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Abstract
Convolutional neural networks (CNNs) offer an alternative to the image cross-correlation
methods used in particle image velocimetry (PIV) to reconstruct the fluid velocity field from the
experimental recording. Despite the flexibility of CNNs, the accuracy and robustness of the
standard image processing remains unsurpassed for general PIV data. As CNNs are non-linear
and typically entail up to millions of trainable parameters, they require large and carefully
designed training datasets to avoid over-fitting and to obtain results that are accurate for a wide
range of flow conditions and length scales. Most training datasets consist of PIV-like data that
are generated from displacement fields resulting from numerical flow simulations, which, in
addition of being computationally expensive, may be able to inform the network only about
relatively few classes of flow problems. To overcome this issue and improve the accuracy of the
velocity reconstructed by CNNs, we propose to train the networks with synthetic PIV-like data
generated from random displacement fields. The underlying idea is that the training dataset
simply needs to teach the network about the kinematic relationship between position and
velocity. These kinematic training datasets are computationally inexpensive and may allow a
much richer variability in terms of length scales by varying the generation parameters. By
training a state-of-the-art CNN, we investigate the accuracy of the reconstructed displacement
and velocity with synthetic and experimental test cases, such as a sinusoidal flow and
wind-tunnel data from a turbulent-boundary-layer and a cylinder-wake experiment. We
demonstrate that kinematic training can drastically improve the accuracy of the CNN and allows
the network to outperform conventional cross-correlation methods, being more robust with
respect to data noise and providing reconstructed velocity fields that have considerably higher
spatial resolution (at pixel level).

Keywords: particle image velocimetry, machine learning, convolutional neural network,
kinematic training
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Nomenclature

u velocity vector field (m s−1)
I image pair matrix (counts)
ds displacement vector field (px)
dt separation time (s)
Ap particle peak intensity (counts)
C constant (—)
D cylinder diameter (mm)
E energy spectra (px2)
I image intensity (counts)
L number of pyramid levels (—)
M magnification factor (pxmm−1)
N number of images (—)
Np number of particles (—)
NL percentage of lost particles between two

consecutive images (%)
Q cross-correlation peak-to-peak ratio (—)
Re Reynolds number (—)
St Strouhal number (—)
a scaling factor (—)
dp particle image diameter (px)
f acquisition frequency (Hz)
k wavenumber (px−1)
l pyramid level (—)
mbatch training mini-batch size (—)
n number of numerical training examples (—)
r number of random training examples (—)
x horizontal image coordinate (px)
y vertical image coordinate (px)

Greek symbols

ξ random vector field (—)
β1 Adam optimization 1st-moment decay rate (—)
β2 Adam optimization 2nd-moment decay rate (—)
ε pointwise instantaneous error (px)
ϵrms root-mean-square error (px)
ϵd disparity error (px)
θ neural network trainable parameters
λ Adam optimization learning rate (—)
µ kinematic viscosity (m2 s−1)
ν dynamic viscosity (Pa s)
ρp particle density (particle per pixel) (ppp)
ρair air density (kgm−3)
σ Gaussian filter size (—)
τw wall shear-stress (Pa)
ω vorticity (s−1)

Operators

ϕ̄ area-averaged ϕ
ϕ̂ interpolated ϕ
C cost volume subnetwork
D decoder subnetwork
E encoder subnetwork
F mapping function
Gσ Gaussian filter function
N neural network
U uniform random distribution
W warping function

Subscripts and superscripts

+ wall-dimensionless
1 frame 1
2 frame 2
∞ bulk
cc cross-correlation (i.e. WIDIM method)
cmb combined dataset
nn neural network
num numerical dataset
ref reference
rnd1 random dataset 1
rnd2 random dataset 2
rnd3 random dataset 3

1. Introduction

Particle image velocimetry (PIV) (Willert and Gharib 1991,
Adrian 2005, Raffel et al 2018) is a well-established optical
technique that measures fluid velocity by recording the pos-
ition of fluid tracers using digital cameras and pulsed light
sources. The displacement of the tracer particles that occurs
during the time interval separating two consecutive realiza-
tions, dt, is reconstructed by means of an advanced cross-
correlation scheme from the two images recording the tracer
positions. This process, which is performed iteratively and
dividing each image into multiple interrogation windows,
allows us to obtain the displacement vector that best describes
the motion of each particle included in each sub-window.
Once the displacement ds is known, the velocity is readily
calculated as u= ds/dt. During the last decades, the method
has been continuously improved (Schrijer and Scarano 2008,
Raffel et al 2018) to obtain the average displacement of the
cluster of particles in each interrogation window with sub-
pixel accuracy.

So far, machine learning methods have not been extens-
ively used in PIV due to the lack of the necessary compu-
tational power and the limited accuracy reported by early
studies (Hassan and Philip 1997, Chen et al 1998, Labonté
2000). However, thanks to the considerable increase graph-
ics processing units (GPUs) performance, machine learning
has improved and several new techniques have emerged in the
field of computer vision that are also suitable for PIV. Con-
volutional neural networks (CNNs) (LeCun et al 1989), for
example, have been used for optical flow detection in computer
vision (Dosovitskiy et al 2015, Ilg et al 2017, Sun et al 2017b,
Hui et al 2018, Hur and Roth 2019, 2020, Liu et al 2019, Teed
and Deng 2020) and, recently, to reconstruct two-dimensional
(2D) fluid velocity fields in a plane (Lee et al 2017, Rabault
et al 2017, Cai et al 2019a, 2019b, 2020, Lagemann et al 2021,
Yu et al 2021). In principle, CNNs are used to learn the func-
tion that maps the intensity distributions of a pair of images to
the displacement vector field, from which the velocity field
can be readily calculated. The success in image processing
and image recognition, where they can outperform handcraf-
ted algorithms at reduced computational cost (Krizhevsky et al
2012, Szegedy et al 2015, He et al 2016, Alom et al 2018),
makes CNNs appealing also for PIV.
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Several approaches have been proposed to reconstruct the
velocity field from the intensity images. Rabault et al (2017)
specifically designed two CNNs to reconstruct both the velo-
city and the Jacobian deformation matrix at the center of sub-
windows with fixed size (i.e. 32× 32 pixels). Their method
closely mimics the conventional PIV output but takes advant-
age of the characteristics of CNN to identify nonlinear depend-
ency. Instead, Cai et al (2019a, 2019b, 2020) and Lee et al
(2017) directly applied existing CNNs, originally designed
for optical flow applications, to determine the velocity field
with pixel-level resolution. More recently, Gao et al (2021)
devised a mixed architecture that combines a conventional
cross-correlation operator with a neural network. Validation
against synthetic data showed a decrease of the reconstruc-
tion error, but the architecture is rather complex, which may
reduce the advantages offered by CNNs in terms of computa-
tional cost.

