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ABSTRACT 
 

This paper aims to model the volatility of the Irish stock market (ISEQ) index price; data used in this 
article include the daily closing prices of ISEQ overall index, from January 1st, 2008 to March 28th, 
2014. The data are observed to be naturally divided into three time frames; the first period from 
January 1st, 2008 to December 31st, 2009, the second from January 1st, 2010 to December 31st, 
2011, and the third from January 1st, 2012 to March 28th, 2014. The volatility is modelled using 
symmetric and asymmetric Generalised Autoregressive Conditional Heteroscedasticity (GARCH) 
models including GARCH, EGARCH, TGARCH, PGARCH and FIEGARCH under the assumption 
that data follow a Normal distribution.  
Comparisons, both of estimations and forecasts of the volatility between GARCH family models 
have been performed. In general, for the whole time frame (1/1/2008–28/3/2014) and for the first 
period, (as specified above), the FIGARCH (1,1) model performs better than the others but, for the 
second period, the PGARCH (1,1,1) model is preferred. For the third period, the best model is 
found to be EGARCH (1,1), so that the ISEQ overall index of volatility does appear to exhibit 
different behaviour in different periods.  

Original Research Article 
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The empirical findings summary, for the GARCH forms that apply for the overall and three sub-
periods, indicate that so-called explosive volatility is present in the ISEQ Overall index returns over 
the extended period. 
 

 
Keywords: GARCH family models; volatility; volatility clustering and persistence. 
 
1. INTRODUCTION 
 
It is well known in financial markets that large 
changes tend to follow large changes, and small 
changes follow small; i.e. financial markets are 
sometimes volatile and sometimes stable. The 
sharply changing behaviour in financial markets 
is usually referred to as the “volatility” and is an 
important concept in different areas of financial 
theory and practice, such as risk management, 
portfolio selection, derivative pricing, etc. (Zivot 
and Wang [1]). In statistical terms, volatility is 
usually measured by the variance, (or standard 
deviation) of the series variable.  
 
The theoretical framework that predicts stock 
market returns behaviour traditionally assumes 
that stock prices reflect all existing information on 
the market status, (asset pricing), (e.g. Fama  
[2,3]). Thus the predictability of stock returns 
relies on an equity efficient market, (with no 
information wasted or ignored) as well as 
underlying equilibrium, with constant expected 
returns. This is clearly unrealistic as, under the 
joint hypothesis of an efficient market and 
constant expected returns, predicting stock 
returns is not meaningful. Rather, the ability to 
make predictions depends on variation, in the 
stock returns over time, or from market 
inefficiency. Ability to predict stock returns does 
not imply the market is inefficient, but rather that 
the joint null hypothesis may involve an invalid 
asset-pricing model, (Klähn [4]). Typically, in 
empirical tests for expected returns, (influenced 
by market risk factors), different forecasting 
variables, both global and local, are employed as 
proxies for risk. Volatility has attracted 
considerable attention in the analysis of financial 
data because it is a numerical measure of the 
risk, faced by individual investors and financial 
institutions. It is well known that the volatility 
often fluctuates over time and tends to cluster in 
periods, i.e., high is followed usually by high, and 
low by low (Abdalla [5]). This phenomenon is 
denoted volatility clustering, and indicates that 
the volatility of the series is time-varying, 
(Lamoureux and Lastrapes [6]). 
 
Modelling the volatility in financial time series is a 
major concern for economics, therefore, and 

many statisticians, economists and financial 
analysts have investigated the historical 
dependencies in the conditional variance of 
financial time series, with the aim of capturing 
and predicting the volatility. These include the 
Generalised Autoregressive Conditional 
Heteroscedasticity (GARCH) model and its 
extensions, which capture remarkable features of 
return series, such as volatility clustering (time 
varying conditional heteroscedasticity), degree of 
persistence, volatility mean reversion and high 
kurtosis, (Zivot and Wang [1]), Lim and Sek [7]). 
The degree of persistence measures consistent 
direction of movement, mean reversion implies 
that non-zero values are incorporated into the 
uncertainty and high kurtosis is well-known to be 
associated with sharp peaking at the mean and 
heavy tails. Unsurprisingly, the demand to 
forecast the absolute magnitude of returns 
(amongst other features) means that a 
considerable body of research now exists on 
volatility models. 
 
