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Abstract 
 
In the present article, we construct the exact traveling wave solutions of some nonlinear PDEs in the mathe-
matical physics via (1 + 1) dimensional Kaup Kupershmit equation, the (1 + 1) dimensional seventh order 
KdV equation and (1 + 1) dimensional Kersten-Krasil Shchik equations by using the modified truncated ex-
pansion method. New exact solutions of these equations are found. 
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1. Introduction 
 
Nonlinear partial differential equations are known to 
describe a wide variety of phenomena not only in physics 
-where applications extend over magneto fluid dynamics, 
water surface gravity waves, electromagnetic radiation 
reactions, and ion acoustic waves in plasma, just to name 
a few- but also in biology, chemistry and several other 
fields. It is one of the important tasks in the study of 
nonlinear partial differential equations to seek exact and 
explicit solutions. In the past several decades, both ma-
thematicians and physicists have made many attempts in 
this direction. Various methods for obtaining exact solu-
tions to nonlinear partial differential equations have been 
proposed. These are some of them: the truncated expan-
sion method [1-4], the simplest equation method [5], an 
automated tanh-function method [6], the polygons me-
thod [7], and the Clarkson-Kruskal direct method [8]. In 
this paper, we use a modification of the truncated expan-
sion method introduced in [9,10] to find the exact solu-
tions of the following nonlinear partial differential equa-
tions in mathematical physics. 

1) The (1 + 1) dimensional Kaup Kupershmit equation [11]: 

2
2 3 5

25
5 5 0,

2
     t x x x x xu u u u u uu u     (1.1) 

2) The (1 + 1) dimensional seventh order KdV Equa-
tion [12]: 
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    

     (1.2) 

where , , , , ,a b c d e f  and g  are arbitrary constants. 

3) The (1 + 1) dimensional Kersten-Krasil Shchik eq-
uations [13,14]: 
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(1.3) 
The modification of this method allows us to trans-

form this system of differential equations to a system of 
algebraic equations. As a result we have essential simpli-
fication of solutions construction procedure. 
 
2. The Modification of the Truncated  

Expansion Method 
 
Let us present the modification of the truncated expan-
sion method [9,10]. 

Suppose we have the following nonlinear partial dif-
ferential equation 

 , , , , , , 0,t x xx xt ttF u u u u u u           (2.1) 

where  ,u u x t  is an unknown function, F  is a 
polynomial in  ,u x t and its partial derivatives in which 
the highest order derivatives and the nonlinear terms are 
involved.  
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The traveling wave variable 

   , , ,u x t Y z z kx t           (2.2) 

where k  and   are constants, permits us to reduce 
Equation (2.1) to an ODE for  u Y z in the form  

 , , , , 0,P Y Y Y Y            (2.3) 

where '
d

dz
 . The modification of the truncated expan-

sion method contains the following steps [9,10]. 
Step 1. Determination of the dominant term with 

highest order of singularity. To find the dominant terms 
we substitute 

  ,pY z z             (2.4)  

into all terms of Equation (2.3). Then we should compare 
the degrees of all the terms of Equation (2.3) and choose 
two or more with the lowest degree. The maximum value 
of  p  is the pole of Equation (2.3) and we denote it by 
N  . It should be noted that this method can be applied 
when N  is an integer. In order to apply this method 
when N  is equal to a fraction or negative integer, we 
make the following transformation: 

1) When 
q

N
g

  , where 
q

g
 is a fraction in lowest 

term we take the transformation    .q gY z z  
2) When N  is negative integer, we take the trans-

formation    .NY z z  and return to determine the 
value of N  again from the new equation 

Step 2. We look for the exact solution of Equation 
(2.3) in the form 

       2

0 1 2 ,
N

NY z a a Q z a Q z a Q z            

(2.5) 
where  0,1, ,ia i N   are arbitrary constants to be 
determined later and  Q z  equals the following func-
tion: 

  1

1 z
Q z

e



            (2.6) 

Step 3. We calculate the necessary number of deriva-
tives of the function  Y z  (using Maple or Mathema-
tica for example). Using the case 2N  , we get some 
derivatives of the function  Y z  as follows: 
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(2.7) 
and so on. 