The success of CNN-based methods depends on an appro-
priate choice of the training sets, which must be informative
and very large in order to reduce the risk of overfitting. Indeed,
due to the complexity and the size of the network parameter
space, CNNs may contain up to millions of trainable para-
meters. In most cases, the networks are trained on synthetic
datasets consisting of image pairs that are generated from dis-
placement fields obtained by means of numerical solutions
of the Navier–Stokes equations (e.g. from the Johns Hopkins
Turbulence Database (JHTDB) (Li et al 2008)). As numerical
simulations of flow problems are computationally expensive,
the training datasets are limited in size (typically in the range
between 104 and 2 × 104 examples (Lee et al 2017, Cai et al
2019a, 2019b, 2020, Gao et al 2021) ). This can lead to overfit-
ting and prediction biases: a network trained only on laminar
flow examples may, for instance, perform poorly for highly
turbulent flows. To overcome this problemwithout performing
costly flow simulations, Rabault et al (2017) trained their net-
works with intensity image pairs obtained from motion fields
that are second-order polynomials with coefficients randomly
sampled from independent uniform distributions. These coef-
ficients describe the Jacobian and the Hessian of the motion
field used to generate the training image and are constant in
the processing window (of size 32× 32 pixels). This data gen-
eration procedure is computationally inexpensive and allows
them to drastically enlarge the size of the training set (which
comprises about six hundred millions of image pairs). How-
ever, the generated displacement fields differ from real PIV
images, in which the Jacobian and the Hessian can vary within
an interrogation window.

In this work, we propose to train neural networks on data-
sets generated by random displacement of the tracer particles.
In its essence, this kinematic training informs the network
about the relationship between two successive positions of the
particles and the corresponding displacement. The approach
may be regarded as a simplified version of the random flow
generation (RFG) technique for inflow boundary condition
generation in large-eddy simulations (LESs) (Smirnov et al
2001, Klein et al 2003). As the particle displacement is

obtained through a simple algebraic technique, the generation
of a large number of training examples is straightforward and
computationally inexpensive. Furthermore, as our approach is
independent of specific solutions to the governing equations
(it is kinematic-based rather than dynamic-based) it has a
potentially larger domain of application. In the following, we
investigate the accuracy of displacements and velocity fields
obtained by processing synthetic or experimental image pairs
using neural networks trained on kinematic random datasets.
We also compare the reconstructed velocity fields with those
obtained with the same network architecture trained on data-
sets generated from numerical flow simulations and with state-
of-the-art PIV methods (i.e. window deformation iterative
multigrid (WIDIM), (Scarano 2001)).

2. CNN for fluid flow velocimetry

A CNN for fluid flow velocimetry is designed to estim-
ate the displacement vector field from images of particle
positions, i.e.

dsnn =N (I;θ), (1)

where N denotes the operation performed by the neural net-
work, I= (I1, I2)⊤ is the pair of particle image intensities
(with I1 and I2 the image intensities at the old and new times,
t1 and t2, respectively), and θ the set of trainable parameters of
the network. The training process aims at determining θ such
that dsnn is the best estimate of the true displacement, dsref.

After the introduction of the pioneering FlowNet
(Dosovitskiy et al 2015), various network architectures have
been proposed to reconstruct the motion of objects from pairs
of recorded images. Recently, the focus has been on light-
weight architectures such as LiteFlowNet (Hui et al 2018,
2021) and PWCNet (Sun et al 2017b). A new class of networks
based on iterative residual refinement (IRR) has also been
introduced to allow the reduction of the number of trainable
parameters and improve the accuracy by iteratively feeding
the output back into the network (Hur and Roth 2019, 2020).
Here, we employ the IRR version of PWCNet, shown in figure 1
and referred to as PWCIRR, which combines a pyramid-feature
encoder E , warping W , cost volume C, and a decoder D to
estimate the flow. In the architecture, the encoder, cost volume,
and the decoder subnetworks are trainable with the specific
subsets of parameters θE , θC , and θD, respectively.

The first step is to encode the pair of particle image intens-
ities I= (I1, I2)⊤ with the pyramid-feature encoder using the
network trainable parameters θE . More precisely, the Siamese-
style subnetwork consists of L levels and generates a pyramid-
feature output such that the level l that has twice the resolution
of the previous level l− 1. Then, the encoded feature I2 of at
level l is dewarped according to the displacement estimate at
the previous level l− 1,

W
(
E l(I2;θE), d̂s

l−1
nn

)
, (2)
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Figure 1. Schematic representation of PWCIRR (Hur and Roth 2019): a Pyramid-Warp-Cost Volume Network (PWCNet) (Sun et al 2017b)
based on iterative residual refinement (IRR).

where d̂s
l−1
nn is obtained from the displacement estimate at the

level l− 1, and is two-time upsampled by bilinear interpola-
tion to match the resolution of E l(I2;θE) for image warping.

Thereafter, the cost volume C operator assesses the
goodness of the previous displacement estimate by cross-
correlating the features of the encoded image at the old time
with the warped features of the image at the new time, i.e.

C
(
E l(I1;θE),W

(
E l(I2;θE), d̂s

l−1
nn

)
;θC

)
. (3)

Once the cost volume is available, the optical flow decoder
D estimates the displacement field at level l. The decoder
requires the feature of the first image, E l(I1;θE), the output
of the cost volume C, and the previous (two-time upsampled)

estimate of the displacement field d̂s
l−1
nn , i.e.

