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Abstract 
 
We apply the recently developed sampling algorithm, called random orthogonal matrix (ROM) 
simulation by Ledermann et al. [3], to compute VaR of a market risk portfolio. Typically, the 
covariance matrix has a large influence on ROM VaR. But VaR, being a lower quantile of the 
portfolio return distribution, is also much impacted by the skewness and kurtosis of the risk 
factor returns. With ROM VaR it is possible to stress test risk factors under adverse market 
conditions by targeting other sample moments that are consistent with periods of financial crisis. 
In particular, the important effects of skewness or kurtosis in the tail of the portfolio returns can 
be incorporated in ROM VaR. In a simulation study, we integrate ROM VaR into other methods 
that take into account skewness and kurtosis, namely the Cornish-Fisher VaR approximation and 
a robust approximation to the Chebyshev-Markov VaR upper bound in Hürlimann [7]. 
 

Keywords: MC simulation, orthogonal matrix, cornish-fisher expansion, chebyshev-markov 
inequalities, skewness, kurtosis, value-at-risk. 

 

1 Introduction 
 
According to [1] there are three basic types of VaR models, namely the normal linear VaR model, 
also called parametric VaR or variance-covariance VaR, the historical VaR simulation model, 
and the Monte Carlo VaR (MC VaR) model. The Monte Carlo framework is the most flexible of 
all, and may be used with a great diversity of market risk factor return distributions. However, a 
main disadvantage of the MC VaR model is the lack of fast computation due to the large number 
of simulation steps required to reach a given level of accuracy. However, with the increasing 
computer power this drawback becomes less relevant. Two equally important design aspects of 
MC VaR are the sampling algorithm ([1], IV.4.2) and the different statistical models for risk 
factor returns to which the algorithm is applied ([1], IV.4.3 and IV.4.4). Besides these technical 
tools it is very important to control two sources of model risk in MC VaR, namely the simulation 
errors through an appropriate choice of the sampling method, and the errors due to inappropriate 
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behavioural models for risk factor returns. Since variance reduction techniques used to reduce the 
simulation errors in MC methods are well-known (e.g. [2], Chap. 4), we concentrate here on the 
recent and important sampling algorithm called random orthogonal matrix (ROM) simulation, 
which is introduced in [3] (see also [4,5,6]). The authors describe this novel Monte Carlo 
algorithm as follows: 
 
“ROM simulation eliminates sampling error in the sample mean vector, covariance matrix and the 
Mardia multivariate skewness and kurtosis measures, so that in each simulation they match 
exactly their target values.” 
 
This attractive property leads to the following advantages. It implies that within ROM simulation 
it is possible to specify in advance the mean vector and the covariance matrix of the risk factor 
returns. In industry practice, these risk characteristics are often estimated using the so-called “Risk 
Metrics VaR Methodology” ([1], IV.2.10.3). Typically, the covariance matrix has a large 
influence on ROM VaR. But VaR, being a lower quantile of the portfolio return distribution, is 
also much impacted by the skewness and kurtosis of the risk factor returns. Like historical VaR 
the new method is non-parametric. However, the limitation of historical VaR to past observations 
implies that history will repeat itself in the sense that the risk factor returns over the risk horizon 
are identical to their distributions in the historical sample (inappropriate behavioural pattern). 
With ROM VaR it is possible to simulate a very large number of realized risk factor returns that 
are all consistent with given observed historical sample moments. Moreover, we can stress test 
risk factors under adverse market conditions by targeting other sample moments that are 
consistent with periods of financial crisis. In particular, the important effects of skewness and 
kurtosis in the tail of the portfolio returns can be incorporated in ROM VaR. In a simulation study, 
we compare ROM VaR with other methods that take into account skewness and kurtosis, namely 
the Cornish-Fisher VaR approximation and the Chebyshev-Markov VaR upper bound and its 
robust approximation introduced in [7]. 
 
A brief account of the content follows. Section 2 describes in equation (2.5) the fundamental ROM 
sampling algorithm that generates random samples with exact mean and covariance matrix using a 
random permutation matrix, a random orthogonal matrix, and a deterministic so-called L matrix 
(in honor of W. Ledermann). An introduction to the multivariate Mardia skewness and kurtosis of 
the L matrices is given in Section 2.1 and the required properties are described in Section 2.3. A 
short review on the random square orthogonal matrices, which pre- or post-multiply a given L 
matrix during a ROM simulation is contained in Section 2.2. Section 3 considers the application of 
ROM simulation to Market VaR (Section 3.1) in combination with two semi-parametric models 
that take into account skewness and kurtosis, namely the Cornish-Fisher VaR approximation 
(Section 3.2) and two robust approximations derived from the Chebyshev-Markov VaR upper 
bound (Section 3.3). Section 4 illustrates with a numerical case study and provides some 
comments and conclusions. Finally, the importance of the present topic for the revised Basel III 
project as well as its potential application to other sources of risk like credit risk and liquidity risk 
should be emphasized. 
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2 ROM Simulation 
 