Fayyad and Daly [8] investigated the volatility of 
market returns, dynamic conditional covariance 
and dynamic conditional correlation between the 
mature markets of the US and UK and the 
emerging markets of Kuwait and UAE, using a 
multivariate GARCH (MGARCH) model to 
identify the source and magnitude of volatility. 
Their findings showed that daily returns indicated 
volatility clustering as well as leverage effects, 
since both the regional market relation for Kuwait 
and UAE, as well as the global market relation of 
USA and UK, was enhanced during the financial 
crisis. 
 
Subsequently, Ahmed and Suliman [9] used 
GARCH models of symmetric and asymmetric 
form to study the Khartoum Stock Exchange 
(KSE) (i.e. of The Sudan).  Their results showed 
that the conditional variance process is highly 
persistent, and provides evidence on the 
existence of risk premium, which supports the 
hypothesis of positive correlation between 
volatility and the expected stock returns. The 
authors also demonstrated that asymmetric 
models, which take leverage into account, result 
in a better fit to the used data than symmetric 
ones. For the period 2005 to 2010, Arouri et al. 
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[10] investigated also the return linkages and 
volatility transmission between oil and stock 
markets in the Gulf Cooperation Council (GCC) 
countries. A recently generalised VAR-GARCH 
approach was used and results indicated the 
existence of substantial return and volatility 
spillovers, between world oil prices and GCC 
stock markets, of importance for international 
portfolio management in the presence of oil price 
risk. 
 
Other recent work includes that of Goudarzi [11], 
who investigated mean reversion in the returns 
series for the Indian stock market, employing the 
Augmented Dickey- Fuller (ADF) test and a 
GARCH model to study market efficiency. The 
underlying series was found to be stationary (and 
therefore mean reverting) and the authors 
concluded that the Indian stock market is 
informationally weak-inefficient. Further, Bala 
and Asemota [12] studied the volatility in 
exchange–rate return series using GARCH 
models using monthly data for Nigerian Naira/US 
dollar, Nigerian Naira/British Pounds and 
Nigerian Naira/Euro. Estimates of GARCH model 
variants with ‘break’ in US dollar rates, (with 
break points exogenously determined), indicated 
volatility in the three currencies, but also a 
leverage effect, not highlighted in asymmetric 
models without volatility breaks. Both estimation 
and level of persistence were affected in models 
incorporating breaks, with the former improved 
and the latter reduced in most cases. In addition, 
the conditional volatility of the Saudi stock market 
returns were investigated using AR (1)-GARCH 
(1, 1) model, Kalyanaraman [13]. The author 
demonstrated that a symmetric GARCH (1, 1) 
model was adequate to estimate the volatility and 
found that the Saudi stock market returns are 
characterised by volatility clustering, exhibiting 
evidence of time-varying volatility, persistence 
and predictability. The Saudi stock market was 
also found to be highly reactive (nervous) to 
market fluctuations, an important factor in 
investor’s decisions relating to asset allocation 
and risk management strategies.  
 
In what follows, the daily closing prices of the 
Irish stock market (ISEQ) index price are 
analysed over the period from January 1st, 2008 
to March 28th, 2014. Breaks in the overall series 
are identified and GARCH type models (both 
symmetric and asymmetric) are used to explore 
volatility behaviour in the three data segments as 
well as in the overall data. No universal GARCH 
model was found to be applicable to all 
segmented sections of the data, but different 

model variants performed well, while explosive 
volatility does feature in the ISEQ overall index 
returns, with selected properties reported.   
 
2. METHODOLOGY 
 
A first autoregressive, conditionally 
heteroscedastic (ARCH) model, due to Engle 
[14], was subsequently generalised as the 
GARCH model, also proposed independently 
(Bollerslev [15], Taylor [16]). This has been 
shown to perform well for empirical financial time 
series and has given rise to variants, including 
asymmetric exponential GARCH, (Nelson [17]), 
asymmetric threshold GARCH, Zakoian[18]), 
asymmetric power GARCH, (Ding et al [19]), and 
asymmetric FIEGACH, (Bollerslev and Mikkelsen 
[20]). These univariate GARCH model types 
have been shown to be capable of modelling 
time-varying volatility and of capturing many 
stylised volatility features in financial time series. 
 
Models are defined as follows: 
 
2.1 Univariate GARCH 
 
In the GARCH model, conditional variance is 
represented as a linear function of its own lags. 
The simplest model specification is the GARCH 
(1,1) model: 
 

Mean equation  �� = � + ��                             (1) 
 

Variance equation ��� = 	
 + 	������ + 
������  (2) 
 
where ω > 0, α ≥ 0, β ≥ 0, and, 
 
 �� = returns of asset at time t. 
 � = average returns. 
 �� =  residual returns, defined as:                               �� = ���� 
 
where ��  are the standardised residual returns 
(i.e. values of an i.i.d random variable with zero 
mean and variance one), and σt

2 is the 
conditional variance. For GARCH (1,1), the 
constraints α1 ≥ 0 and β ≥ 0 are needed to 
ensure σt

2 is strictly positive. 
 