D
(
E l(I1;θE),C

(
E l(I1;θE),W

(
E l(I2;θE), d̂s

l−1
nn

)
;θC

)
,

d̂s
l−1
nn ;θD

)
. (4)

PWCIRR differs from PWC in that the weights of each level
in the optical flow decoder are shared (Hur and Roth 2019),
which reduces the total number of parameters. Thus, the dis-
placement field is iteratively estimated as,

dslnn =D
(
E l(I1;θE ),C

(
E l(I1;θE ),W

(
E l(I2;θE ), d̂s

l−1
nn

)
;θC

)
,

d̂s
l−1
nn ;θD

)
+ d̂s

l−1
nn . (5)

In order to enable the use of the same decoder at each level,
an additional 1× 1 convolution layer is inserted in between
E(I1;θE) and the optical flow decoder D to ensure that the
dimension of the input features matches. Furthermore, a con-
text network is included in the network design. This additional
subnetwork employs dilated convolutional kernels to increase
the spatial-range dependency in the displacement reconstruc-
tion. A more detailed description of E , D and the context net-
work can be found in Sun et al (2017). The pixel level estimate

of the displacement dsnn is obtained after the final iteration (see
figure 2).We note that the image intensities are always normal-
ized before performing the inference with the CNN, spanning
between 0 and 1, as done with the training data.

2.1. Overview of the training datasets

The network parameters are determined by a supervised learn-
ing procedure that trains the network on datasets consisting of
pairs of particle image intensities (I= (I1, I2)⊤) and the cor-
responding displacement vector fields (dsref), from which the
velocity field is readily calculated dividing by the separation
time. To train the network for accurate reconstruction of the
velocity field, large training datasets are required.

In general, the training datasets are created starting from a
numerically generated velocity field, from which pairs of syn-
thetic particle image intensities are obtained.We consider vari-
ous training datasets, which are summarized in table 1, and
compare their performance in training the network to estim-
ate the velocity field for both synthetic and experimental test
cases. In previous studies, the training displacement fields
were obtained from analytical flow solutions (Li et al 2008,
Cai et al 2019b). Similarly, we consider a numerical training
dataset (num) that consists of analytical flow solutions such as
uniform flow, shear flow, and Lamb–Oseen vortex, and data
from the JHTDB (see table 2).

Here, we propose to train the network with datasets gener-
ated from random displacement fields. These datasets can train
the network to identify the kinematic relationship between
two successive tracer particle positions and the correspond-
ing displacement and velocity fields, regardless of the under-
lying dynamics of the physical process. These datasets have
the advantage that they can be generated at a relatively
inexpensive computational cost and that their size can be arbit-
rarily increased. We consider three random datasets for kin-
ematic training of the network containing an increasing num-
ber of training examples, i.e. rnd1, rnd2, and rnd3, each of
which has twice the number of examples as the previous one
(see table 1). Finally, we also consider a dataset (cmb) that
combines the data of rnd1 and num, hence having the same
size as rnd2.

4
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Figure 2. Illustration of the reconstruction of the displacement by iterative residual refinement (IRR) (equation (5)): (a)–(g) the
magnitude of the displacement, |dsnn| (px), at level (l) is predicted from the output of level l− 1; (h) reference displacement magnitude
|dsref| (px).

Table 1. Composition of the datasets used to train the network. The numerical dataset, num, comprises image pairs generated from
analytical solutions and numerical solutions of the Johns Hopkins Turbulence Database (JHTDB) (see table 2); rnd1, rnd2, and rnd3
contains only image pairs generated from random displacement fields; and cmb includes combines rnd1 and num. The last column gives
number of random (r) and numerical (n) pairs in each dataset.

Name Dataset Number of samples (—)

num Numerical dataset: analytic + JHTDB (see table 2) 9139n
rnd1 Random dataset 9139r
rnd2 Large random dataset (2×) 18278r
rnd3 Very large random dataset (4×) 36556r
cmb Combined random (rnd1) + numerical (num) 9139 r+ 9139n

In section 2.2, we describe in detail the generation of the
random-displacement datasets for kinematic training (rnd1,
rnd2, and rnd3), which consists of the generation of the dis-
placement field and the generation of the particle image pairs

from the displacement. To create the realizations of the num
dataset, we employ the same image generation process, but
the displacement fields are calculated from numerical or ana-
lytical velocity fields that are solutions to flow problems.
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Table 2. The numerical dataset, num, is similar to the training dataset used by Cai et al (2019b) and contains image pairs generated from
analytical solutions of flow problems and from the numerical solutions of the Johns Hopkins Turbulence datasets (JHTDB; (Li et al 2008)).

Dataset type Number of samples (—)

Uniform 1000
Shear 1000
Lamb–Oseen vortex 1000
JHTDB (isotropic turbulence) 5000
JHTDB (turb. channel) 2000
JHTDB (MHD) 1024

Figure 3. Generation of the training data from a random displacement field: (a) magnitude of the uniform random displacement, |ξ|;
(b) generated displacement field, dsref (vectors), and its magnitude, |dsref| (color scale), obtained after applying a Gaussian filter of size
σ= 5 px and a linear transformation scale factor a= 8.

2.2. Generation of the kinematic training datasets

To train the network for identifying the kinematic relationships
between the successive particle positions and the correspond-
ing velocity field, we developed anRFG that produces PIV-like
images from kinematic motion data. The algorithm is similar
to the techniques that are used to generate inflow boundary
conditions in LES (Smirnov et al 2001, Klein et al 2003).
First, we generate a 2D random vector field by independently
sampling each random velocity component, ξi∈{x,y}, from a
uniform distributionU(−1,1); then, each component is passed
through a Gaussian filter of size σ, ξ̄i = Gσ ∗ ξi, to obtain a vec-
tor field that has finite correlation length; and finally, the velo-
city is scaled by a factor a to obtain the reference vector field,
dsref = a ξ̄.

To increase the variability of the displacement field and
enrich the information contained in the training set, for
each realization the filter size and the scaling factor are
sampled from a uniform distribution, i.e. σ ∼ U [σmin,σmax]
and a∼ U [amin,amax], respectively. The parameters of the uni-
form distributions are reported in table 3, whereas figure 3
shows an example of the random kinematic displacement
fields that are provided by the algorithm starting from an initial
random distribution.