Monte Carlo simulation consists to generate a random sample  nmX ,   of size  m   on  mn <   

random variables  nXX ,...,1 . Consider the multivariate normal (MVN) model, where the sample 

mean vector and sample covariance matrix of  nmX ,   match the mean (column) vector  nµ   and 

covariance matrix  nC   such that (without bias adjustments for ease of notation) 

 

n
T
nmnm

TT
nmnm CXXm =⋅−⋅⋅−⋅− )1()1( ,,

1 µµ .  (2.1) 

 

Setting  )(1,,
T
n

T
nmnmnm zZX −⋅+= µ   with  nmZ ,   a MVN simulation with sample mean  

nz , yields a simulation with mean  nµ . A priori, it is however not obvious that a random matrix  

nmX ,   satisfying (2.1) will exist whatever the choice of the covariance matrix. Since  nC   is a 

positive semi-definite matrix, it is always possible to find a decomposition of the form  

n
T
nn BBC ⋅= , for example the Cholesky decomposition, the spectral decomposition (e.g. [8]) or 

the hyper-sphere decomposition (e.g. [9]). Then, applying the transformation 
 

1
,

2/1
, )1( −− ⋅⋅−⋅= n

T
nmnmnm BXmL µ ,                            (2.2) 

 

one sees that solving (2.1) is equivalent to finding a matrix  nmL ,   satisfying the following 

conditions (orthonormal relation with hyper-plane constraint) 
 

T
nnm

T
mnnm

T
nm LELL 01, ,,, =⋅=⋅ ,                           (2.3) 

 

where  nE   is the identity matrix and  n0   is the null vector. Now, solving (2.3) and inverting the 

transformation (2.2) enables the generation of exact MVN samples for any prescribed sample 

mean  nµ   and covariance matrix nC . Any rectangular orthonormal matrix  nmL ,   satisfying the 

hyper-plane constraint  T
nnm

T
m L 01 , =⋅   is called an L matrix (in honor of W. Ledermann), which 

is fundamental to ROM simulation. The set of all L matrices has been classified into deterministic, 
parametric, data-specific and hybrid L matrices (see [3], Section 1). In particular, deterministic 

ROM simulation includes the so-called Ledermann matrix ( )1
*

, ,..., −−= mnmnmL ll , which 

consists of the last { }1,...,2 −∈ mn  orthonormal columns of the matrix  

( )111, ,..., −− = mmmL ll   defined by 

 

( ) ,1,...,1,0,...,0,,1,...,1))1(/1( −=−⋅+= miiii T
il   (2.4) 
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where in  il   the single entry  i−   is preceded by a number of  i   one entries and followed by  

in −−1   zero entries. In fact, adding the last column  ( )Tm mm /1,...,/1=l   to  1, −mmL , 

one obtains the orthogonal matrix  ( ) )(,...,1 mOL mm ∈= ll   (the orthogonal group of order  

m ) that satisfies the hyper-plane constraint  T
mmm

T
m L 11, 01 −− =⋅ . This matrix corresponds to the 

transpose of the “Helmert orthogonal matrix” introduced by [10]. Besides ROM simulation it has 
found many other applications (e.g. [11], example (1.5), [12], [13], p.1). 
 

Now, given an arbitrary L matrix nmL , , a random permutation matrix  mP   and a random 

orthogonal matrix  )(nORn ∈ , one sees that the specification, 

 

nnnmm
T
nmnm BRLPmX ⋅⋅⋅⋅+⋅= ,, 1 µ ,                 (2.5) 

 

which defines the ROM sampling algorithm, generates a random sample with exact mean  nµ   

and covariance matrix  nC . Indeed, it is clear that  nnm RL ⋅,   is an L matrix, and the fact that  

nmm LP ,⋅   is also an L matrix follows from the validity of the property T
mm

T
m P 11 =⋅ , which 

implies that the columns of the product  nmm LP ,⋅   sum to zero, i.e. the hyper-plane constraint in 

(2.3) is fulfilled. If  mP   is not a permutation matrix, then the latter property does not necessarily 

hold. This is why the L matrices appearing in (2.5) can be pre-multiplied by permutations, but 
general orthogonal matrices can only be post-multiplied. The equation (2.5) is the foundation of 
ROM simulation as a means to simulate infinitely many random samples that have identical 
sample mean vectors and covariance matrices. 
 
What about the multivariate skewness and kurtosis of ROM samples (2.5)? How are these 
characteristics related to the choice of a given L matrix? These questions are discussed in the next 
Subsection. 
 
