ability of the trans-island populations of
each species and the mainland stranded population (species dispersal from
the mainland to island). The eight selected species are displayed on the
x-axis, and the y-axis is the log10 conversion value of the LSF parameters of
the different populations of each species. The difference between different
populations is calculated by the Wilcoxon rank sum-test of the one-tailed
hypothesis (*: 0.01 ≤ p < 0.05, **: 0.001 ≤ p < 0.01, ***p < 0.001). LSF,
longest single flight.

FIGURE 6 | Simulation of the relationship between P(LSF>CD)) and
cross-island individuals per generation in the process of species spreading
from the mainland to island in 500 generations. Unary linear regression is
shown in black and the CI is shown in gray. The blue points represent the
P(LSF>CD) actually measured in the experiment (data come from
measurements of 14 species), and the orange points represent the simulated
point for supplementation (data come from simulation values of three
hypothetical species). We repeated the simulation three times for each
species. LSF, longest single flight; CD, closest distance.

This change in the main color-form as a consequence of selective
predation is still considered as an example of the rapid evolution
as a consequence of natural selection in a changing environment,
which is driven by selective predation (Cook et al., 2012; Cook
and Saccheri, 2013). Individuals of American peppered moth
(Biston betularia) larvae are selected to match background color
depending on their different host plants, and the slender shape

makes them look more like branches, thereby using a similar
approach to reduce predation (Noor et al., 2008; Eacock et al.,
2017). Thus, the impact of selection on key traits is clear, but at
least in this group, it does not require an ability to fly to escape
predators, and conversely, the general body form of Geometrids
may be expected to have a weaker flight performance.

Superfamily Drepanoidea had the highest in VTDF parameters
(Figure 1Ca), which was faster than the other five superfamilies
(with the exception of Lasiocampoidea). But at present, we
know very little about this superfamily, with only a few
omics studies about the social caterpillar Drepana arcuata from
this superfamily (Yack et al., 2001; Yadav et al., 2020a,b),
which provide no insights into flight performance. Superfamily
Pyraloidea (family Pyralidae) showed the strongest LSF and TLSF
in comparison to other superfamilies (Figures 1Cc,d), suggesting
that it has high flight endurance. Superfamily Pyraloidea has the
smallest body size in all samples collected in this study, such as
the smallest BL, weight, and wing area. At present, there are too
few comparative studies on the high taxonomic rank flight ability
of Lepidoptera, but species-specific morphology is likely to be
responsible for the differences found here.

Among 187 individuals belonging to superfamily
Bombycoidea in this study, 171 individuals (∼91.4%) are
from family Sphingidae and the remaining individuals are from
family Saturniidae. The results show that the of Bombycoidea
are significantly higher than those of the other five superfamilies
(Figure 1Cb), possibly because superfamily Bombycoidea
includes the family Sphingidae with the highest (Supplementary
Figure 3). Our results prove that moths can have extensive
niche differentiation, and two families with distant phylogenetic
relationships (Figure 1B) may have similar flight abilities. Traits
to escape predation are important, as Lepidoptera can account
for more than 50% of the food of some insectivorous bats (Galan
et al., 2018), and within this, Noctuidae can account for 50% of
Lepidoptera species consumed (Zeale et al., 2011). Hawk moths
(Lepidoptera, Bombycoidea, Sphingidae), Notodontidae, and
Noctuidae (Lepidoptera and Noctuoidea) are more active and
fly faster than most other moths. Large species with fat bodies
may be particularly vulnerable to bats, such as many species in
Sphingidae and Noctuidae, and need to be able to either fly fast or
have other adaptations to reduce the risk of predation (Ntelezos
et al., 2017; Rubin et al., 2018; Aiello et al., 2021). Hawk moths
have the most aerodynamic body form of most moths, based
on both wings and body morphology (Willmott and Ellington,
1997), which enables very high-speed short-distance flight.

