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ABSTRACT 
 

Self-compacting concrete (SCC) is a complex material and modeling its workability is a 
complicated task. To evaluate the workability of SCC, five different tests have been 
conducted, which are slump flow, V-funnel, J-Ring, L-box and U-box. In fact, executing L-
box and U-box tests are more difficult than the other ones, especially on sites. Therefore, 
this research studies the possibility of predicting the results of L-box and U-box tests from 
the results of the other tests utilizing artificial neural networks (ANN). For this purpose, 
multi layer perceptron (MLP) networks and radial basis (RB) networks were chosen. The 
conclusion was that the MLP networks could foresee the L-box and U-box test results in 
all situations. 
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1. INTRODUCTION 
  
With the introduction of the new generation of superplasticizers, self-compacting concrete 
(SCC) is industrialized. This type of concrete having superior viscosity and workability 
properties can simply fill the molds without the obligation of utilizing vibrators [1-4]. High 
quantity of mineral powders is a requirement for designing a suitable SCC. It is worth adding 
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that Ho et al. have investigated the use of quarry dust in SCC [5]. Moreover, the influence of 
limestone powder on SCC is investigated recently [6]. For this purpose, natural or artificial 
mineral additives such as fly ash, silica fume, blast furnace slag, and limestone powder can 
be used too. In this study, the effects of replacing 10% of cement by silica fume on fresh and 
hardened properties of SCC have been investigated.  
 
The importance of workability in concrete technology is quite apparent. It is one of the main 
properties that have to be satisfied. A concrete mixture that cannot be placed simply or 
compacted completely is not likely to yield the required strength and durability characteristics 
[7]. It is worth noting that extensive investigations on the workability of SCC have been made 
recently [8-10]. Kayat et al. reported that the J-ring, U-box and L-box tests can be used to 
estimate the passing ability of SCC and resistance to segregation [8]. The combination of 
slump flow and L-box tests is very appropriate for the quality control of SCC on sites [11]. It 
is worth noting that Bui et al. have introduced a rapid testing method for segregation 
resistance of SCC [12]. In this research, to evaluate the workability of SCC, five different 
tests have been conducted, which are slump flow, V-funnel, J-Ring, L-box and U-box. 
 
An artificial neural network (ANN) model, which is a computer model, imitates the learning 
ability of the human brain. In recent years, the applications of ANN in modeling the behaviors 
of materials have been considered widely [13-18]. Nevertheless, small research has been 
done on modeling the workability of concrete using neural networks [19]. Nehdi et al. [20] 
confirmed that ANN methods can precisely predict the segregation, filling capacity and 
slump flow test results of SCC. Bai et al. [21] developed reliable and accurate ANN models 
for predicting the workability of concrete. Ji et al. [22] used the following parameters to build 
ANN models for predicting the strength and slump of concrete: nominal water to cement 
ratio, equivalent water to cement ratio, average paste thickness, fly ash-binder ratio, and 
grain volume fraction of fine aggregates. Yeh [23] established the capabilities of ANN to 
show the effects of each material component on concrete slump. This research concentrates 
on utilizing ANN for predicting the L-box and U-box test results from slump flow, V-funnel 
and J-Ring experimental outcomes. In fact, executing L-box and U-box tests are more 
difficult than the other ones on sites, and this paper investigates how to replace ANN to a 
portion of these complex tests.  
 
2. MATERIAL PROPERTIES 
    
The cementitious materials utilized were silica fume (SF) and ordinary Portland cement 
(OPC). Their physical properties and chemical components can be seen in Table 1. Details 
of the mix proportions for the concrete containing different dosages of superplasticizers with 
and without silica fume are given in Table 2. The control mixes were prepared using OPC, 
while the other mixes were cast by replacing 10% of the cement with silica fume on mass-
for-mass basis. The water/binder ratios were 0.35 and 0.45 respectively. The effect of water 
to cement ratio on the properties of SCC is studied recently [24]. The same mix proportions 
were used for the concrete mixes with the dosages of 0.4%, 0.8%, 1.2%, and 1.6% of a kind 
of carboxylic based superplasticizer. As a result of using different dosages of the 
superplasticizer, the fresh and hardened properties of the mixes were quite different. It is 
worth noting that the effects of superplasticizers on the mechanical strength of mortars have 
been studied recently [25]. Also, the application of carboxylic based superplasticizers in SCC 
is investigated [26]. The effects of chemical admixtures and mineral additives on SCC are 
studied too [27]. It is worth adding that Su and Miao have introduced a method for the mix 
design of flowing concrete [28].  
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3. COMPRESSIVE STRENGTH OF SELF-COMPACTING CONCRETE 
 