Step 4. We substitute expressions (2.5)-(2.7) to Equa-
tion (2.1). Then we collect all terms with the same power 
in the function  Q z  and equate the expressions to zero. 

As a result we obtain an algebraic system of equations. 
Solving this system we get the values of the unknown 
parameters. 

This algorithm can be easily generalized to polynomial 
differential equations of any order.  

 
3. Exact Solution of the (1 + 1) Dimensional  

Kaup Kupershmit Equation 
 

The fifth order Kaup-Kupershmit equation is one of the 
solitonic equations related to the integrable cases of the 
Henon-Heiles system. Let us find the exact solutions of 
the (1 + 1) dimensional Kaup Kupershmit equation by 
using the modified truncated expansion method. The 
traveling wave variable (2.2) permits us to reduce Equa-
tion (1.1) to an ODE for  u Y z  in the form 

     

       
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1
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k Y z Y z k Y z C

     

   
    (3.1) 

where 1C  is the integration constant.  The pole order 
of Equation (3.1) is 2N  . So we look for the solution 
of Equation (3.1) in the form: 

      2

0 1 2 ,Y z a a Q z a Q z           (3.2) 

where 0 1,a a and 2a  are arbitrary constants. We substi-

tute Equation(3.2), and the derivative equations (such as 
Equation(2.6) and Equations (2.7)) into Equation (3.1) 

and collect all terms with the same power in   ,
i

Q z    

 0,1, 2,i   . Equating each coefficient of the poly-
nomial to zero yields a set of simultaneous algebraic eq-
uations omitted here for the sake of brevity. Solving 
these algebraic equations by either Maple or Mathemati-
ca, we get the formulae for the solutions of system (3.1) 
as follows: 

Case 1. 
2 5 7

2 2
2 1 0 13 , 3 , , , ,

4 16 96

k k k
a k a k a C         

(3.3) 
where k  is an arbitrary constant. In this case the soli-
trary wave solution takes the following form: 

 
 

2 2 2

1 2

3 3
,

4 1 1
z z

k k k
Y z

e e
   

 
      (3.4) 

where 
5

.
16

tk
z kx   

Case 2.  
7

2 2 2 5
2 1 0 1

26
24 , 24 , 2 , 11 , ,

3

k
a k a k a k k C           

 (3.5) 
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where k  is an arbitrary constant. In this case the soli-
trary wave solution takes the following form: 

 
 

2 2
2

2 2

24 24
2 ,

1 1
z z

k k
Y z k

e e
   

 
     (3.6) 

where 511 .z kx k t   
 
4. Exact Solution of the (1 + 1) Dimensional  

Seventh Order KdV Equation 
 
The seventh-order KdV Equation (1.2) deals with the 
structural stability of the KdV equation under a singular 
perturbation. The traveling wave variable (2.2) permits 
us to reduce Equation (1.2) to an ODE for  u Y z  in 
the form 

 

       

33 3 3 3 3 2
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Y kaY Y bk Y ck YY Y dk Y Y

ek Y Y fk Y Y gk YY k Y

         

     
    

 (4.1) 
The pole order of Equation (4.1) is 2N  . We subs-

titute Equation (3.2), and the derivative equations (such 
as Equation (2.6) and Equations (2.7)) into Equation (4.1) 

and collect all terms with the same power   ,
i

Q z    

 0,1, 2,i   . Equating each coefficient of the poly-

nomial to zero yields a set of simultaneous algebraic eq-
uations omitted here for the sake of brevity. Solving 
these algebraic equations by either Maple or Mathemati-
ca, we get the formulae for the solutions of system (4.1) 
as follows: 

Case 1.  
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 
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(4.2) 

where ,k g  and f  are arbitrary constants. In this case 

the solitary wave solution of Equation (1.2) takes the 
following form 

       
2 2

2
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,
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k k
Y z

g f g f e
 
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 (4.3) 

where 
 
 
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.
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Case 2.  

   
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  

  
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   
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b
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a

 
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 
 

 
 

 


 (4.4) 

where ,k g  and f  are arbitrary constants. In this case 
the solitary wave solution of Equation (1.2) takes the 
following form 

 
     

2 2

2

6895 6895
,

23 6 1 2 23 6 1
z z

k k
Y z

g f e g f e
 

   
 

(4.5) 
where 7 .z kx k t   

Case 3.  