In this model, the mean equation is written as a 
constant with an error term. The  ���  term is a 
conditional variance, as it is the one period 
ahead forecast variance, (based on past 
information). The conditional variance equation 
(Equn. 2) consists of:  
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• A constant term: 	
 
• �����  (the ARCH term). Information on 

volatility from the previous period, 
measured as the lag of the squared 
residual from the mean equation (Equn. 1).  

• �����   (the GARCH term). The forecast 
variance from the previous period.  

 
This equation models the time-varying nature of 
the volatility of the residuals generated from the 
mean equation (Equn. 1). This specification is 
often interpreted in a financial context, in terms of 
an agent (or trader) predicting the current period 
variance by forming a weighted average 
comprised of a long term average (the constant), 
the forecast variance from the previous period 
(the GARCH term), and information about the 
volatility observed in the previous period (the 
ARCH term). If the asset return is unexpectedly 
large in either the upward or the downward 
direction, then the trader increases the estimate 
of the variance for the next period, (Ahmed and 
Suliman [9]). The EGARCH model variant follows 
from this. 
 
2.2 The Exponential GARCH (EGARCH) 

Model 
 
The exponential nature of the conditional 
variance in the EGARCH model captures the 
effect of external unexpected shocks on the 
predicted volatility. The EGARCH (1, 1) model is 
formulated as: 
 

ln ��� = 	
 + 
� ln ����� + 	� ������
����� − ��

�� − � ����
���� (3) 

 
where γ is the asymmetric response or leverage 
parameter. The sign of γ is expected to be 
positive in most empirical cases, so that a 
negative shock increases future volatility or 
uncertainty while a positive shock decreases the 
effect on future uncertainty.  
 
2.3 The Threshold GARCH (TGARCH) 

Model 
 
The threshold-GARCH process allows the effect 
of good and bad news (negative and positive 
return shocks) on the volatility to be analysed, 
i.e. can be used to incorporate leverage effects. 
TGARCH (1, 1) is the standard GARCH (1,1) 
model with the addition of an asymmetric 
threshold term: 
 ��� = 	
 + 	������ + ���������� + 
������        (4) 

where ���� is a dummy variable, that is: 
 

���� = � 1  !" ���� < 0,     &'� ()*+0  !" ���� ≥ 0,    -..� ()*+/ 
 
The coefficient γ is known as the asymmetric or 
leverage term such that, when � = 0, the model 
collapses to the standard GARCH model (Equn. 
2). For positive shock (i.e. good news) the effect 
on volatility is 	�, while for bad news, the effect 
on volatility is 	� + � . Hence, if γ is significant 
and positive, then negative shocks have a larger 
effect on ���  than positive shocks, (as for 
EGARCH). 
 
2.4 The Power GARCH (PGARCH) Model 
 
In the power GARCH model, the standard 
deviation is used instead of the variance and an 
optional parameter γ can be added to account for 
asymmetry in modelling. The asymmetric 
PGARCH (1,1,δ)  model specifies σt to be of the 
following form: 
 

��0 = 	
 + 
�����0 + 	�1|����| − ������30      (5) 
 
where α1 and β1 are the standard ARCH and 
GARCH parameters, γ1 and δ are the leverage 
parameter and parameter for the power term 
respectively, with 4 ∈ 10,27, and |��| ≤ 1.  The 
symmetric model sets γ1 = 0, and when δ = 2, the 
above equation (Equn. 5) becomes a classic 
GARCH (1,1) and allows for leverage effects 
while, when δ = 1, the conditional standard 
deviation is estimated instead.  
 