2.1 Multivariate Skewness and Kurtosis 
 
As in the univariate case, there are many different ways to measure the skewness and kurtosis of a 
multivariate sample (e.g. [14,15,16]). To fix ideas we focus on the Mardia multivariate measure of 
skewness and kurtosis, which has also been used in [3]. 
 

For a  mxn   random sample  ( )TT
m

T
nm xxX ,...,1, =  in row vector notation with

( ) mixxx inii ,...,1,,...,1 == , the Mardia measures of skewness and kurtosis are defined by the 

formulas 
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{ }

{ } ,)()()(

,)()()(

1

211
,

1 1

312
,

∑ −⋅⋅−⋅=

∑ ∑ −⋅⋅−⋅=

=

−−

= =

−−

m

i

T
iXinmM

m

i

m

j

T
jXinmM

xxSxxmX

xxSxxmX

κ

τ
               (2.6) 

 

where  XS   is the  mxm  sample covariance matrix of  nmX ,   and  x   is the row vector of 

sample means. These measures are known to be invariant under non-singular affine transformation 

of the type  nmnnnmnm bAXY ⋅+⋅= 1,,, , where  nnA ,   is any invertible matrix and  nb   is any 

row vector, i.e.  )()(),()( ,,,, nmMnmMnmMnmM XYXY κκττ == . The invariance property is 

the cornerstone of ROM simulation. Indeed, besides preserving the mean vector and the 
covariance matrix, the multivariate skewness and kurtosis sampling properties of (2.5) are 

encrypted in the matrix nmL ,  in the sense that  

)()(),()( ,,,, nmMnmMnmMnmM LXLX κκττ ==   for all ROM simulated samples nmX , . 

This is due to the fact that (2.5) is a non-singular affine transformation of  nmL , , and therefore, the 

multivariate skewness and kurtosis measures are preserved under such transformations.  
 
It is therefore of great importance to study the skewness and kurtosis of deterministic L matrices. 

Without loss of generality it suffices to consider L matrices of the type  1, −mmL . Recall that  

1, −mmL   denotes the rectangular matrix obtained from an orthogonal matrix  )(mOLm ∈   

satisfying the constraint  T
mmm

T
m L 11, 01 −− =⋅   by deleting the last column. For each  

1,...,2 −= mn , let  nmL ,  (respectively  ∗
nmL , ) be the rectangular orthonormal matrices built up 

by the first (respectively last)  n   orthonormal columns of  1, −mmL . Clearly, if  3≥m   a number 

of  mm )1(2
1 −   such rectangular orthonormal matrices could be build up from 1, −mmL . For ease 

of notation, only the simplest specified cases are used. In order to describe the skewness and 
kurtosis of such rectangular matrices through simple algebraic formulas, it is appropriate to use 

various (partial) inner products over subspaces of the Euclidean space  1−mR   defined and 
denoted by 
 

∑ ∑=><∑ ∑=><
−

−=

−

−=

∗

= =

1 1

1 1
,,,

m

nmi

m

nmj
jin

n

i

n

j
jin yxyxyxyx ,  (2.7) 

 

for each pair of  )1(1 −mx   row vectors  ( ) ( ) 1
1111 ,...,,,..., −

−− ∈== m
mm Ryyyxxx . The 

corresponding natural (partial) norms are defined and denoted by 
 

∗∗ ><=><= nnnn
xxxxxx ,,, .                        (2.8) 
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For the full space  1−mR   the inner products and norms for  1−= mn   coincide. In this situation 

the lower indices are omitted and one just writes  ∗
−− >=<>>=<< 11 ,,, mm yxyxyx   and  

∗

−−
==

11 mm
xxx . 

 
Lemma 2.1. (Skewness and kurtosis of deterministic L matrices) Suppose that  

( ) 1,...,2,,...,1, −== mnL
TT

m
T

nm ll , is an arbitrary  mxn   orthonormal matrix with  

( ) miinii ,...,1,,...,1 == lll . Then one has the formulas 

 

.)(,,)(
1

4

,
1 1

3
, ∑⋅=∑ ∑ ><⋅=

== =

m

i
ninmM

m

i

m

j
njinmM mLmL lll κτ  (2.9) 

 
Proof.  The sample mean vector of  nmL ,   is  nn 0=µ , and its sample covariance matrix is  

nn EmC ⋅= −1 , with inverse  nn EmC ⋅=−1 . Insert into (2.6) to get the expressions (2.9).  ◊ 

 
For the Helmert-Ledermann matrix (2.4) the Mardia skewness and kurtosis are respectively given 
by (Proposition 2.1 in [3]): 
 

])()2([)(,])()3([)( 1
,

1
,

−∗−∗ −+−⋅=−+−⋅= nmmnLnmmnL nmMnmM κτ . (2.10) 