It is crucial to attain a maximum possible density in concrete because its strength is 
considerably and adversely affected by the existence of voids in the compacted mixture [29]. 
This maximum density needs an adequate workability or almost full compaction. Obviously, 
the existence of voids in concrete decreases its strength seriously, which means the 
presence of 5 percent of voids in concrete can lower the strength by 30 percent [29]. This 
research compares the compressive strengths of self-compacting and standard concrete 
mixtures having the same ingredients and different dosages of superplasticizers. It is worth 
noting that the hardened mechanical properties of SCC have been reviewed recently [30]. 
  
For the cubic concrete specimens stored in water, the development of compressive strength 
with age is presented in Table 3. It is clear that the compressive strength development of 
concrete mixtures containing different dosages of the utilized superplasticizer were quite 
different. However, the comparison between the mixes containing silica fume and the similar 
ones without silica fume shows the first group had lower workability and higher compressive 
strength. The reason for this phenomenon can be the pozzolanic activities of silica fume.  
 

Table 1. Physical Chemical compositions and physical properties of cementitious 
materials 

 
Item Ordinary Portland 

cement 
Silica fume 

SiO2 21.9 91.5 
Al2O3 4.48 0.9 
Fe2O3 3.4 1 
CaO 64.7 1.9 
MgO 2.1 1.5 
Cl ___ 0.1 
Na2O 0.12 ___ 
K2O 0.55 ___ 
SO3 1.42 1 
LOI 1.3 2.1 
Compounds 
C3S 57.9 ___ 
C2S 19.2 ___ 
C3A 6.13 ___ 
C4AF 10.3 ___ 
Fineness 
SSA(m2/kg) 308 14,400 

 
4. WORKABILITY OF SELF-COMPACTING CONCRETE 
  
The definition of workability is the total of useful internal work essential to create complete 
compaction.  This internal work, which is a physical property of concrete, is the necessary 
work or energy to conquer the internal friction between the particles of the mixture.  Because 
of the very high workability of SCC, it requires no external vibration for spreading into place, 
filling the framework and encapsulating reinforcement without any segregation and bleeding. 
Furthermore, the aggregate particles in SCC should have homogeneous distribution in the 
specimen and the minimum segregation risk ought to be existed during the process of 
carrying and placement. 
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Table 2. Mix proportions of concrete containing different water to cementitious 
materials ratios 

 
Concrete Mixes  Mix 1  Mix 2 Mix 3 Mix 4 
W/b 0.35 0.35 0.45 0.45 
SF/(SF+C)% 0 10 0 10 
Cement or C (kg/m3) 500 450 400 360 
Silica fume or SF (kg/m3) - 50 - 40 
Gravel (kg/m3) 867 867 833 833 
Sand (kg/m3) 668 668 722 722 
Water (kg/m3) 175 175 180 180 
Rock flour (kg/m3) 155 155 150 150 
Super plasticizer (kg/m3) 2 to 8 2 to 8 1.6 to 6.4 1.6 to 6.4 

 
Table 3. Development of compressive strength with age 

 
Concrete Mixes Superplasticizer 

Dosage 
Compressive 
Strength (MPa) 
28 Days 

Mix 1 0.4% 61 
0.8% 58 
1.2% 58 
1.6% 56 

Mix 2 0.4% 69 
0.8% 62 
1.2% 60 
1.6% 58 

 Mix 3 0.4% 47 
0.8% 42 
1.2% 40 
1.6% 37 

 Mix 4 0.4% 48 
0.8% 45 
1.2% 46 
1.6% 41 

 
It is clear that workability depends on a number of interacting issues such as aggregate type 
and grading, aggregate to cement ratio, the fineness of cement, water content, and the 
dosage and kind of superplasticizers. The main factors on SCC are the superplasticizer and 
water contents of the mix because by increasing them the inter particle lubrication is 
improved. As explained earlier, in this research, the water contents of the mixes having the 
same water to binder ratios were constant and the dosages of the superlasticizer were 0.4%, 
0.8%, 1.2%, and 1.6% of the weight of cement. Moreover, to attain optimal conditions for 
minimum voids with no segregation, the effects of the aggregate type and grading should be 
considered. In this study, the quality and grading of the aggregates in all the mixtures were 
the same. In other words, the main objective of this research was to find the effect of the 
dosages of superplacticizers on the fresh and hardened properties of the mixes.  
 