2.5 The Fractionally Integrated 

Exponential GARCH (FIEGARCH) 
Model 

 
The basic GARCH (p,q) model can be written 
also as an ARMA(p,q) model in terms of squared 
residuals: 
 ��� = 	
 + ∑ 	=���=� + ∑ 
>���>�?>@�A=@�              (6) 

 
which can be rewritten directly as: 
 ∅1C3��� = 	
 + &1C3D�                                 (7) 
 
Where 
 D� = ��� − ��� ∅1C3 = 1 − ∅�C − ∅�C� − ⋯ − ∅FCF &1C3 = 1 − &�C − &�C� − ⋯ − &?C? 
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with m= max(p, q) and ∅= = 	= + 
= . The high 
persistence in GARCH models suggests that the 
polynomial ∅1�3 = 0  may have a unit root, in 
which case the model becomes the integrated 
GARCH (IGARCH) model (Zivot and Wang [1]). 
To allow for high persistence and long memory in 
the conditional variance and to avoid the 
complications of IGARCH models, it is possible 
to extend the ARMA(m, q) to a fractional 
autoregressive moving average, FARIMA(m, d, 
q) process, as follows: 
 ∅1C311 − C3G��� = 	
 + &1C3D�                    (8) 
 
where all the roots of ∅1�3 = 0 and b(z) = 0 lie 
outside the unit circle. When d = 0, this reduces 
to the usual GARCH model; when d=1, this 
becomes the IGARCH model; when 0<d<1, the 
fractionally differenced squared residuals, 11 − C3G��� , follow a stationary ARMA(m, q) 
process. The above FARIMA process for ��� can 
be rewritten then in terms of the conditional 
variance ���: 
 &1C3��� = 	
 + [&1C3 − ∅1C311 − C3G7���      (9) 
 
Baillie et al. [21] refer to the above model as the 
fractionally integrated GARCH, or FIGARCH (m, 
d, q) model. Furthermore, when 0 <d < 1, the 
coefficients in ∅1C3  and b(L) capture the short 
run dynamics of volatility, while the fractional 
difference parameter ‘d’ models the long run 
characteristics of volatility. 
 
The FIGARCH model directly extends the ARMA 
representation of squared residuals, which 
obtains for the GARCH model, to a fractionally 
integrated model. However, to guarantee that a 
general FIGARCH model is stationary and the 
conditional variance ���  is always positive, 
complicated and intractable restrictions usually 
have to be imposed on the model coefficients 
(see Zivot and Wang [1]). 
 
Noting that an EGARCH model can be 
represented as an ARMA process in terms of the 
logarithm of conditional variance and thus always 
guarantees that the conditional variance is 
positive, Bollerslev and Mikkelsen [20] proposed 
the following fractionally integrated EGARCH 
(FIEGARCH) model: FIEGARCH(1,1,d) 
 ∅1C311 − C3GI(��� = 	
 + 
�|����| + �����(10) 
 
where ∅1C3  is defined as earlier for the 
FIGARCH model, � ≠ 0 allows the existence of 

leverage effects, and ��  is the standardized 
residual: 
 

�� = ��
��                                                       (11) 

 
The authors also showed that the FIEGARCH 
model is stationary if 0 < d < 1. 
 
2.6 Choosing a Model 
 
Choosing the appropriate model is not always 
straightforward, of course, and often requires 
further information, based on the likelihood of a 
particular model form producing the empirical 
results. The Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) provide 
measures of the quality of the models chosen, 
are both based, in part, on the likelihood function 
and are closely related to each other. For large n, 
the AIC and the BIC are calculated as follows: 
 KLM = 2. N − 2. ln C                                    (12) 

 OLM = −2. ln C + N. ln1(3                           (13) 
 
where, 
 

• n = the number of observations or 
equivalently, the sample size; 

• k= the number of free parameters to be 
estimated. If the model under 
consideration is a linear regression, k is 
the number of regressors, including the 
intercept; 

• L= the maximized value of the likelihood 
function of the model.  

 
3. DATA DESCRIPTION AND EMPIRICAL 

RESULTS 
 
3.1 Data Description 
 
The daily closing prices of the ISEQ overall 
index, from January 1st, 2008 to March 28th, 
2014, made available by the Irish Stock 
Exchange (www.ise.ie), are used. In this study, 
daily returns (rt) refer to continuously 
compounded returns given by the first difference 
in the natural logarithm of closing prices of the 
ISEQ overall index on successive days: 
 

�� = I.- P Q�
Q���R                                           (14) 

 
where Pt and Pt-1 are the closing prices at day t 
and t-1, respectively.  
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Compounding returns are also assumed to be 
normally distributed, (time additive property), 
whereas simple or discrete returns are portfolio-, 
but not time-, additive. The stationarity in the 
mean of the series is assessed by the unit root 
test (Table 1). The non-stationarity in the 
variance of returns is accounted for by the 
conditional variance in the GARCH model family 
and the stationarity condition for these models. 
The main value of the so-called log-return, which 
is the log of the price ratio, is that it is essentially 
a proxy for the percentage change in the price, 
so that the average log-return over a period of 
time is approximately equal to the average 
percentage change in price, if the stock price 
does not change by much. However, when                        
the price is very volatile, the average log                  
return can be very different to the average 
percentage change and far more detailed 
investigation of the volatility is needed. In 
consequence, we report in detail on the results 
for the GARCH models applied to the rt, as 
defined (Equn. 14). 
  