 
Unfortunately, these statistical measures are linked by the relationship  

nLL nmMnmM =− ∗∗ )()( ,, τκ , and it is therefore not possible to target both skewness and kurtosis 

using (2.5) in ROM simulation (cf. [3], Section 2.1). To analyze whether it is possible to get rid of 
this disadvantage by allowing a broader range of variation for skewness and kurtosis, the author 
[17] considers a larger set of deterministic generalized Helmert-Ledermann (GHL) orthogonal 

matrices  )(mOLm ∈   that have fixed last column  ( )Tm mm /1,...,/1=l   and satisfy the 

hyper-plane constraint  T
mmm

T
m L 11, 01 −− =⋅ . 

 
More generally, to study the maximum range of variation of skewness and kurtosis over the space 
of all deterministic L matrices, we are interested in the constrained optimization on the Stiefel 
manifold (introduced in [18]) of the objective functions (2.9) subject to the constraints  

nnm
T

nm ELL =⋅ ,, ,  T
nnm

T
m L 01 , =⋅ . To tackle these problems several algorithms are available. 

Besides manifold versions of the Newton and the conjugate gradient method (e.g. [19], Sections 
3.2 and 3.4, [20], Sections 6 and 8), there exist (curve)linear search algorithms (e.g. [20], Section 
4). Within the last class of algorithms [21] have developed a feasible (constraints preserving) 
retraction method. We hope that these complex topics will be tackled in the future. 
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2.2 Random Orthogonal Matrices and Sample Characteristics in ROM 
Simulation 

 
The focus is now on the random square orthogonal matrices, which pre- or post-multiply a given L 
matrix during a ROM simulation in (2.5). They fall into three categories: permutations, reflections 
and rotations. There exist many different ways to generate random orthogonal matrices. They 
include techniques based on Givens rotations matrices, skew-symmetric matrices and Cayley 
transforms, or the matrix exponential function (e.g. [3], Section 2.2, and [4]). According to [22] 

(see also [23,24]) it is well-known that every orthogonal matrix  )(nORn ∈   can be written as a 

product of  )1(2
1 −nn   rotation matrices and reflections: 

 

εDGGGGGGR nnnnn ⋅⋅⋅⋅= − )(...)...()...( 122311312 ,  (2.11) 

 

where the matrix  nidiagD in ,...,1,1),,...,( 1 =±== εεεε , represents reflections, and   

 























−
=

E

E

E

G

ijij

ijij

ij

0000

0cos0sin0

0000

0sin0cos0

0000

θθ

θθ
                  (2.12) 

 

are Givens rotation matrices with angles of rotation  [ ]22 , ππθ −∈ij . The generation of such 

random orthogonal matrices is described in [22] using Bernoulli random variables for  εD   and a 

set of  )1(2
1 −nn   mutually independent beta random variables. We note that alternative 

algorithms for this have been developed in [24]. For simplicity, and like [3], we restrict the 

attention to random upper Hessenberg orthogonal matrices  )(nOH n ∈ , which can be written 

as a product of  1−n   Givens rotation matrices of the form (e.g. [25], [26]) 
 

)(...)()( 121 −⋅⋅⋅= nnnnn GGGH θθθ ,   (2.13) 

 

where  )( inG θ   is an  nxn  identity matrix except for the  2x2 principal sub-matrix with entries 

 

[ ] 








−
=++

ii

ii
in iiiiG

θθ
θθ

θ
cossin

sincos
1,;1,)( ,  (2.14) 

 

where  iθ   is chosen at random in the interval  [ ) 1,...,1,2,0 −= niπ . 
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An investigation of how random permutations, reflections and other random orthogonal matrices 
alter the sample characteristics of multivariate time series ROM simulations is found in [3], 
Section 2.2. A detailed study of these effects for different rotational matrices is found in [4]. 
 
2.3 Properties of Multivariate Moments under Sample Concatenation 
 
First of all, one observes that the value of  mn < , which achieves a desired skewness or kurtosis 
level along the line of Section 2.1, will be much smaller than the number of observations required 
for a standard simulation. To overcome this disadvantage one obviously repeats simulations of 
size m   until enough observations have been generated, a technique called sample concatenation. 
Once the desired mean, covariance matrix and multivariate skewness or kurtosis have been 
matched for a given small mn < , what about the first four multivariate moments of the 
concatenated sample ? The result is summarized in Proposition 2.1. For the skewness this depends 
upon the notion of co-skewness. 
 