Difference of Flight Capability of Moths
Between Mainland and Island
Affectd by the environment of the habitats, different geographical
populations may have different flight abilities, although LSF and
TLSF have no statistically significant differences, the mean value
of VTDF and VLSF in island are much higher than mainland
[ratio span (island/mainland): LSF (1.90–4.03), TLSF (1.03–3.20),
VTDF (0.71–1.45), VLSF (0.85−1.66)] (Figures 2A-D). We found
that the same group (at family level) between mainland and
island showed difference in flight ability. We speculate that the
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difference may be due to different species composition. Because
most of the flight data of the same family at different sites are
from different species. To test this hypothesis, we compared
the data of common species [B. panterinaria (Geometridae),
T. juno (Erebidae), and U. meticulodina (Notodontidae)] from
the island (ZSDXG) and the mainland (HNYHG) (Figures 3A–
D). U. metaculodina showed that the mean value of island
individuals is lower than that of mainland individuals (ratio of
mean value are 0.62 and 0.76 in LSF and TLSF, respectively).
But the average values of LSF and TLSF in the samples of
B. panterinaria and T. juno collected from islands are larger than
those from mainland samples, although the difference was not
statistically significant (ratios of mean value are 23.30 and 19.84
between parameters LSF and TLSF in species B. panterinaria and
ratios are 2.00 and 2.30 between LSF and TLSF in T. juno). Based
on the above results, we infer that islands may recruit more
species with strong flight capacity (in parameter LSF and TLSF)
than the mainland, which may expand differences in average of
LSF and TLSF between mainland and island; moreover, prevalent
wind current speed and direction are likely to influence this.
The species found on both islands and continents show that
island individuals have a weaker flight speed (VTDF &and VLSF)
than continental individuals, which indicates that flight distance
(LSF) may be more important for species ability to spread
than flight speed.

Zhoushan Island is only separated from the mainland about
9,000 years ago due to the rising sea level caused by climate
change (Wang, 1980). Zhoushan Island is the largest island in
the Zhoushan Archipelago and is close (the shortest distance
is only about 8.3 km) to the mainland. In such a short period
of time and extremely similar natural environment, the same
species may not have time to differentiate their flight abilities or
adapt to local conditions, such as differing wind speeds. However,
although 9,000 years is not enough for species differentiation,
the level of gene flow in addition to environmental pressures
depends on wing-traits that relate to flight ability. It is generally
difficult to prove this through actual observation data for these
small insects, but we have measured the flight parameters of a
considerable number of species, so we can verify the possibility
through the simulation.

The Simulation Reveals the Possible
Dispersal Threshold
Our results show that L. muscosalis, the species with the largest
LSF, has the highest number of cross-island generations and
the highest number of cross-island individuals per generation in
500 generations. With the decrease of species dispersal ability
(P(LSF>CD)), the number of cross-island generations and the
number of cross-island individuals in each generation decreased
rapidly. However, it is interesting to note that the decline rate of
the cross-island generations is slower than that of the number
of cross-island individuals per generation. When the average
number of cross-island individuals decreased from 166.6 to 6.6
(corresponding to the first four species with P(LSF>CD) value
declined from 0.151 to 0.009 in Figure 4), the number of cross-
island generations remained at a high level (495–487). When

P(LSF>CD) decreased from 0.005 to 0.0012 (From T. juno to
A. major in Figure 4), the number of cross-island individuals
was very low (from 1 to 2), and the number of cross-island
generations decreased rapidly from 375 to 24. For the remaining
species, there was almost no cross-island migration within 500
generations, and the P(LSF>CD) dropped to less than 0.0006.

Regression analysis also shows that when P(LSF>CD) drops
below 0.004 (obtained from the simulation of spreading from the
mainland to the island) and 0.003 (obtained from the simulation
of spreading from the island to the mainland), the species lose the
ability to migrate over the sea (the predicted value of the number
of individuals that successfully spread is less than 0) (Figure 6
and Supplementary Figure 6). Regardless of whether the species
is spreading from the mainland to the island or from the island
to the mainland, the requirements for P(LSF>CD) are relatively
consistent. As long as a species can complete the spread from
the mainland to the island (or from the island to the mainland),
it may also be able to complete the reverse proliferation activity
with the help of wind conditions. Our results showed that the
flight ability of the individuals that successfully cross to or from
the island is significantly stronger than that of the individuals
that remain on the mainland (Figure 5). Similar results are also
found in the simulation of species spreading from a small circle
(island) to large circle (mainland) (Supplementary Figures 4, 5).
We did not simulate whether individuals with strong flight ability
would produce a larger proportion of offspring with strong
flight ability (though it is likely to be heritable), but a study
on Episyrphus balteatus (Diptera and Syrphidae) with migration
behavior showed that the offspring of migrants in this species
had higher flight activity than those of resident individuals
(Dällenbach et al., 2018). The reality is far more complicated
than the simulation. At present, we do not know how many of
the species we collected from the island existed before Zhoushan
Island separated from the mainland. Although the individuals
successfully landing on the island from the mainland are all with
stronger flying capability, the individuals from the islands that
mate with them may be not strong enough, so they may could
not produce offspring with strong flying capabilities. Molecular
approaches would be needed to determine gene flow between
mainland and island to determine how these populations interact
and how many still show genetic connectivity to mainland
populations. Furthermore, mainland individuals generally come
from more diverse communities, so may be more competitive
than species adapted to more depauperate island communities.