To estimate the workability of SCC, static and dynamic stability tests are generally essential 
[8,9]. Static stability tests handle the properties of SCC during the phase from casting to 
initial set whereas dynamic stability tests concern the properties of SCC during the 
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processes of mixing, transportation, and casting. This research concentrates on dynamic 
stability tests as follows.  
 
4.1 Slump Flow Test 
 
Only the slump test results of the mixes having the superplasticizer dosage of 0.4% can be 
seen in Table 4. The other superplasticizer dosages produce SCC, and because the slump 
test is not appropriate for the analysis of the fluidity of SCC, the slump flow test is approved. 
It should be noted that computational modeling of concrete flow has been overviewed 
recently [31]. The slump flow testing equipment has a normal slump cone and a steel plate 
with the size of 900 × 900 mm. The time taken for SCC to spread to 500 mm in diameter, 
T500, and the final slump flow diameters in the two orthogonal directions can be measured 
with this equipment. According to EFNARC [32], for class 1 SCC the slump flow diameter is 
550-650 mm and T500≤2 s; for class 2 SCC the slump flow diameter is 600-750 mm and 
T500≥2 s; for class 3 self-compacting concrete the slump flow diameter is 760-850 mm, but 
no condition for T500 is specified. It is worth noting that the slump flow test is recently 
modeled using artificial neural networks [19].  The results of slump flow tests of the present 
research are given in Table 5. 
 
4.2 V-Funnel Test 
 
The equipment for V-funnel test is expressed by Wu et al. [11]. The entire time for SCC to 
flow through the V-funnel, can be measured with this equipment. The V-funnel flow test is 
useful for estimating the fluidity of SCC to alter its path and to pass through narrow regions. 
According to EFNARC [32], for class 1 SCC, Tv is smaller than 8 s and for class 2 SCC, Tv 
is 9-25 s. The measured values of Tv of the present research can be observed in Table 5.  
 
4.3 J-Ring Test 
 
J-ring test consists of the slump cone located inside a 300 mm diameter steel ring, which is 
attached to vertical reinforcing bars at proper spacing [33]. The number of bars should be 
chosen according to the maximum size of aggregates in SCC mixes. The variation of the 
height of a SCC before and after the bars is measured in this test. Clearly, as the workability 
of the mix is superior, the result of J-ring test is lesser. The results of J-ring tests of the 
present research can be observed in Table 5. 
 
4.4 L-Box Test 
 
The L-box test is utilized to estimate the fluidity of SCC and its capability to pass through 
steel bars [34]. The L-box involves a “chimney” section and a “channel” section as explained 
by Wu et al. [11]. The height of concrete in chimney, h1, the height of concrete in the 
channel section, h2, and the time taken for SCC to reach 40 mm from three steel bars, T400, 
can be measured with the L-box. According to EFNARC [32], when the ratio of h2 to h1 is 
bigger than 0.8, SCC has fine passing skill. However, no specification for T400 is specified in 
EFNARC. In most previous investigations on SCC, T400 is employed to approximate the 
flow velocity of SCC [11]. The measured values of h2/h1 of the present research are given in 
Table 6.  
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4.5 U-Box Test  
 
The U-box test is utilized to estimate the passing ability and filling ability of SCC in jam-
packed reinforcement. The key factor to be considered is the height difference of concrete 
between the two boxes, ∆h. According to EFNARC [32], once the height difference of 
concrete is lesser that 30 mm, SCC has good passing and filling abilities. The measured 
height differences of the investigated concrete mixtures are presented in Table 6. 
 