Definition 2.1. Given two different samples  ( )TT
m

T
nm XX

xxX ,...,1, =   and  

( )TT
m

T
nm YY

xxY ,...,1, =   on the same  n   random variables, the multivariate co-skewness is 

defined by 
 

{ } ,)()()(2)(),(
1 1

312
,, ∑ ∑ −⋅+⋅−⋅+=

= =

−− X Y

YX

m

i

m

j

T
jYXiYXnmnmC yySSxxmmYXτ  (2.15) 

 

where  yx,   and  YX SS ,   are the means and covariance matrices of  nmnm YX
YX ,, ,   

respectively. 
 
The co-skewness is invariant under non-singular affine transformations of the form 
 

T
nmnnmnm

T
nmnnmnm bBYYbBXX

XYYXXX
⋅+=⋅+= 1

~
,1

~
,,,, , (2.16) 

 

with any invertible matrix  nB   and column vector  nb . That is, under (2.16), one has  

),()
~

,
~

( ,,,, nmnmCnmnmC YXYX
YXYX ττ =  (see [3], Appendix A.2).   

 

Proposition 2.1.  Consider  r   random samples  nmnm r
XX ,, ,...,

1
, each with sample mean  nµ   

and sample covariance matrix  nC . Set  ∑=
=

r

k
kmm

1
  and define  ( )TT

nm
T

nmnm r
XXX ,,, ,...,

1
= . 

Then 
 

nnm
T

nm
T
nnm

T
m CXXmXm =⋅⋅=⋅⋅ −−

,,
1

,
1 ,1 µ ,   (2.17) 
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1
,

1
,

,,
22

1
,

22
,

∑⋅=

∑ +⋅+∑⋅=

=

−

<

−

=

−

r

k
nmMknmM

r

k
nmnmCk

r

k
nmMknmM

k

kk

XmmX

YXmmmXmmX

κκ

τττ
l

l
l

 (2.18) 

 
Proof. See [3], Appendix A.3.   
 
The equations (2.17) state that sample means and covariance matrices are preserved under sample 
concatenation of smaller samples with identical sample means and covariance. In particular, a 

large exact moment simulation, which targets a given covariance matrix  nC , can be constructed 

by concatenating many smaller exact moment simulations, each with the same target covariance 

matrix  nC . 

 
However, the equations (2.18) show that skewness and kurtosis will be preserved under sample 
concatenation only under much more restrictive conditions. Firstly, the kurtosis will be preserved 
by concatenating smaller samples with equal size and identical kurtosis. This implies that the same 
L matrix must be used for each smaller simulation, so that 
 

n
TTr

nnm
T

nnm
T
nrmnrm BRLRLmX ⋅⋅⋅⋅+⋅= ))(,...,)((1 )(

,
)1(

,, µ .  (2.19) 

 
The behaviour of skewness is more complex due to the co-skewness terms in (2.18). Since  

4/)(),( ,,, nmMnmnmC XXX ττ =   one sees that  )()( ,, nmMnrmM LX ττ =   provided 

 

nn
TT

nm
T

nm
T
nrmnrm BRLLmX ⋅⋅⋅+⋅= ),...,(1 ,,, µ .   (2.20) 

 

3 Application to Market Value-at-risk (Market VaR) 
 
ROM simulation may be potentially applied to any problem that can be resolved with Monte Carlo 
simulation. In general, these kinds of problems require the forecast of future multivariate 
distributions using historical or scenario sample data. It is shown how ROM simulation applies to 
VaR estimation, which is a main industry benchmark to assess financial risk, and how to get some 
useful semi-parametric analytical sample approximations to VaR. 
 
3.1 ROM VaR Methodology 
 
Suppose a portfolio with  n   risk factors is given. Its target mean vector of returns is  nµ   and its 

covariance matrix is nC . A sample matrix  nmX ,   with  nm >   is generated using a ROM 

simulation of the form (2.5). It represents  m   observations for the returns  nXX ,...,1   on the 

portfolio’s  n   risk factors and generates  m   observations of the overall portfolio return  
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∑=
=

n

j
jXS

1
  through miXS

n

j
jii ,...,1,

1
, =∑=

=
. ROM VaR considers the mean, variance, 

skewness and kurtosis sample characteristics  )ˆ,ˆ,ˆ,ˆ( ,2
2

SSSS γγσµ   of the portfolio return 

calculated as 
 

.)ˆ(
)3)(2(

1
3)ˆ(

)3)(2)(1(
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m

S
m
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m
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σ
κ

γ

µκ
σ
κ

γ

µσµ

(3.1) 
 
Under the usual MVN assumption the portfolio’s ROM VaR is calculated as 
 

[ ] ,ˆˆ εε σµ zSVaR sS ⋅+−=                               (3.2) 

 

with  ( )εε −Φ= − 11z   the  ε -percentile of the standard normal  and  ε   the probability of loss. 

Typically, the covariance matrix  nC   has a big impact on (3.2) because  nn
T
nS C 11ˆ 2 ⋅⋅≈σ . 