Factors Affecting the Spread of
Lepidoptera Insects
The known factors that may affect the flight ability of Lepidoptera
and other insects include sex and days post-eclosion. The effect
of sex on flight ability varies between species. In Helicoverpa
armigera (Lepidopera and Noctuidae), males have better flight
abilities than females (Jyothi et al., 2021), while in Amyelois
transitella (Lepidopera and Pyralidae) and Rhynchophorus
ferrugineus (Coleoptera and Dryophthoridae), there is no sexual
difference (Ávalos et al., 2014; Sappington and Burks, 2014).
The flight capacity of newly emerged adults is weak in many
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groups, reaching the peak at 3 or 4 days post-eclosion (Tanaka
and Yamanaka, 2009; Liu et al., 2011; Fu et al., 2017b).

In addition, how Lepidopterans determine the direction of
flight is a longstanding question for researchers. Species, such
as monarch butterflies (Reppert et al., 2016) and Bogong moths
(Dreyer et al., 2018) are able to navigate using geomagnetic
fields, time compensated sun compass, and identifying landmarks
to determine migration routes. But the processes guiding
short-distance dispersal are less well understood. Lepidoptera
individuals need to determine the destination if they travel
between islands and other landmasses, and many sensory cues
are not available over water, and loss of energy and poor weather
are more likely to cause death, though studies show that some
species can detect polarized light, and this may impact navigation
over extended distances. Recently, MacDonald et al. (2019) partly
proved that butterflies rely on vision to detect patches of suitable
habitats. Their research shows that individuals with normal
vision are 30.1 times more likely to navigate to the target island
after being released than those with induced flash blindness.

Limitations
Although we collected a large number of Lepidopteran samples
from the field, it is almost impossible to identify the physiological
state of each sample, and its performance on the flight mill
depends greatly on the physiological state. This may be the
main reason for the high variability for some measures within
species in our study. According to the activity of insects during
sampling, the low TDF may be caused by the discomfort of the
tested insects caused by the flight mill or the weakening of the
flight ability caused by human operation error, but these factors
should not be responsible for consistent differences observed
between samples from different species and localities. However,
whether it is reasonable to filter data in this way remains to
be verified. Whilst we changed the experimental duration in
2020, the four flight parameters used in our analysis are unlikely
to have been impacted. In addition, the dispersal direction
of individuals in our simulation is completely random, and
MacDonald et al. (2019) also pointed out that this random
flight null assumption tends to overestimate the proportion of
successful dispersal of butterflies toward adjacent habitat patches
(MacDonald et al., 2019).

CONCLUSION

Understanding colonization and invasion patterns of species
and the traits responsible is critical both to understand species
biogeography and to enable proactive management. Our results
show that among the common Lepidoptera groups (at the level
of superfamily or family), superfamily Geometroidea and family
Geometroidae have the weakest flight ability, while Pyralidae

has the strongest flight endurance. Additionally, we found that
island species generally have higher LSF than mainland species,
although we did not detect statistically significant differences in
our data overall, clear patterns were observed in some species.
The simulation results show that the stronger the flight ability
is [in this study, the ratio (P(LSF>CD)) of the offspring whose
LSF is greater than the shortest distance between islands is used
to measure the flight ability], the species in coastal habitats are
more likely to have successful cross-island dispersal, and when
P(LSF>CD) is lower than 0.004, moths rarely spread between
islands under natural conditions. If the habitat of the immigrating
species is suitable for the survival of the immigrating species,
it will be possible for the immigrating species to establish
a population on the new island or continent. Overextended
periods, with the immigration of species with strong flight
abilities, islands are more likely to recruit species with stronger
flight abilities.
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