From Table 1, which provides a statistical 
description of the returns and squared returns in 
different periods, it can be seen that the return 
series are negatively skewed and, with the 
exception of the returns for the third period (Jan, 
1st 2012-March 28th 2014), have fat tails 
compared to the Normal distribution. Tests 
indicate that the returns series are, in fact, not 
Normally distributed for returns of the first 
periods or over the whole time frame. The unit 
root test shows, however, that all the series are 
stationary.  

From Table 1, it can be seen that the means of 
all series are positive, except for that of the 
returns in the whole period. According to the 
sample standard deviations, the returns series in 
the third period is the least volatile, with a 
standard deviation of 0.00939, while the returns 
series in the first period is the most volatile, with 
a standard deviation of 0.02608. The standard 
deviations for the returns in the whole and 
second period are 0.01797 and 0.01509, 
respectively, suggesting that the volatility of 
these two series is almost the same. This table 
also demonstrates that returns series for all four 
cases do not follow the Normal distribution and 
autocorrelation is zero. A plot of the daily prices 
against time illustrates these points, Fig. 1. 
 
The figure shows daily prices of the original data 
used in this study for the time period January 1st, 
2008 to March 28th, 2014 and it is evident that 
there is no general trend. However, three 
different sections can be identified in the plot. A 
clear and strong decrease in prices occurs over 
the period from January 1st, 2008 to December 
31st, 2009, prices are relatively stable from 
January 1st, 2010 to December 31st, 2011, while 
from January 1st, 2012 to March 28th, 2014, a 
gradual increase is observed. The three 
identified sections or segments of the data were 
modelled separately, in addition to the analysis 
for the complete series. The returns and squared 
returns series, plotted against time, provide an 
illustration of the level of volatility over the entire 
time period, Fig. 2. It is clear that the first period 
is largely responsible for the most vigorous 
change. 

 
Table 1. Summary statistics for returns and squared return series for the four different periods 
 
Measures Time series 

The whole period The 1st  period The 2nd period The 3ed period 
Return Sq. Ret Return Sq. Ret Return Sq. Ret Return Sq. Ret 

Minimum -0.13960 0.0000 -0.13960 0.0000 -0.05950 0.0000 -0.0295 0.0000 
Maximum 0.09730 1.949E-2 -2.105E-4 3.29E-4 -7.46E-5 2.27E-4 9.51E-4 8.89E-5 
Mean -0.00021 3.229E-4 0.0973 1.949E-2 0.0757 0.00573 0.02830 8.70E-4 
St. Dev 0.01797 9.158E-4 0.02608 0.00148 0.01509 4.60E-4 9.39E-3 1.35E-4 
Skewness -0.48076 9.7330 -0.32093 6.34677 -0.10216 5.51541 -0.1650 2.58792 
Kurtosis 6.04051 1.498E2 2.68571 60.63300 2.13689 47.64080 0.38495 8.01553 
Autocorrelation 
Test 

NO YES NO YES NO YES NO YES 

Normality Test NO NO NO NO YES NO YES NO 
Unit Root Test NO NO NO NO NO NO NO NO 
ARCH Effect YES YES YES YES YES NO YES NO 
Long memory NO YES NO YES NO NO NO NO 

 



Fig. 1. The distribution of the prices of ISEQ overall index, with first series break shown

Fig. 2. The distribution of the retur

Table 2. Estimated parameters of all Time
 
Estimated 
coefficients GARCH(1,1) EGARCH(1,1)
Μ 6.80E-4* 0.000254	
 1.70E-6* -0.293351*
ARCH (α1) 0.07940* 0.173752*
GARCH (β1) 0.91500* 0.981470*
α1  + β1 0.99440 1.155222
Leverage ------- -0.406586*
GAMMA ------- -------
Fraction ------- -------

* indicates the parameter is statistically significant at 5%.
• 

• Conditional distribution is Gaussian (Normal) for all models
 
3.1.1 The complete series 
 
The results of estimation, selection and 
comparison, as well as diagnostics for the 
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The distribution of the prices of ISEQ overall index, with first series break shown

 