Since VaR is a lower quantile of the return distribution it is also much dependent upon the 
variation of skewness and kurtosis. To take this effect into account it is possible to specify either 
parametric analytical distributions of return (see [7], Section 2.1, for some useful choices) or adopt 
a semi-parametric approach that does not assume a specific distribution but accounts for non-
trivial higher moments. Since parametric models suffer from model risk we consider only a semi-
parametric approach based on the skewness and kurtosis, namely the Cornish-Fisher VaR 
approximation (Section 3.2) and an approximation based on the Chebyshev-Markov VaR upper 
bound (Section 3.3). 
 
We note that the (non-parametric) historical VaR could also be used because it obviously takes 
into account the historical skewness and kurtosis However, as already mentioned in the 
introduction, the limitation to historical observations implies that history will repeat itself. With 
ROM VaR it is possible to simulate a very large number of realized risk factor returns that are all 
consistent with the observed historical sample moments. Moreover, we can stress test risk factors 
under adverse market conditions by targeting other sample moments that are consistent with 
periods of financial crisis.  
 
For the above reasons we choose a ROM VaR simulation, where the deterministic L matrix is 
chosen to reflect the risk manager’s point of view on Mardia kurtosis while still preserving its 
historical observed value as well as other properties of the historical data. As seen in Section 2.2, 
equation (2.19), to control the Mardia kurtosis with a deterministic L matrix, say the Helmert-
Ledermann matrix (2.4), we choose a concatenated ROM sample of the form 
 

n
TTr

nnp
T

nnp
T
nrpnrp BRLRLpX ⋅⋅⋅⋅+⋅= ))(,...,)((1 )(*

,
)1(*

,, µ ,  (3.3) 
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where  )()1( ,..., r
nn RR   are different random orthogonal matrices. For this, we know by (2.10) that  

)2()()( *
,, −⋅≈= pnLX npMnrpM κκ . Therefore, to target a kurtosis of  

0),2()1( ≥+⋅⋅+ ββ nn , where  0=β   corresponds to the Mardia kurtosis of a MVN 

model (e.g. [3], Proposition 2.3)), the parameter  p   is set equal to the nearest integer matching 
the equation 
 

)2()1(2 +⋅++≈ np β .                               (3.4) 

 
3.2 Cornish-fisher VaR Approximation 
 
This semi-parametric approach makes use of the Cornish-Fischer [27] expansion. For a random 

variable  S   with mean Sµ , variance 2
Sσ , skewness  Sγ  and kurtosis  S,2γ , which represents 

here a profit, one has the following Cornish-Fischer VaR approximation (CF VaR) (e.g. [28] or 
[1], IV.5.3.3, for the context of delta-gamma-normal approximation): 
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( ) ( ) ( ) ,52

36
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3
24
1

1
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1

,

23
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32
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CF

CF
SS

CF

zzzzzzz

zSVaR

γγγ

σµ

εεεεεεε

εε

⋅−−⋅−+⋅−+=

⋅+−=
 (3.5) 

 

with  ( )εε −Φ= − 11z   the  ε -percentile of the standard normal distribution. The Cornish-

Fisher approximation consists to transform the quantile of a normal law into the realization of a 

random variable  S   with non-vanishing skewness and kurtosis such that  )()( εzSFS Φ= . To 

be well-defined such a transformation must be one-to-one. A necessary and sufficient condition 

for this is the non-vanishing of the derivative  εdzdS/ , which holds provided the following 

inequality is satisfied: 
 

( ) ( ) 014 936
5

868

22
,2

2
,2 ≥−+−⋅−⋅ ⋅ SSSSS γγγγγ

.                     (3.6) 

 

In practice  Sγ   and  S,2γ   are small and  S,2γ   is positive, hence the condition is often fulfilled. 

 
3.3 Chebyshev-Markov VaR Upper Bound and Robust Approximation 
 
Since Chebyshev and Markov it is possible to construct universal semi-parametric bounds for the 
evaluation of VaR (and expected shortfall) based on the first few moments of higher order. Rather 
simple and practical analytical bounds, which are based on the mean, variance, skewness and 
kurtosis of the portfolio loss distribution, have been derived in [29], Theorems 4.1, 4.2 and 
Corollary 4.1 (see also [30,31], Section 2.4). In general, one has the following implicitly defined 
Chebyshev-Markov VaR (CM VaR) upper bound: 
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 (3.7) 

 
Since this upper bound takes into account the extreme effects that skewness and kurtosis may have 
on VaR, it is clearly only a crude upper bound. In the limiting case of a normal distribution with  

