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Abstract 
 

In this study we compared the performance of Ordinary Least Squares Regression (OLSR) and the 
Artificial Neural Network (ANN) in the presence of multicollinearity using two datasets – a real life 
insurance data and a simulated data – to know which of the methods, models a highly correlated dataset 
better using the Root Mean Square Error (RMSE) as the performance measure. The ANN performed 
better than the OLSR model for all the different ANN models except the models with nine and ten nodes 
in the hidden layer for the real life data. The network with four hidden nodes was the best model. For the 
simulated data, the ANN model with two hidden nodes gave us the least RMSE when compared to the 
OLSR model and the other ANN models in the testing set. The network with two hidden nodes modelled 
the data very well. In the presence of multicollinearity, ANN model achieves a better fit and forecast than 
the OLSR. 

 
 
Keywords: Multicollinearity; ordinary least squares; artificial neural network; root mean square              

error. 
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1 Introduction 
 
In modelling a linear relationship between a dependent variable and one or more independent variables, 
OLSR is being used to estimate the parameters of the model by minimizing the Residual Sum of Squares. 
The OLSR gives an unbiased estimate of the regression coefficients, it is very easy to compute and interpret. 
Though OLSR is preferred, it can only yield the best results when some assumptions are satisfied; There 
must be a linear relationship between each of the independent variables and the dependent variable, the 
independent variables must not be highly correlated, the variance of the error must be constant, the errors 
must not be correlated and there must not be an outlier. Most real life data does not always satisfy all the 
assumptions of the OLSR and if we insist on using the OLSR method to estimate the parameters, we will not 
be able to achieve a better fit for the data and a good prediction with the model. [1,2,3] studied the nature of 
multicollinearity, their consequences, how to detect them and some remedial measures that can be taken to 
get a good estimate of the regression coefficients.  
 
In this study, we considered a solution to the OLSR method when the multicollinearity assumption is not 
satisfied. In the presence of multicollinearity, it is impossible to estimate the unique effects of individual 
variables in the regression equation, the variance and covariance of the Least Squares (LS) estimates become 
too large though still the Best Linear Unbiased Estimator (BLUE), most of the regression coefficients are not 

significant and there is a high 2R value even though the t values for most of the regression coefficients are 
small. Multicollinearity becomes one of the serious problems in linear regression analysis, [4]. Many 
attempts have been made to improve the OLSR estimation procedure, some of which are Ridge Regression 
[2], Latent Root Regression, Partial Least Squares [3], Principal Component Regression [2], etc. and more 
recently, machine learning method which have smaller Mean Square Error (MSE) than the OLSR method 
[5]. 
 