 
The distribution of the returns and squared returns of ISEQ overall index

 
Estimated parameters of all Time-varying models 

Conditional variance equation 
EGARCH(1,1) TGARCH(1,1) PGARCH(1,1,1) FIEGARCH(1,1)
0.000254 3.870E-4 0.000338 3.801E
0.293351* 2.231E-6* 0.000187* -0.141512*

0.173752* 0.039640* 0.086682* 0.145083*
0.981470* 0.913600* 0.919412* 0.631637*
1.155222 0.953240 1.006094 0.776720
0.406586* ------- -0.384317* -0.059316*

------- 7.479E-2* ------- --------
------- ------- ------- 0.592094*

* indicates the parameter is statistically significant at 5%. 
 Mean Equation is overall~1 for all models. 

Conditional distribution is Gaussian (Normal) for all models 

, selection and 
comparison, as well as diagnostics for the 

returns series over the whole period are give
this subsection: 
 

 
 
 
 

, 2016; Article no.BJEMT.24632 
 
 

 

The distribution of the prices of ISEQ overall index, with first series break shown 

 

ns and squared returns of ISEQ overall index 

FIEGARCH(1,1) 
3.801E-4* 
0.141512* 

0.145083* 
0.631637* 
0.776720 
0.059316* 

-------- 
0.592094* 

returns series over the whole period are given in 
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Table 2 shows that only the parameters of 
GARCH (1,1) and FIEGARCH (1,1) models are 
significant and also shows (highlighted row)  that 
α1 + β1 in these two models is less than one, 
meaning that the stationary condition holds. 
 
Table 3 shows that the values of the selection 
criteria, (AIC and BIC), did not vary much 
amongst the tested models, so the most 
parsimonious, namely FIEGARCH (1,1) is 
chosen. The analysis of residuals from this 
model indicates that there is neither 
autocorrelation nor ARCH effect in the residuals 
and the squared residuals, and also shows that 
the residuals are Normally distributed.  
 
Further, the bootstrap confidence intervals plot, 
Fig. 3, illustrates that the FIEGARCH (1,1) model 
is a good fit to the whole time frame 
data.Corresponding results of estimation, 
selection and comparison, as well as diagnostics 

for the returns series in each period are given in 
the next three subsections.  
 
3.1.2 The first period 

 
Table 4 shows that only the parameters of the 
FIEGARCH (1,1) model are significant and also 
shows that with (α1 + β1) < 1, the stationary 
condition also holds for this model. 
 
Table 5 shows that the values of the selection 
criteria (AIC and BIC) did not vary much for the 
tested models, so the most parsimonious, 
namely, FIEGARCH (1,1) is chosen. Again, 
analysis of residuals from this model indicates no 
autocorrelation or ARCH affects in either the 
residuals or the squared residuals and the 
Normal distribution applies. In general, a good fit 
is again obtained with this model for the first 
period, Fig. 4. 

 
Table 3. AIC, BIC, autocorrelation, normal and ARCH effect tests for competing models 

 
Measures Conditional variance equation 

GARCH(1,1) EGARCH(1,1) TGARCH(1,1) PGARCH(1,1,1) FIEGARCH(1,1) 
AIC - 8943.323 - 8956.847 -8957.662 -8960.795 - 8967.021 
BIC - 8921.852 - 8930.009 -8930.823 -8933.957 -8934.814 
Autocorrelation in 
Residuals 

NO NO NO NO NO 

Autocorrelation in 
Sq. Residuals 

NO NO NO NO NO 

Normality test for 
Residuals 

Normal Normal Normal Normal Normal 

ARCH effect in 
Residuals 

NO NO NO NO NO 

ARCH effect in 
Sq. Residuals 

NO NO NO NO NO 

 

 
 

Fig. 3. 95% Bootstrap confidence intervals for residuals from FIEGARCH (1,1) for the whole 
time period 
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Table 4. The estimated parameters of all Time-varying models 
 

Estimated 
coefficients 

Conditional variance equation 
GARCH(1,1) EGARCH(1,1) TGARCH(1,1) PGARCH(1,1,1) FIEGARCH(1,1) 

Μ -0.000409 -0.001108 -0.0008505 -0.0010831 -0.001092* 
	
 1.137E-5* -0.361088* 1.122E-5* 0.0004302* -0.093576* 
ARCH (α1) 0.089373* 0.150332* 0.0422196 0.0694307* 0.089675* 
GARCH (β1) 0.893777* 0.967835* 0.9003486* 0.9270629* 0.781910* 
α1  + β1 0.983150 1.118167 0,9425682 0.9964936 0.871585 
Leverage ------- -0.568536* -------- -0.5863963* -0.053453* 
Gamma ------- ------- 0.0747593* ------- -------- 
Fraction ------- ------- ------- ------- 0.582207* 

* indicates the parameter is statistically significant at 5%. 
• Mean Equation is period1~1 for all models. 