 

1
2 1 0

2 2 2 4 2 2 2
1 1 1 1

4
1

3 2 3
71 1

, ,
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12 48 4 12096
,
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a
a a a

aa dk a fk a ck a k
e

a k

dk a aka
k
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   
 

  

 

6 3 2 2 4
1 1 1

2 2
1

4032 12 96
, 0,

48

k aa dk a fk a
b g

k a

   
     (4.6) 

where 1, , , ,a a k d c  and f  are arbitrary constants. In this 
case the solitary wave solution of Equation (1.2) takes 
the following form 

        
 

 

2
1

2

1 10
,

12 1

z z

z

a e e
Y z

e

  



        (4.7) 

where 
3 2 3

71 1 .
144 1728

dk a aka
z kx t k

 
    

 
 Similarly, we can 
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write down the other families of  exact solutions of Eq-
uation (1.2) which are omitted for convenience. 
 
5. Exact Solution of the (1 + 1) Dimensional  

Kersten-Krasil Shchik Equations 

In this section, we find the exact solutions to the (1 + 1) 
dimensional Kersten- Krasil Shchik Equations (1.3) by 
the modified truncated expansion method. The traveling 
wave variables    ,u Y z W H z   and z kx    
permit us to reduce Equations (1.3) to ODEs for 

 u Y z  and  W H z  in the form 
3 2 2 2

1

3 3
2

3 3 3 0,

3 0,

Y k Y kY k HH kYH C

H k H kH kYH C





       

     
 (5.1) 

where 1C  and 2C  are the integration constants.  To find 

dominant terms we substitute  

  1pY z z and   2pH z z  into all terms of Equation 

(5.1). Then we should compare degrees of all terms of 
Equations (5.1) and choose two or more with the lowest 
degree we have 

         2

0 1 2 0 1, ,Y z a a Q z a Q z H z b b Q z               

(5.2) 

where 0 0 1 1, , ,a b a b and 2a  are arbitrary constants. We 

substitute Equations (5.2) into Equation (5.1) and collect 
all terms with the same power in  

   , 0,1,2,
i

Q z i     . Equating each coefficient of 

these polynomials to zero yields a set of simultaneous 
algebraic equations omitted here for the sake of brevity. 
Solving these algebraic equations by either Maple or 
Mathematica, we get the formulae for the solutions of 
system (5.1) as follows: 

Case 1. 
2 2

2 0 1 0 1 0

3
0 0 1 2 0

2 , 2 , 2 ,

, , 0,

a b a b b b

k ib ib C C a

    

     
     (5.3) 

where 0b  is an arbitrary constant and 1i   . In this 

case the solitary wave solution takes the following form: 

 
 

   
2
0 0

02

2
, ,

11

z

zz

b e b
Y z H z b

ee
  


    (5.4)  

where  3
0 0 .z ib x ib t    

Case 2.  
2 2

2 0 1 0 1 0 0

2 3
0 0 0 1 0 0 2

4 , 4 , 2 , 2 ,

2 ( 3 ), 4 , 0,

a b a b b b k ib

ib b a C ib a C

      

    
   (5.5) 

where 0a  and 0b  are arbitrary constants. In this case 
the solitary wave solution takes the following form: 

 
 

2 2
0 0

0 2

4 4
,

1 1
z z

b b
Y z a

e e
  

 
 

  0
0

2
,

1 z

b
H z b

e
 


          (5.6)  

where  2
0 0 0 02 2 3 .z ib x ib b a t     

Similarly, we can write down the other families of  ex-
act solutions of Equation (1.3) which are omitted for 
convenience. 
 
6. Conclusions 
 
In summary, we may conclude that this method is relia-
ble and straightforward solution method to find the trav-
eling waves of nonlinear partial differential equations. 
This method allowed us to construct the exact solution 
for some complicated nonlinear evolution equation than 
exp-function method. The performance of this method is 
simple, direct and gives more new exact solutions  com-
pared to other method. 
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