0,2 == SS γγ   one gets as special case  ( )4
1

32
ε

ε
ε

−=CMz , which considerably overestimates the 

true normal VaR coefficient  )1(1 εε −Φ= −z . It is possible to transform this upper bound into a 

more robust formula. Roughly speaking a model is robust when a small change in the assumptions 
does not produce big changes in the results. A simple device to adjust the upper bound (in order to 
get a robust version of it in the normal case) is through a multiplication factor, chosen here as the 
ratio of these two coefficients. We get the robust Chebyshev-Markov VaR approximation (robust 
CM VaR): 
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CM
SS

RCM z
z

SVaR ε

ε
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ε
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− 4
1

32
.                    (3.8) 

 
In the special case of a symmetric distribution with vanishing skewness  0=Sγ , one has the 

explicit symmetric Chebyshev-Markov VaR upper bound (sym CM VaR) ([29], Example 4.1): 
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Similarly to the preceding situation, one gets the robust symmetric Chebyshev-Markov VaR 
approximation (robust sym CM VaR): 
 

[ ]
( )

SCM
SS

RSCM z
z

SVaR ε

ε
ε

ε
ε σµ ⋅⋅+−=

− 4
1

32
.                       (3.10) 

 

4 A Numerical Case Study 
 
The present Section illustrates the ROM VaR simulation method. Given the mean vector and the 
covariance matrix of the risk factor returns, the Mardia kurtosis of portfolio returns is targeted as 
explained in Section 3.1. Based on the simulated mean, volatility, skewness and kurtosis of the 
portfolio return, VaR is estimated using the Cornish-Fisher VaR approximation, the Chebyshev-
Markov VaR upper bound and its two robust approximations. 
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For a number of risk factors  { }10,6,5,4,3∈n   we generate 000'10=⋅= prm  concatenated 

ROM samples of the type (3.3) with { } npp >∈ ,20,16,10,8 , and random upper Hessenberg 

orthogonal matrices  )()1( ,..., r
nn RR   as specified in (2.13)-(2.14). For simplicity, we assume a 

zero-mean vector of returns nn 0=µ . This assumption is made in the Risk Metrics VaR 

methodology (e.g. [1], IV.2.10.3)), which should be compared in practice with the present 
approach. For illustration only, we use the following full-rank column-homogeneous angles 

parameterization of the correlation matrix  )( )(n
ijn ρρ =   by [32]: 

 

( )( ) ( ) ( ) ( ) njik
n

ji
ji

n
ji

ji
n

ij ≤≤−∈+
−

−
−−= −

−

,1,1,1,
1

1
11 1

1

22)( ααα
αα

αα
ααρ .   (4.1) 

 

In this situation, the spectral decomposition  n
T
nn bb ⋅=ρ   with  )( )(n

jin bb =   reads 

 

( ) { }
12

1
2)( 1 −

<

−= j
i

dj

i
n

jib αα .                                             (4.2) 

 

Further, we assume a constant vector  T
n )1.0,...,1.0(=σ   of standard deviations of returns, so 

that the spectral decomposition of the associated covariance matrix  

n
T
nnn

T
nn BBC ⋅=⋅⋅= σρσ , )( )(n

jin BB = , is given by  i
n

ji
n

ji bB σ)()( = . The vector  

),...,( 1
)(

n
n ααα =   of constants in (4.1)-(4.2) is taken from the following specification: 

 

)0,5.0,0,5.0,0,5.0,0,5.0,0,5.0(),...,( 101
)10( −−−== ααα . (4.3) 

 

Once a ROM simulated sample of returns  nmX ,   has been generated, the overall sample portfolio 

returns miXS
n

j
jii ,...,1,

1
, =∑=

=
, as well as the sample characteristics (3.1), are calculated. 

Table 4.1 summarizes the results and displays corresponding VaR approximations for the small 
probability of loss  005.0=ε   (Basel III and Solvency II compatible). 
 
The following observations can be made. While the normal linear VaR (3.2) remains for fixed  n  
(up to MC errors) rather stable across choices of np > , the CF VaR (3.5) and the CM VaR 

(3.7)-(3.8) vary much with  p . Since the kurtosis is increasing with  p   one expects that VaR is 

also increasing with  p   in agreement with increased risk by increased kurtosis. This is true for 

the CM VaR approximations but not for the CF VaR approximation (a counterexample is the pair 
(6, 8)-(6, 10)). Since for small kurtosis the CF VaR can be below the normal VaR, one also 
observes that the CF VaR might discriminate too much with respect to normal VaR. Since the CM 
VaR approximations are above or at least close to the normal VaR for the robust CM VaR, these 
approximations do not share this disadvantage. On the other hand, the CM VaR upper bound (3.7) 
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might be too conservative to be useful in practice. The robust CM VaR lies often on the safe side 
with respect to the CF VaR and appears to be a reasonable compromise. Whether the above 
observations remain true in more general settings is open for further investigation. 
 