Table 4. Workability of the concrete mixes containing the superplasticizer dosages of 

0.4% 
 

Concrete Mixes Slump (mm) 
W/c = 0.35 Mix 1 (OPC)  238 

Mix 2 (SF10)  215 
W/c = 0.45 Mix 3 (OPC) 216 

Mix 4 (SF10) 185 
 

Table 5. Input data gathered from the lab for testing the ANN 
 

Concrete mix Superplasticizer 
dosage, % 

Slump flow 
(mm) 

V-funnel (sec) J-ring (mm) 

Mix 1 (OPC) 0.8% 730 6.5 12 
1.2% 785 5.4 6.3 
1.6% 825 4.8 4 

Mix 2 (SF10) 0.8% 550 8 14.5 
1.2% 670 6.2 8 
1.6% 780 5.3 5.5 

Mix 3 (OPC) 0.8% 730 4 14 
1.2% 810 3.6 6.5 
1.6% 830 3.3 4.2 

Mix 4 (SF10) 0.8% 530 4.8 17 
1.2% 760 4.2 12 
1.6% 770 3.8 11 

 
Table 6. Output data gathered from the lab for testing the ANN 

 
Concrete mix Superplasticizer 

dosage, % 
L-box (ratio) U-box (mm) 

Mix 1 (OPC) 0.8% 0.86 12 
1.2% 0.90 7 
1.6% 0.95 3 

Mix 2 (SF10) 0.8% 0.62 36 
1.2% 0.82 18 
1.6% 0.90 5 

Mix 3 (OPC) 0.8% 0.88 8 
1.2% 0.96 4 
1.6% 0.98 1 

Mix 4 (SF10) 0.8% 0.57 24 
1.2% 0.86 13 
1.6% 0.90 6 
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5. EFFECT OF SILICA FUME ON WORKABILITY  
 
The definition of workability is the total of useful internal work essential to create complete 
compaction.  This internal work, which is a physical property of concrete, is the necessary 
work or energy to conquer the internal friction between the particles of the mixture.  Because 
of the very high workability of SCC, it requires no external vibration for spreading into place, 
filling the framework and encapsulating reinforcement without any segregation and bleeding. 
Furthermore, the aggregate particles in SCC should have homogeneous distribution in the 
specimen and the minimum segregation risk ought to be existed during the process of 
carrying and placement. 
 
6. APPLICATION OF ARTIFICIAL NEURAL NETWORKS 
 
The greater part of researchers that used artificial neural networks to model material 
behaviors are the ones who have utilized back-propagation networks for minimizing the error 
coefficients. The back-propagation networks discover the material behaviors by matching the 
output of each input pattern with the target output of that pattern. Afterward, the error 
coefficient backward through the net should be calculated. The essential regulations of back-
propagation algorithm is covered widely [36,37]. 
 
6.1 Data sets 
 
Table 2 presents the details of the concrete mixes investigated in this study. It should be 
mentioned that for generating enough data for training the ANN, regression analyses were 
used and about 400 various data were generated for training each network. The results of 
regression analyses and the equations for data generations can be seen in Table 7. Finally, 
the 12 experimental data were utilized for testing the exactness of the trained networks.  
 

Table 7. Regression functions used for generating the training data 
 

R2 Regression Function* Experiment Concrete Mixes 
0.9959 Y=0.1125(x)+0.7683  L-box (ratio) Mix 1 (OPC) 

 0.9959 Y=-11.55(X)+20.839  U-box result (ratio)  
0.991 y = 118.7(x)+ 637.5  Slump flow (mm)  
1 y = 10.62(x2) – 35.5(x)+ 33.6 J-ring (mm)  
0.972 y = -2.125(x)+ 8.116 V-funnel (sec) 
0.9423 Y=0.35(X)+0.36  L-box (ratio)  

Mix 2 (SF10) 0.9914 Y=-38.75(X)+66.167  U-box result (ratio)  
0.999 y = 287.5(x) + 321.6  Slump flow (mm)  
1 y = 12.5(x2)- 41.25x + 39.5 J-ring (mm)  
0.964 y = -3.375(x) + 10.55 V-funnel (sec) 
0.8929 Y=0.125(X)+0.79  L-box (ratio)  

Mix 3 (OPC) 0.9932 Y=-8.75(X)+14.893  U-box result (ratio)  
0.892 y = 125(x) + 640  Slump flow (mm)  
1 y = 16.25(x2) - 51.25(x) + 44.6 J-ring (mm)  
0.993 y = -0.875(x) + 4.683 V-funnel (sec) 
0.9423 Y=0.35(X)+0.36  L-box (ratio) Mix 4 (SF10) 
0.9914 Y=-38.75(X)+66.167  U-box result (ratio)  
0.781 y = 300(x) + 326.6  Slump flow (mm)  
1 y = 12.5(x2) – 37.5(x) + 39 J-ring (mm)  
0.986 y = -1.25(x) + 5.766 V-funnel (sec) 

* X= superplasticizer percentage and Y= test result 
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According to Tables 5 and 6, the database was split in four different groups; therefore, four 
ANN models were trained for them. The four models had the same architecture, but different 
regression coefficients for regression analyses and different connection weights for neural 
networks since each of the networks was trained using a partially different set of data.  
 