• Conditional distribution is Gaussian for all models 
 

Table 5. AIC and BIC, autocorrelation, normal and ARCH effect tests for competing models 
 

Measures Conditional variance equation 
GARCH(1,1) EGARCH(1,1) TGARCH(1,1) PGARCH(1,1,1) FIEGARCH(1,1) 

AIC -2356.611 -2361.308 -2359.445 -2363.538 -2365.483 
BIC -2339.697 -2340.165 -2328.302 -2342.395 -2345.112 
Autocorrelation in 
Residuals 

NO NO NO NO NO 

Autocorrelation in 
Sq. Residuals 

NO NO NO NO NO 

Normality test for 
Residuals 

Normal Normal Normal Normal Normal 

ARCH effect in 
Residuals 

NO NO NO NO NO 

ARCH effect in Sq. 
Residuals 

NO NO NO NO NO 

 

 
 

Fig. 4. 95% bootstrap confidence intervals for residuals from FIEGARCH (1,1) for the first 
period 

 
3.1.3 The second period 
 
Table 6 shows that only parameters of the 
PGARCH (1,1) model are significant and, given 
(α1 + β1) < 1 , that the stationary condition also 
holds for this model. 

3.1.4 The third period 
 
Table 8 shows that only parameters of EGARCH 
(1,1) and PGARCH (1,1,1) models are all 
significant, with the stationary condition satisfied 
for EGARCH (1,1) only. Again, little variation is 
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seen in the selection criteria (AIC and BIC 
values, Table 9) for the tested models, with 
EGARCH (1,1) chosen as the most 
parsimonious. The analysis of residuals from this 

model once again indicates that all criteria, as 
before, are satisfied. The EGARCH (1,1) model 
also provides a good fit to the data in the third 
period, Fig. 6. 

 
Table 6. The estimated parameters of all Time-varying models 

 

Estimated 
Coefficients 

Conditional variance equation 
GARCH(1,1) EGARCH(1,1) TGARCH(1,1) PGARCH(1,1,1) FIEGARCH(1,1) 

Μ 4.507E-4 -2.332E-4 3.771E-5 -1.423E-4* -1.195E-4 	
 1.501E-5* -0.888939* 1.482E-5* 9.351E-4* -0.297368* 
ARCH (α1) 0.163055* 0.2580919* 0.064569* 0.1392135* 0.2106545* 
GARCH (β1) 0.772826* 0.9197883* 0.781030* 0.8248930* 0.7767394* 
α1  + β1 0.935881* 1.1778802* 0.845599* 0.9641065* 0.9873939* 
Leverage ------------ -0.474561 ------------ -0.4967299* -0.091661* 
GAMMA ------------ ----------- 0.178461* ------------- ------------- 
Fraction ------------ ---------- ---------- ------------- 0.373402 

* indicates the parameter is statistically significant at 5%. 
• Mean Equation is overall~1 for all models. 

• Conditional distribution is Gaussian for all models 
 

Table 7. AIC, BIC, autocorrelation, normal and ARCH effect tests for competing models 
 

Measures Conditional variance equation 
GARCH(1,1) EGARCH(1,1) TGARCH(1,1) PGARCH(1,1,1) FIEGARCH(1,1) 

AIC -2892.841 -2900.352 -2899.077 -2902.288 -2900.265 
BIC -2875.919 -2879.199 -2877.925 -2881.135 -2874.882 
Autocorrelation in 
Residuals 

NO NO NO NO NO 

Autocorrelation in 
Squared Residuals 

NO NO NO NO NO 

Normality test for 
Residuals 

Normal Normal Normal Normal Normal 

ARCH effect in 
Residuals 

NO NO NO NO NO 

ARCH effect in 
Squared Residuals 

NO NO NO NO NO 

 

 
 

Fig. 5. 95% bootstrap confidence intervals for residuals from PGARCH (1,1,1) for the second 
period 
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Table 8. The estimated parameters of all Time-varying models 
 

Estimated 
Coefficients 

Conditional variance equation 
GARCH(1,1) EGARCH(1,1) TGARCH(1,1) PGARCH(1,1,1) 

Μ 9.999E-4* 7.923E-4* 8.705E-4* 7.889E-4* 	
 1.712E-6 -2.148038* 8.161E-6* 8.098E-4* 
ARCH (α1) 3.186E-2* 0.114358* -2.026E-2 0.482972* 
GARCH (β1) 9.491E-1* 0.780836* 8.661E-1* 0.8754322* 
α1  + β1 0.97996 0.89519 0.84580 1.35850 
Leverage ------- -0.948110* -------- -0.713375 
Gamma ------- ------- 1.153E-1* ------- 

* indicates the parameter is statistically significant at 5%. 
• Mean Equation is period3~1 for all models. 