Once a displacement field is obtained, we generate the pairs
of particle images using a synthetic image generator that is
similar to the ones proposed by Lecordier and Westerweel
(2004), Armellini et al (2012). First, we create the image

intensity at the old time, I1, by seeding the image domain with
Np tracer particles such that we achieve the desired particle
density ρp (ppp) (i.e. particle per pixel). Then, we model each
particle intensity as a 2DGaussian distribution (see, e.g. Raffel
et al 2018),

Ip(x,y) = Ap exp

(
−
(x− xp)2 +(y− yp)2

(1/8)d2p

)
, (6)

where Ap is the maximum particle intensity, (xp,yp) is the
particle center expressed in pixel, and dp (px) is the particle
image diameter. The image intensity at the old time is obtained
by adding the contribution of each particle,

I1 =
∑
p∈Np

Ip. (7)

To obtain the image intensity at the new time, I2, we first
employ a multistep approach to move the particles according
to the local value of the generated displacement field that they
encounter along their trajectories. During the motion, a frac-
tion of the tracer particles is randomly removed and replaced to
mimic the particle loss, NL (%), between the two image pairs,
which is unavoidable in real experiments. After the particle
positions at the new time have been determined, the new image
intensity field, I2, can be obtained in the same manner as done
for I1.

6
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Table 3. The range of particle properties and random displacement
field settings used for synthetic particle image generation.

Parameter Min Max

Filter size σ (px) 5 100
Scale factor a (—) 0 16
Particle diameter dp (px) 1 4
Seeding density ρp (ppp) 0.05 0.40
Particle loss NL (%) 0 2

For each training dataset, we varied the particle seeding
properties dp, ρp, and NL according to table 3. We remark that
the percentage of lost particles, the flow field scale factor and
the filter size have a uniform random distribution, while for
a given image particle diameter there is a realizable range of
particle density. Indeed, for a given particle size dp, there is
an upper limit for the particle density ρp,eff above which indi-
vidual particles cannot be distinguished.

2.3. Training strategy and data augmentation

To improve the generalization of the network, the training
datasets are augmented during the training process by means
of random translations, scaling, rotation, reflection, bright-
ness change, and additive Gaussian noise, which represents
image background noise observed during real-world setup. In
this study, we use the same data augmentation settings as in
previous studies (Ilg et al 2017, Hui et al 2018, Cai et al
2019b, 2020). The network is trained on 8CrayXC50 compute
nodes at CSCS (Swiss National Supercomputing Center), each
equipped with one Nvidia Tesla P100. The training time for
200 epochswith 18 278 images is approximately 123 h (5 days,
2 h, 50min) with the eight-node setup. The objective func-
tion training optimization is performed by means of the Adam
optimization method with β1 = 0.9, β2 = 0.999, a mini-batch
size mbatch = 4 and an initial learning rate λ = 1 × 10−4. The
learning rate is halved at epochs [60, 80, 100, 120 and 140].

3. Results and discussions

We consider three test cases to assess the performance of the
trained CNN: (a) a spatial resolution study aiming at retriev-
ing an analytical sinusoidal displacement field; (b) an exper-
imental study of a turbulent boundary layer (TBL), which
includes the uncertainty quantification of the estimated velo-
city field; and (c) an experimental study of a cylinder wake
with uncertainty quantification. For all three test cases, we
compare the displacement and velocity fields estimated by
the CNN with those obtained by convectional PIV cross-
correlation using the WIDIM scheme (Scarano 2001, Schrijer
and Scarano 2008) as implemented in Davis 10 (LaVision).
Hereafter, we use the subscripts num, cmb, rnd1, rnd2, and
rnd3 to indicate the dataset (see table 1) that has been used
to train the CNN for estimating the displacement (or velo-
city) field, i.e. we write dsnum, dscmb, dsrnd1, dsrnd2, and dsrnd3,
respectively. Similarly, the subscript cc indicates the displace-
ment field obtained with WIDIM, i.e. dscc.

3.1. Spatial resolution study: sinusoidal flow

The ability to resolve coherent velocity structures at different
scales from the image pairs is a key feature of PIV. To assess
the accuracy of the estimated displacement fields, we consider
a multi-wavelength vortical displacement field defined by the
sinusoidal function,

dsref =
(
3cos(φ)sin(γ)
3sin(φ)cos(γ)

)
, (8)

where we define

φ(x,y) = 22exp

−

√
2
√
(x− 256)2

128

 , (9)

γ(x,y) = 22exp

−

√
2
√
(y− 256)2

128

 . (10)

The distribution plot of dsref as defined by equation (8) is
shown in figure 4(a). The maximum magnitude of the dis-
placement is 3 px, and the structures with the shortest spatial
wavelengths are placed in the center of the domain to ensure
that boundary artifacts are not affecting the detection of the
smallest flow features. Figure 4 plots the maps of the dis-
placement estimated by Nrnd1, Nnum, and WIDIM (i.e. dsrnd1,
dsnum, and dscc, respectively) with the reference displacement,
dsref. For WIDIM we employ an initial interrogation window of
64× 64 px and a refinement step of 8× 8 px; the vector valid-
ation is based on the peak-to-peak ratio criterion and the nor-
malized median filter (NMF, (Westerweel and Scarano 2005))
with a 5× 5 kernel. In this specific case, the image pairs had
a particle density ρp = 0.1 ppp, particle diameter of dp = 3 px,
and no Gaussian noise is added.

By comparing the plots in figure 4 we observe that Nnum

is unable to correctly reconstruct small-scale vortical struc-
tures and has lower accuracy than WIDIM; in contrast, Nrnd1

allows reconstructing a significantly higher level of small-
scale details of the displacement field.

3.1.1. Error assessment. To quantitatively assess the dis-
placement error, we generate N= 100 pairs of image intens-
ities with the same seeding properties and use each pair to
estimate the displacement. For each method, we calculate the
pointwise root-mean-square error ϵrms (px) of the estimated
displacement field defined,

ϵrms =

√
1
N

∑
i∈N

|dsref − dsmethod|2i , (11)

and the average error, ϵ̄rms, as the spacial average of the point-
wise error. (In equation (11), method ∈ {num, cmb, rnd1,
rnd2, rnd3, cc} denotes the method used to estimate the dis-
placement field.) The distribution plots of ϵrms correspond-
ing to the displacement fields obtained with the CNN trained
on different datasets and with WIDIM are shown in figure 5,
whereas the average errors are reported in table 4.
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Figure 4. Spatial distribution of magnitudes of the displacement fields: (a) reference, |dsref| (px); (b) reconstruction by WIDIM,|dscc| (px);
(c) reconstruction by Nnum, |dsnum| (px); (d) reconstruction by Nrnd1, |dsrnd1| (px). The reference particle settings used for assessment are
ρp = 0.1 ppp, dp = 3 px, and σ = 0% (i.e. no Gaussian noise).