According to Tables 5 and 6, the database was split in four different groups; therefore, four 
ANN models were trained for them. The four models had the same architecture, but different 
regression coefficients for regression analyses and different connection weights for neural 
networks since each of the networks was trained using a partially different set of data. It 
should be mentioned that for training the ANN with two more input data of w/c and silica 
fume level, combined ANN should be used [38]. 
 
6.2 Modeling the Workability of SCC using Artificial Neural Networks 
 
The neural networks developed in this investigation were divided in two groups of multi layer 
perceptron (MLP) and radial basis (RB) networks, which are presented in MATLAB software 
by the names of newff and newrb respectively. All of the networks had three units in the 
input layer, which were the results of slump flow, V-funnel and J-ring tests, and two units in 
the output layer, which were the results of L-box and U-box tests. In newff, which is multi 
layer perseptron (MLP), the relations between the input and hidden layers and also the 
relations between the hidden and output layers are presented by some equivalent weights. 
The values of MLP network parameters considered in this approach were as follows: number 
of hidden layers = 1 and 2; number of hidden neurons = from 3 to 12; number of epochs 
(learning cycles) = 300, 500 and 1000. Based on the error of primary testing set, the best 
network parameters are as follows: number of hidden layers = 1; number of hidden neurons 
= 6 or 7; number of epochs = 500. To choose the number of hidden neurons, the value of 
error coefficient (e), which is presented in Eq. 1, is utilized.  
 

e =Σ[(target(i)-estimate(i)]2                                                                              (1)  
 
where target(i) and estimate(i) are the experimental and the estimated values in ith event 
respectively. In fact, Table 8 shows the average of e value of the first mixture (OPC and 
w/c=0.35). According to this table, six hidden units should be chosen for having the minimum 
average e value. Only in the last mix (SF10 and w/c=0.45), one hidden unit is added to the 
six units above for training the related network. Tables 9 and 10 show the exactness of the 
ANN in predicting the L-box and U-box test results respectively. It is clear that ANN models 
are quite successful in predicting the L-box and U-box results from the other workability 
tests. The mean square error coefficients (mse) of each mix, which is presented in Eq.2, can 
be seen in Table 11.  
 

mse =1/n.Σ[(target(i)-estimate(i)]2                                                                   (2)  
 
where n is the number of tests or estimations.  
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Table 8. Average e value after 10 repetitions of mix one (w/c=0.35, OPC) 
 
Number of hidden units e value 
3 1.73 
4 1.66 
5 2.05 
6 0.79 
7 1.68 
8 1.81 
9 1.95 
10 1.12 
11 1 
12 0.96 
13 1.66 
14 1.17 
 
Table 9. Comparing the experimental and estimated values of L-box test using newff 

networks 
 

Concrete Mixes Superplasticizer 
Dosage 

L-box result (ratio) 
Experimental result Estimated result 

Mix 1 (OPC) 0.8% 0.86 0.8555 
1.2% 0.90 0.9078 
1.6% 0.95 0.9462 

Mix 2 (SF10) 0.8% 0.62 0.6211 
1.2% 0.82 0.8277 
1.6% 0.90 0.8941 

Mix 3 (OPC) 0.8% 0.88 0.8793 
1.2% 0.96 0.9510 
1.6% 0.98 0.9841 

Mix 4 (SF10) 0.8% 0.57 0.5635 
1.2% 0.86 0.8093 
1.6% 0.90 0.9386 

 
Table 10. Comparing the experimental and estimated values of U-box test using newff 

networks 
 

Concrete Mixes Superplasticizer 
Dosage 

U-box result (ratio) 
Experimental result Estimated result 

Mix 1 (OPC) 0.8% 12 11.7849 
1.2% 7 7.1676 
1.6% 3 3.0294 

Mix 2 (SF10) 0.8% 36 36.7886 
1.2% 18 17.9030 
1.6% 5 5.0784 

Mix 3 (OPC) 0.8% 8 8.0889 
1.2% 4 3.5406 
1.6% 1 1.2506 

Mix 4 (SF10) 0.8% 24 23.6649 
1.2% 13 13.4157 
1.6% 6 5.4046 
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Table 11. Comparing the mean square error coefficients of newff and newrb networks 
 