• Conditional distribution is Gaussian for all models 
 

Table 9. AIC and BIC, autocorrelation, normal and ARCH effect tests for competing models 
 

Measures Conditional variance equation 
GARCH(1,1) EGARCH(1,1) TGARCH(1,1) PGARCH(1,1,1) 

AIC -3711.062 -3716.847 -3714.116 -3707.717 
BIC -3693.68 -3695.118 -3692.388 -3685.989 
Autocorrelation in Residuals NO NO NO NO 
Autocorrelation in Sq. Residuals NO NO NO NO 
Normality test for Residuals Normal Normal Normal Normal 
ARCH effect in Residuals NO NO NO NO 
ARCH effect in Sq. Residuals NO NO NO NO 

 
Table 10. Comparisons between the fitted models for the four different periods 

 
Measures Total period First period Second period Third period 

FIEGARCH(1,1) FIEGARCH(1,1) PGARCH (1,1,1) EGARCH(1,1) 
α1 + β1 0.776720 0.871585 0.964106 0.895194 
Daily variance with 
Annualized volatility 
rate of 

3.229E-04 
0.2852 % 

6.802E-04 
0.4140 % 

2.277E-04 
0.2395 % 

8.817E-05 
0.1491 % 

Volatility half-life1 4 days 6 days 20 days 7 days 
• The process  is mean reverting if (α1 + β1) <1 

• The process is covariance stationary if 0 < (α1 + β1) <1, with degree of persistence in the conditional variance high as 
the sum is close to one. 

• The volatility half-life is computed as STU[1V�WX�3 �⁄ 7
STU1V�WX�3 . 

 

 
 

Fig. 6. 95% bootstrap confidence intervals for residuals from EGARCH (1,1) for the third period 

                                                           
1 Half-life measures how many days pass until half of the initial shock is absorbed by the variance. 
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3.1.5 General comparison 
 
Comparisons between the fitted models for the 
four different periods, including overall or total, 
are made on the basis of mean reversion, degree 
of persistence and the volatility half-life and 
findings are illustrated in Table 10. 
 
From the above table, it can be seen that the 
sum of the ARCH and GARCH coefficients 
( 	� + 
�  ) for the total, first, second and third 
periods are 0.776720, 0.871585, 0.964106 and 
0.895194, respectively (all < 1), which supports 
the assumption of covariance stationarity as well 
as volatility persistence in the data). It also 
indicates that the half-life of a volatility shock (or 
volatility shock duration) for the overall, first, 
second and third periods are, approximately, 4, 
6, 20 and 7 days.   
 
4. CONCLUSIONS 
 
In summary, this study attempts to capture the 
picture of volatility in the Irish stock market, using 
symmetric and asymmetric GARCH models, 
(GARCH, EGARCH, PGARCH, TGARCH, 
PGARCH and FIEGARCH). These were applied 
to the complete data set (1/1/2008-28/3/2014) 
and to three distinctly identified sub-periods, i.e. 
(1/1/2008-31/12/2009), (1/1/2010-31/12/2011) 
and (1/1/2012-28/3/2014). Results show that 
performances of individual model types vary 
across the different time periods. In general, the 
FIEGARCH (1,1) model performed best for the 
total and first periods while the PGARCH(1,1,1) 
model worked well over the second period and 
the EGARCH(1,1) model best captured the 
volatility in the third.  
 

Our findings also indicate that there are different 
patterns between the returns in the different 
periods, with no universal model applicable. 
Finally, the results show that the volatility in 
returns for each period exhibits different degree 
of persistence, volatility clustering and mean 
reversion. The overall data period corresponds, 
of course, to major perturbations in the financial 
markets, but it is interesting to note that extreme 
instability was relatively short-lived, although 
recovery was not immediate. The relative model 
fits suggest that GARCH model variants 
interpret, and even anticipate, this staged 
behaviour quite well. 
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