Figure 5. Spatial distribution of point-wise root-mean-square error, ϵrms, for the displacement estimated (a) by WIDIM; (b)–(f) by the CNN,
N , trained on different datasets (see table 1). The point-wise error is calculated as the average of the estimates obtained from 100 image pair
samples with reference seeding properties ρp = 0.1 ppp, dp = 3 px, and no Gaussian noise.
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Table 4. Spatial average of the root-mean-square error, ϵ̄rms,
calculated from a set of 100 samples of displacement fields
reconstructed by WIDIM or by N (trained on different datasets, see
table 1) with the following seeding properties: ρp = 0.1 ppp,
dp = 3 px, and σ = 0%.

Method Average RMSE ϵ̄rms (px)

WIDIM 0.29
Nnum 0.60
Ncmb 0.21
Nrnd1 0.23
Nrnd2 0.20
Nrnd3 0.18

All the estimated displacements show the largest error
(above 0.5 px) in regions characterized by the smallest vor-
tex cores (i.e. mostly in the central region of the domain). The
displacement obtained by training the CNN with the datasets
consisting of flow solutions, dsnum, is the least accurate, with
the largest average error, ϵ̄rms = 0.6px, and a large portion
of the domain exhibiting large errors. The errors are sens-
ibly reduced if the CNN is trained with datasets that include
examples generated from random-displacement fields. In par-
ticular,Nrnd1 allows us to estimate the displacement withmuch
greater accuracy than Nnum even if it employs a dataset that
contains the same number of samples. This suggests that kin-
ematic training is more effective in training the CNN for velo-
city estimation than the dataset obtained from flow-problem
solutions.

If we supplement the num dataset with data generated from
random-displacement fields (i.e. we use the cmb dataset), the
large-error region is reduced and ϵ̄rms drops to 0.21 px. Notice,
however, that a better accuracy can be achieved by increas-
ing the size of the random datasets, i.e. training the network
with the rnd2 and rnd3 datasets, which reduce the average
displacement error to 0.20 px and 0.18 px, respectively. We
observe that the accuracy gain obtained by enlarging the ran-
dom dataset tends to decrease with the dataset size. Indeed,
doubling the dataset size from 9139 (rnd1) to 18 278 (rnd2)
samples yields a reduction of the average error from 0.23 px to
0.20 px, whereas doubling the size further to 36 556 samples
(rnd3) reduces the error to only 0.18 px, despite a significant
increase in the training cost. This suggests that the amount of
information that the CNN is able to extract from the kinematic
training datasets tends to saturate with the size, at least for the
range of parameters that we have used for the dataset genera-
tion (see table 3). A more effective improvement in accuracy
may require, for instance, reducing the Gaussian filter size, σ,
which may allow the CNN to better estimate the smallest dis-
placement structures.

Finally, we observe that all CNNs that have been trained
with datasets generated by random kinematic motion provide
a better displacement estimate than WIDIM (see figure 5 and
table 4). Employing larger training datasets (i.e. rnd2, rnd3,
or cmb), the CNN yields a reduction of the average displace-
ment error, ϵ̄rms, in the range between 28% and 38% with
respect to WIDIM. This demonstrates the effectiveness of the

kinematic training and the potential to achieve higher accuracy
than conventional PIV post-processing in the case of real
experimental data.

3.1.2. Spatial dynamic range. In order to assess the capab-
ility of the different methods to retrieve small-scale coherent
structures, we calculate the spatial energy spectra, E(k), as a
function of the spatial wave number, k, according to the defin-
ition given by Pope (2000). Figure 6 shows the plots of E(k)
in image coordinates, calculated from the data in figure 5.

The spectra obtained using the Nnum dataset significantly
deviates from the true spectra for k > 7 px−1. If compared
with the spatial dynamic range of WIDIM, Nnum displays lar-
ger errors that bias the measurement also for coherent struc-
tures of fairly large sizes. On the contrary, employing data-
sets that include samples generated for kinematic training
(i.e. cmb, rnd1, rnd2, or rnd3) allows the CNN,N , to detect
small-scale features with much higher accuracy than WIDIM.
In general, increasing the number of random training samples
enhances the ability of the network to detect coherent struc-
tures of higher wavenumbers, mimicking the true spectrum
up to wave numbers in the order of k= 45 px−1 with rnd2
and rnd3 (cf Ernd2 and Ernd3 with Eref in figure 6(b)). The
spectrum obtained by WIDIM deviates from the true spectrum
at wave numbers in the order of 30 px−1. This is due to the
fact that WIDIM provides estimates of the displacement that
are averaged over each interrogation window. Therefore, if
the interrogation windows contain larger gradients, the aver-
age displacement is not a good estimate of the true displace-
ment. To mitigate this problem, several non-uniform weight-
ing functions (e.g. Gaussian) have been implemented (Astarita
2007); however, the results presented here indicate that the
non-linearity of the CNN is more capable of recovering strong
spatial gradients, self-adapting to the local characteristics of
the displacement field.

3.1.3. Sensitivity analysis. To perform an analysis of the
sensitivity of the estimated displacement to the image intensity
parameters (i.e. particle density, particle diameter, and addit-
ive image Gaussian noise), we vary one parameter at a time
while keeping the others constant (the reference seeding val-
ues are ρp = 0.1 ppp for the particle density, dp = 3 px for the
particle diameter, and no Gaussian noise). For each set of para-
meters, we generate and process a set of 100 images and cal-
culate the average displacement error ϵ̄rms.

Figure 7(a) shows ϵ̄rms as a function of the particle seed-
ing density ρp (ppp). The error increases at low seeding
densities for all methods and training datasets employed. As
they rely on the presence of tracers to retrieve flow motion,
small particle densities do not allow sufficient coverage of
the domain. The displacement estimated by the CNN trained
on the num dataset displays an average error that is roughly
twice the error of the standard method. However, if the train-
ing datasets include samples for kinematic training, the CNN
achieve a better accuracy than WIDIM. Similar observations
can be made about the dependency of the error on the particle
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Figure 6. Radial kinetic energy spectra E (px2) of the sinusoidal flow: reference (black), reconstruction byNnum (red), Ncmb (violet), Nrnd1
(blue dotted), Nrnd2 (blue dashed), Nrnd3 (blue solid), and WIDIM (green). (a) Full-range of the energy spectra; (b) detail of the region
indicated by gray box in (a).