Example 4.1:  VaR approximations using sample concatenated ROM simulation, 005.0=ε  
 

 
 
As an important remark, one can state that the considered combined ROM VaR semi-parametric 
approach clearly demonstrates the important variability of VaR due to higher than normal kurtosis 
in portfolio returns. Unlike parametric models like Student t, normal mixture and Student t 
mixture models, this approach does not suffer from model risk and is an appropriate 
complementary substitute of the normal linear VaR model, which is not able to capture non-
normality effects. Moreover, the simplicity and reasonable performance of concatenated ROM 
simulation competes well with a general MC VaR method that includes non-linear (via delta-
gamma approach) and non-normality effects. 
 
In practice, one should compare the above proposals with the Risk Metrics VaR methodology (as 
already stated above) and other methods like the Gram-Charlier approximation and the delta-
gamma approach. An example for the latter is found in [1], IV.5.3.3, who comments also on 
comparing it with the Cornish-Fisher VaR. In particular, one should take care of highly leptokurtic 
data by using appropriate parametric statistical distributions that enable the use of skewness and 
kurtosis. A very tractable possibility is Johnson’s distribution (e.g. [1], Example IV.5.2, [33], 

sample characteristics of portfolio return VaR sample approximations

Normal CF VaR CM VaR robust CM

(n,p) appr. (3.2) appr. (3.5) appr. (3.7) VaR (3.8)

(3,8) -0.00090 0.27943 -0.72004 1.10760 0.72067 0.56673 1.23146 0.71101

(3,10) -0.00197 0.28019 -0.92752 2.50553 0.72369 0.61086 1.31745 0.76108

(3,16) -0.00068 0.28020 -1.41438 6.87933 0.72243 0.77055 1.47935 0.85396

(3,20) -0.00075 0.27377 -1.81896 10.15159 0.70594 0.78652 1.49431 0.86262

(4,8) 0.00249 0.37493 -0.71406 1.14419 0.96327 0.76608 1.65659 0.95489

(4,10) -0.00043 0.37501 -0.95445 2.60568 0.96638 0.80929 1.76262 1.01731

(4,16) 0.00293 0.37249 -1.42248 7.10152 0.95655 1.04491 1.97560 1.13879

(4,20) -0.00040 0.37571 -1.75623 10.05203 0.96818 1.13616 2.06661 1.19272

(5,8) 0.00222 0.46503 -0.50198 0.79422 1.19561 1.05113 2.08150 1.20021

(5,10) 0.00169 0.46496 -0.80554 2.32418 1.19598 1.08728 2.21010 1.27464

(5,16) 0.00119 0.47206 -1.23465 6.60437 1.21475 1.45785 2.54250 1.46667

(5,20) -0.00216 0.46816 -1.53516 9.49184 1.20806 1.61382 2.62973 1.51842

(6,8) 0.00060 0.56451 -0.34874 0.63112 1.45349 1.36697 2.56020 1.47713

(6,10) 0.00012 0.55771 -0.73850 2.19073 1.43644 1.34630 2.66379 1.53711

(6,16) 0.00037 0.55892 -1.27634 6.66214 1.43931 1.68324 2.99690 1.72923

(6,20) 0.00217 0.55993 -1.54007 9.81751 1.44011 1.98895 3.16545 1.82573

(10,16) 0.00194 0.94655 -1.11161 5.85605 2.43622 2.91843 5.06326 2.92097

(10,20) 0.00942 0.92664 -1.45863 9.54017 2.37744 3.39026 5.25837 3.03040

Sµ̂ sσ̂ Sγ̂ S,2γ̂
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[34]). Similarly popular are the normal inverse Gaussian and the skew Student t that are applied in 
[7] among many other papers. Further valuable alternatives include the variance-gamma, the 
normal variance-gamma, the truncated Lévy flight and the normal tempered stable distribution 
(see [35,36,37]). The approximation by Silitto [38] has been recommended by [39]. Unfortunately, 
detailed and comprehensive calculations are not within the scope of the present paper. One cannot 
conclude without mentioning the relevance of the present combined ROM VaR semi-parametric 
approach to other risk management topics like credit risk and liquidity risk. 
 

5 Conclusion 
 
In the present paper, the relatively recent and fundamental ROM sampling algorithm has been 
integrated into two semi-parametric methods that take into account skewness and kurtosis in order 
to compute VAR, namely the Cornish-Fisher VaR (CF VaR) approximation and a robust 
approximation to the Chebyshev-Markov VaR upper bound (robust CM VaR). The important 
variability of VaR due to higher than normal kurtosis in portfolio returns is demonstrated by the 
combined ROM VaR semi-parametric approach at a numerical case study. In this study, the robust 
CM VaR variant is often on the safe side with respect to the CF VaR and appears to be a 
reasonable compromise. 
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