Concrete mixes mse value 
newff  network newrb network 

Mix 1 (OPC) 0.0126 0.0056  
Mix 2 (SF10) 0.1061 0.3456 
Mix 3 (OPC) 0.0470 0.2322 
Mix 4 (SF10) 0.1071 2.8083 

 
In newrb method, which is radial basis (RB), the relations between the input and hidden 
layers are presented by some mathematical equations, but the relations between the hidden 
and output layers are presented by some equivalent weights. It should be mentioned that the 
number of hidden neurons in this method are chosen by the software and they are much 
more than the number of neurons used by the newff method. The values of RB network 
parameters considered in this approach are as follows: number of hidden layers = 1; number 
of hidden units = 100. It should be mentioned that working with newrb networks is much 
easier than working with newff networks and also newrb networks converge to the final 
solutions faster. Table 12 shows the radius (R) values of the newrb networks of each mix.  
  

Table 12. Radius values of newrb networks in different mixes 
 

Concrete Mixes Radius 
Mix 1 (OPC) 1.4 
Mix 2 (SF10) 2.1 
Mix 3 (OPC) 2.04 
Mix 4 (SF10) 3.975 

 
The mean square error coefficients (mse) of each mix can be seen in Table 11. It is clear 
that in most cases, the mse of newff networks were lower the ones of newrb networks, and 
the newff networks were more exact than the newrb ones. Table 13 shows the newrb 
method is exact enough in predicting the L-box test results; however, according to Table 14, 
the newrb network could not predict the results of U-box tests with acceptable exactness in 
mix four. To solve this problem, it was decided to train a different network for estimating the 
U-box test results separately. The results can be observed in Table 15. The R and mse 
values of this network were 4.1 and 3.0327 respectively. In fact, Table 15 shows the network 
was not exact enough for predicting the U-box test results, and producing a different RB 
network for predicting the U-box test results independently did not work either.  In other 
words, although RB networks were more users friendly and they converged to the final 
results quicker than MLP networks, they could not properly predict the workability of SCC in 
some circumstances.  
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Table 13. Comparing the experimental and estimated values of L-box test using newrb 
networks 

 
Concrete Mixes Superplasticizer 

Dosage 
L-box result (ratio) 
Experimental result Estimated result 

Mix 1 (OPC) 0.8% 0.86 0.8581 
1.2% 0.90 0.9074 
1.6% 0.95 0.9459 

Mix 2 (SF10) 0.8% 0.62 0.6402 
1.2% 0.82 0.7863 
1.6% 0.90 0.9181 

Mix 3 (OPC) 0.8% 0.88 0.8786 
1.2% 0.96 0.9328 
1.6% 0.98 0.9799 

Mix 4 (SF10) 0.8% 0.57 0.5771 
1.2% 0.86 0.8611 
1.6% 0.90 0.8909 

 
Table 14. Comparing the experimental and estimated values of U-box test using newrb 

networks 
 

Concrete Mixes Superplasticizer 
Dosage 

U-box result (ratio) 
Experimental result Estimated result 

Mix 1 (OPC) 0.8% 12 11.8488 
1.2% 7 6.9274 
1.6% 3 3.0747 

Mix 2 (SF10) 0.8% 36 35.1497 
1.2% 18 18.9712 
1.6% 5 4.3775 

Mix 3 (OPC) 0.8% 8 8.6298 
1.2% 4 4.84 
1.6% 1 1.5390 

Mix 4 (SF10) 0.8% 24 25.22 
1.2% 13 9.6934 
1.6% 6 8.1042 

 
Table 15. Comparing the experimental and estimated values of U-box test in mix four 

(w/c=0.45, SF10) 
 

 U-box test 
Experimental results 24 13 6 
Estimated results 25.6293 9.6657 8.1034 

 
7. CONCLUSIONS 
 
From the results presented in this paper, the main conclusions are: 
 

• MLP networks could predict the L-box and U-box test results from the flump flow, J-
ring and V-funnel test results in all circumstances.  
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• RB networks were not exact enough for predicting the U-box test results from the 
flump flow, J-ring and V-funnel test results in some circumstances. In this condition, 
training a different network for predicting the U-box test results separately was not 
successful too.  

• RB networks are quite easy to work with and they touch to the final solutions faster 
than MLP networks. However, RB networks cannot solve the problems in some 
circumstances, and it is necessary to use MLP networks in these circumstances.  
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