Figure 7. Average root-mean-square error ϵ̄rms (px), calculated from a set of 100 samples of displacement fields and reconstructed by WIDIM
or by N trained on different datasets (see table 1): (a) sensitivity to the particle density, ρp (ppp); (b) sensitivity to the particle diameter, dp
(px); (c) sensitivity to the image Gaussian noise. Baseline properties are ρp = 0.1 ppp, dp = 3 px, and σ = 0%.

diameter (figure 7(b)), for which the error increase at small
values is more pronounced for WIDIM than for the CNN.
Again, large kinematic training datasets allows the highest
accuracy, even compared with classic cross-correlation image
processing.

Finally, we investigate the effect of adding noise to the input
images. As expected, the error increases with the standard
deviation, σ, of the Gaussian noise (figure 7(c)). The accur-
acy achieved by WIDIM is always lower than the accuracy of
the CNN, except if the num dataset is used. Notice that the
average error of WIDIM with σ = 3%–4% is approximately as
large as the error of the displacement estimated by the CNN
with σ in the range between 16% and 19% When the train-
ing datasets include samples for kinematic training (i.e. cmb,
rnd1, rnd2, or rnd3). This suggests that the CNN has super-
ior performance in the case of difficult experimental condi-
tions such as in the presence of laser reflections, low laser
power, or cameras with reduced sensitivity. It is worth noti-
cing that in case of high-noise data (σ > 20%) the CNN trained
with the cmb dataset provides the most accurate estimate of
the displacement. This indicates that, in the case of high-noise
data, combining the numerical dataset with kinematic training
datasets helps prevent the CNN from misinterpreting noise as
displacement.

3.2. TBL

In this section, we investigate the accuracy achieved by
the CNN when applied to estimate the velocity from real
experimental recordings of a wall-bounded TBL flow. The
experiment is performed in the wind tunnel of the Swiss Fed-
eral Laboratories of Material Science and Technology. The
facility has a cross-section of 1.9m× 1.3m (width and height,
respectively) and can operate with a bulk wind speed u∞ ran-
ging from 0.5 to 25m s−1. The imaging setup comprises di-
ethyl-hexyl-sebacat tracer particles of size 1µm obtained with
a Laskin seeding generator, illuminated by Nd:YLF dual cav-
ity laser with a pulse energy of 30mJ at 1 kHz, and imaged
by a 4Mpx high-speed camera. The camera sensor consists of
2016px× 2016px, with a pixel size of 11µm. A magnifica-
tion factorM equal to 40 pxmm−1 is achieved using a 200mm
focal lens with a numerical aperture equal to f/2.8 in combin-
ation with a 2× teleconverter. The separation time is chosen
to obtain a maximum displacement of 16 px at a wind speed
of 2.5m s−1. To compute the average velocity field, a set of
10 000 images is recorded. An a-posteriori analysis shows the
velocity fields displays convergence of the second-order stat-
istics already after 3000 samples. Classical PIV analysis is
performed by means of the WIDIM scheme with background
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Figure 8. Dimensionless mean velocity profiles in the TBL, u+ vs. y+, as a function of the dimensionless distance from the wall, estimated
by WIDIM (green with dots) and by the CNN, N , after training on num (red solid), rnd1 (blue dotted), rnd2 (blue dashed), and rnd3 (blue
solid) datasets. The profiles are compared with the reference profiles obtained from the analytical solution (equation (12)) (black dotted line)
and from DNS (Graham et al 2016) (black solid). For comparison, we also plot the velocity profiles reconstructed by means of CNN
architectures used in previous studies, i.e. PIV-DCNN (Lee et al 2017) (yellow with dots), PIV-liteflownet-en (Cai et al 2020) (red with
dots). Figure (a) illustrates the full-range profiles; figure (b) shows the detail of the region close to the wall and indicated by a gray box in (a).

subtraction, an initial interrogation grid of 96px× 96px, and
a refinement step of 24px× 24px with four passes. Vector val-
idation was performed based on peak-to-peak ratioQ< 1.5 and
NMF with a 3× 3 kernel.

In the TBL the only non-zero component of the time-
averaged velocity is the component parallel to wall, ⟨u⟩, which
has a universal profile (Landau and Lifshitz 1959). In the
immediate vicinity of the wall we have the viscous sublayer
in which the mean velocity increases linearly with the dis-
tance from the wall, y; whereas at a sufficiently large distance
the mean velocity has a logarithmic profile (law-of-the-wall
region or log-law region). If we introduce the friction velo-
city, uτ =

√
τw/ρf (where τw is the shear-stress at the wall

and ρf the density of the fluid), we can define the dimension-
less mean velocity, u+ = ⟨u⟩/uτ , and the dimensionless, wall-
normal coordinate, y+ = uτy/ν (where ν is the kinematic vis-
cosity), and write (Pope 2000)

u+ =

{
y+ y+ < 5,
1
κ logy

+ +C+ 30< y+ < 102 − 103,
(12)

where κ is the von Kármán constant and C+ another constant
of integration. Equation (12) gives the mean velocity profile
in the viscous sublayer and in the log-law region, which are
relied by the buffer sublayer. Notice that, even if no analytical
solution is available for the viscous sublayer, the mean velo-
city profile is universal also in this region (Landau and Lifshitz
1959, Pope 2000) and can be obtained, for instance, by direct
numerical simulation (DNS).

The analytical solutions of the dimensionless mean velo-
city profile in the viscous sublayer and log-law region
(equation (12)) are plotted in figure 8(a) together with the pro-
file obtained from a DNS solution of the TBL (Graham et al
2016) that serve as reference solution in the buffer sublayer.
These reference profiles are compared with the velocity profile
estimated by WIDIM and by the CNN trained with the num and
the rnd3 datasets. Notice that DNS solution has a Reynolds

number which differs from the one of our TBL experiments.
This explains the differences between the DNS solution and
the reconstructed velocity profile: due to the lower Reynolds
number, in the DNS, the log-low region extends further into
the outer layer than in the experiments, in which the departure
from the logarithmic profile occurs closer to the wall. There-
fore, all methods provide fairly accurate velocity profiles at
large distance from the wall (i.e. in the log-law region and
beyond).

Close to the wall, instead, the velocity reconstructed by
Nnum is largely affected by bias errors and deviates from
the reference already in the buffer sublayer, at a distance of
about y+ = 10. Notice that, for the current imaging paramet-
ers and flow conditions, y+ = 1 unit corresponds to y= 5 px.
On the contrary, the CNN trained on kinematic datasets per-
forms better than WIDIM and estimates very well the velocity
profile far into the viscous sublayer. This is demonstrated in
figure 8(b) that shows compares the velocity reconstructed by
Nrnd1, Nrnd2, and Nrnd3 with the analytical and DNS solutions
in the viscous sublayer. Even with the smallest training data-
set (rnd1), the higher spatial dynamic range allows the CNN to
reconstruct the velocity profile down to y+ = 1. Increasing the
size of the kinematic training dataset allows the reconstruction
of an accurate velocity profile down to the wall. Indeed,Nrnd3

is able to satisfactorily match the reference data at y+ = 0.2,
which corresponds to the pixel adjacent to the wall. As cross-
correlation methods require a minimum interrogation window
(with a typical size of 24 px or 32 px), WIDIM is capable of
resolving the velocity profile only down to y+ = 3.

For comparison, the TBL profiles reconstructed in previ-
ous studies that employed CNN architectures (i.e. PIV-DCNN
in (Lee et al 2017) and PIV-liteflownet-en in (Cai et al
2020)) are also plotted in figure 8(a). They are able to match
the analytical and DNS solutions only down to a dimen-
sionless distance from the wall y+ = 10, while they signific-
antly deviate from the reference at smaller distances. Although
these velocity estimates have been obtained from different
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Figure 9. Profiles of the RMS disparity error, ϵd,rms (calculated by
equation (6) in (Sciacchitano et al 2013)): Nrnd3 (rnd3) (blue) vs.
WIDIM (green).

experimental data (Lee et al 2017, Cai et al 2019b, 2020),
which may affect the accuracy, the comparison with our res-
ults suggests that CNN trained on kinematic dataset provides
unprecedented and superior performance in estimating the
mean velocity profile in the TBL.

For the velocity vector fields reconstructed by WIDIM and
by the CNN trained on rnd3 (i.e. Nrnd3), we perform uncer-
tainty quantification through image matching (Sciacchitano
et al 2013), which allows an a-posteriori assessment of the
accuracy by matching (i.e. warping) the particle images using
the estimated velocity field. The method obtain two pre-
dictions of the particle-position image at the mid-separation
time, dt/2, by symmetrically transforming forward the image
at the old time and backward the image at the new time.
Then, the particle centers are detected in both transformed
images and the residual disparity error due to an imper-
fect superimposition of the particle-image positions is cal-
culated. Although this requires image manipulations (such
as warping, peak detection, and peak fitting) that may bias
the assessment, this uncertainty quantification method allows
us to isolate the errors arising from the post-processing of
the images. We refer to the original paper Sciacchitano et al
(2013) for more details about the method. The profiles of
the root-mean-squared disparity error, ϵd,rms (Sciacchitano
et al 2013, equation (6)), are plotted in figure 9. WIDIM is
affected by higher error levels in all regions. Especially near
the wall, Nrnd3 allows greater accuracy, with a minimum
error at the beginning of the viscous sublayer. This demon-
strates that velocimetry techniques based on CNNs are cap-
able of achieving better accuracy than classic cross-correlation
methods.

3.3. Cylinder wake

In the TBL, the time-averaged flow is primarily one-
dimensional and oriented along the streamwise direction.
In order to assess the performance of different velocity-
reconstruction methods and investigate the effects of the dif-
ferent training datasets in the presence of shear flows, we
perform a cylinder wake experiment with the same imaging

hardware and tracers as described in section 3.2. Two different
datasets were recorded at wind speeds u∞ = 0.47m s−1 and
u∞ = 1.07m s−1 for a cylinder with a diameter D= 6mm.
With a magnification factor of 15 pxmm−1 and an acquisi-
tion frequency f = 1 kHz we obtain a mean pixel displacement
of 7 and 14 px. Conventional PIV analysis is performed by
means of WIDIM including background subtraction, an initial
interrogation grid of 64 px × 64 px, and a refinement step of
32 px × 32 px with 50% overlap. Vector validation was per-
formed based on peak-to-peak ratio Q< 1.25 and a NMF with
3× 3 kernel.

To compare the velocity fields reconstructed by Nnum,
Nrnd2 and WIDIM we consider the dimensionless vorticity,
ωD/u∞, which is shown in figure 10 for the two bulk wind
velocities, u∞ = 0.47m s−1 and u∞ = 1.07m s−1, which cor-
respond to the Reynolds numbers Re= 189 and Re= 431,
respectively. All three velocity-reconstruction methods cor-
rectly reproduce the von Kármán vortex street that domin-
ates these flow regimes. However, the vorticity field obtained
by Nnum exhibits significant noise and artifacts, especially at
u∞ = 1.07m s−1 (figure 10(b)). By comparing the vorticity
obtained withNrnd3 and WIDIM we observe a better agreement
between the two scalar fields, but the CNN trained on the kin-
ematic dataset achieves pixel-level resolution and provesmuch
more capable of reconstructing the flow in the presence of high
vorticity gradients, such as in the regions ‘A’ and ‘B’ high-
lighted in figures 10(b), (d) and (f). Notice that WIDIM fails in
characterizing the velocity and vorticity fields in the vicinity
of the cylinder (the white regions in figures 10(e) and (f)).

In figure 11, we plot the longitudinal profiles of the instant-
aneous normalized vorticity extracted at y/D= 0. We observe
that Nnum is affected by noise at u∞ = 0.47m s−1 and, at
u∞ = 1.07m s−1, significantly underestimates the vorticity
peaks reconstructed at x/D= 2, 3.5 and 5.75 by Nrnd3 and
WIDIM. This indicates the limited capability ofNnum to recon-
struct strong flow gradients. In contrast, the kinematic training
dataset rnd3 allows the CNN to be as reliable as WIDIM away
from the cylinder, but offers the possibility of reconstructing
information also close to the cylinder (at x/D< 2) where shear
effects are the largest and the vorticity estimated by WIDIM is
unreliable.

As for the TBL case, we also quantify the PIV uncer-
tainty by calculating the disparity error through image match-
ing (Sciacchitano et al 2013). Figure 12 shows the spatial dis-
tribution of the norm of disparity error, |ϵd| (Sciacchitano et al
2013, equation (4)), as well as the norm of disparity error nor-
malized by the local displacement, i.e. |ϵd/ds|. The error is
calculated on an image pair using the output velocity field
reconstructed by Nnum, Nrnd3 and WIDIM at u∞ = 1.07m s−1.
While Nnum yields considerably higher disparity errors than
Nrnd3 and WIDIM, the latter two show comparable error distri-
butions except in the vicinity of the near-wake of the cylinder
where WIDIM showsmuch larger errors thanNrnd3. In far-wake
regions, the majority of the errors lie below 0.4 px for both
methods (figures 12(c) and (e)). We remark that we are con-
sidering an instantaneous reconstruction of the flow field, and
that, if a disparity error of 0.4 px may seem fairly large, the
relative error of Nrnd3 and WIDIM is mostly below 3%, except
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Figure 10. Normalized vorticity, ωD/u∞, of the flow past a cylinder of diameter D= 6mm for u∞ = 0.47m s−1 (left) and
u∞ = 1.07m s−1 (right). From top to bottom the results obtained by (a), (b) Nnum; (c), (d) Nrnd3; (e), (f) WIDIM.

Figure 11. Longitudinal profile of the normalized vorticity, ωD/u∞, at y= 0 for the velocity fields obtained by Nnum, Nrnd3, and WIDIM:
(a) u∞ = 0.47m s−1 and (b) u∞ = 1.07m s−1.

in high-shear and near-wake regions with strong flow circula-
tion (figures 12(d) and (f)).

Finally, we analyze the temporal characteristics of the velo-
city fields to assess whether they are consistent or affected by
artifacts. We recall that the output resolution of the CNN is
15 vectorsmm−1, whereas it is only about 1 vectormm−1 for
WIDIM. To understand whether the higher spatial discretization

comes with increased measurement noise on the time axis, in
figure 13 we plot the pointwise spectra of the velocity mag-
nitude at (x,y) = (5D,0) for u∞ = 1.07m s−1. Shown are the
spectra corresponding to the velocity estimated byNnum,Nrnd3

and WIDIM, presented as a function of both the frequency, f
and the Strouhal number St= fD/u∞. The plot shows that
Nnum is unable to detect the same amplitude values of the
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Figure 12. Disparity maps of the cylinder wake at u∞ = 1.07m s−1 for the velocity estimated by Nnum (top), Nrnd3 (middle), and WIDIM
(bottom). (a), (c), (e) The magnitude of the absolute disparity error, |ϵd| (px) (Sciacchitano et al 2013, equation (4)); (b), (d), (f) the
normalized magnitude of the disparity error |ϵd/ds|.

Figure 13. The pointwise energy spectra of velocity norm E|u|

(m2 s−2) at (x,y) = (5D,0) for u∞ = 1.07m s−1. Shown are the
spectra corresponding to the velocities estimated by Nnum (red),
Nrnd3 (blue) and WIDIM (green), presented as a function of both the
frequency, f, and the Strouhal number St= fD/u∞.

peaks at 3.9, 35.2 and 140.6Hz and displays a strong decay
of the signal after 75Hz with respect to Nrnd3 and WIDIM.
On the contrary, Nrnd3 and WIDIM show a consistent behavior
and clearly identify four distinct peaks. This demonstrates that
the temporal characteristics of the flow are consistently recon-
structed by the CNN if the training is done on sufficiently large
kinematic datasets.

4. Conclusions

To improve the reconstruction of the velocity from PIV data,
we train a state-of-the-art CNN on datasets that include
synthetic PIV-like images generated by means of random dis-
placement fields. Datasets of this kind allow us to teach the
CNN about the kinematic relationship that links position and
velocity (or displacement) and is at the core of PIV techniques.

These kinematic training datasets offer the advantage that
their size can be easily increased at a much lower compu-
tational cost than training datasets composed of numerical
solutions to flow problems, reducing the risk that a lack of
sufficient training data may lead to overfitting. Most import-
antly, our performance assessment demonstrates that kin-
ematic training is necessary to improve the accuracy of the
velocity fields estimated by the CNN and allows a faith-
ful reconstruction of small-scale flow features that cannot
be recovered by CNN trained on datasets generated only
from DNS of the flow problem. The latter may require
an impracticable number of realizations to allow the net-
work to recover small-scale features. Although they may
teach the network to recognize large-scale dynamic structures,
PIV data are typically acquired at a sufficiently small sep-
aration time and large tracer-particle density to make kin-
ematic information sufficient to reconstruct accurate velocity
fields.

Our synthetic and experimental test cases (including TBL
and cylinder-wake experiments) demonstrate that kinematic
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training allows the CNN to estimate displacement and velocity
fields more accurately than state-of-the-art post-processing
techniques based on cross-correlation analysis (such as
WIDIM). The better performance of the CNN in processing
experimental data is confirmed by the disparity error analysis
and by the observation that WIDIM is unable to reconstruct the
velocity in regions characterized by large shear (e.g. close to
the cylinder in the near-wake). These results are unprecedented
because previous studies, employing machine learning archi-
tectures trained only on synthetic images obtained from DNS
solutions, were unable to match the accuracy of iterative 2D
cross-correlation with window deformation.

It is worth noting that CNNs offer two additional advant-
ages. First, they allow the reconstruction of velocity fields
with pixel-level resolution, which is not attainable by cross-
correlation methods as they rely on the use of relatively
large interrogation windows. Second, they are more robust to
variations of the experimental parameters (e.g. tracer-particle
density and size, and image noise), paving the way for applic-
ations to experimental data with challenging imaging condi-
tions or to a relaxation of the technical requirements on the
imaging hardware (e.g. on camera resolution).

The results of the kinematic training are very promising
and suggest that the impact of the parameters used to gener-
ate the dataset (e.g. filter size, scale factor, particle diameter,
seeding density, and particle loss) should be further investig-
ated to optimize the training strategy. We envision that train-
ing CNN on well-designed combinations of kinematic and
dynamic datasets can push PIV methods far beyond the cur-
rent limits set in terms of separation time, seeding density,
and hardware technical requirements. For instance, kinematic
training may be used to pre-train highly complex networks to
efficiently reconstruct small-scale features; then the network
may be fine-tuned on dynamic flow datasets (generated by
DNS) in order to learn to recognize complex dynamic features.
At the same time, kinematic training can be applied to other
network architectures that are specifically designed for PIV
data and optimized to further reduce the number of network
parameters. Such lightweight networks may be integrated onto
experimental hardware to enable, for instance, on-board pro-
cessing on the cameras and real-time 3D PIV or 3D particle
tracking velocimetry (PTV) analysis.
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