Artificial Neural Network (ANN) is an example of a machine learning method that evolved from the idea of 
simulating the human brain [5]. They are networks of simple processing elements called neurons or nodes. 
The ANN models complex nonlinear relationships between the predictor variables and the response with 
great flexibility by defining input neurons – nodes – which are the predictor variables, a hidden layer with a 
number of nodes connected to each of the input nodes and lastly, an output layer with one or more nodes. 
The theoretical advantage of ANNs is that the relationship between the variables need not to be specified in 
advance since the method establishes the relationship through a learning process. The model learns the 
relationship from the data used to train it. The ANNs do not also require any assumptions about the 
underlying population distribution. [6,7] compared the performance of ANN and OLSR. [6] compared 
OLSR and ANN models with seven explanatory variables of corporation’s feature and three external macro-
economic control variables to analyse the important determinants of capital structures of the high-tech and 
traditional industries respectively in Taiwan. He used the RMSE as the criterion to know the best model. The 
ANN model achieved a better fit and forecast than the OLSR model as it had the least RMSE. [8] also 
compared ANN and OLSR model. They found out that the ANN method performed better than the OLSR, 
although both methods showed good performance for daily rainfall. [9] applied ANN-Linear perceptron in 
the development of decision support system for a fishery industry and compared the result with Multiple 
Linear Regression-OLS (MLR-OLS). They discovered that the ANN-LP is as good as the MLR-OLS in 
estimating both the growth parameters and the maximum sustainable yield of the fishery and can be used in 
situations when the MLR-OLS is unable or difficult to find the estimate of the parameters. [10] predicted the 
Standardized Precipitation and Evapotranspiration Index (SPEI) using OLSR and ANN in Wilson 
Promontory Station, Victoria, Canada. They compared the performance of both models using the coefficient 
of determination and the RMSE. The ANN model provided greater accuracy than the OLSR in forecasting 
the 1, 3, 6 and 12 months SPEI. [11] also compared OLSR and ANN models in seasonal rainfall prediction 
in North East Nigeria using four performance criteria. The results showed that the ANN model performed 
better than the OLSR model. The ANN had the minimum mean absolute error, RMSE and prediction error, 
and the highest coefficient of determination. 
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Aysenur et al. [12] investigated colorimetric parameters and mass loss of heat-treated bamboo and modelled 
the results gotten using OLSR and ANN. They used two predictory variables (temperature and duration of 
heat treatment) on both methods and compared the results using the Mean Absolute Percentage Error 
(MAPE). The ANN method gave more accurate results than the OLSR method. [13] investigated the 
capability of linear (OLSR) and non-linear (ANN) regression techniques for long-term rainfall prediction. 
They restricted their study to Benin City, Nigeria. The ANN method also performed better than the OLSR 
using the coefficient of determination as the performance measure. This paper compares the performance of 
ANN and OLSR method to model a highly correlated real life Nigerian Insurance Company’s data and a 
simulated data. 
 

2 Methodology 
 
The OLSR and ANN were used to model the two datasets to know which of the methods, models a highly 
correlated dataset better using the RMSE as the performance measure. The model with the least RMSE is 
chosen as the best model. Correlation coefficient is used to test for multicollinearity in the two datasets. 
There is high multicollinearity in the data if the correlation coefficient is high (i.e. greater than 0.8 or less 
than – 0.8). 
 

2.1 Ordinary least squares method 
 
Let us consider the standard model for Multiple Regression Analysis 
 

  XY                     (1) 
 
where 
 

Y is 
)1( n

 vector of the dependent variable. 

X  is )( pn  matrix of independent variables. 

  is )1( p  vector of regression parameters. 

  is 
)1( n

 vector of errors. 
 
From equation (1), we have 
 

)()(  XYXY TT                    (2) 
 

This term is differentiated with respect to   and set equal to 0 to obtain an estimate of   provided the 

inverse of XX T
 exists and is unique. We therefore have: 

 

  YXXX T
OLS

1' 




                   (3) 
 

where OLS
 is 1p  vector of OLSR estimated parameters. 

 

2.2 Artificial Neural Network (ANN) 
 
The ANN models complex nonlinear relationships between the predictor variables and the response with 
great flexibility by defining input neurons – nodes – which are the predictor variables, a hidden layer with a 
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number of nodes connected to each of the input nodes and lastly, an output layer with one or more nodes. An 
activation function is applied to both the hidden and the output layers. The connections between the nodes 
(input nodes and the hidden layer nodes) are assigned weights. The weights are the parameters the Neural 
Network estimates, and they are chosen so as to minimize a pre-defined loss function. Neural Network tries 
to minimize the difference between the observed responses and the output. Fig. 1 is an example of an 
Artificial Neural Network. Three layers of nodes are defined – an input layer that comprises of three input 
nodes and a bias node, a single hidden layer and an output layer. 
 

Let X represent the inputs, 
 

H, K and B represent the hidden, output and bias nodes respectively, and 
 

W represent the weights. 
 

The weights in the bias nodes can be interpreted similarly to an intercept in a linear regression. 
 

 
 

Fig. 1. Single hidden layer feed forward neural network 
 
A Feed Forward Neural Network (FFNN) is a uni-directional connection from the input to the hidden layer 
and from the hidden to the output layer. A mathematical representation of a single layer FFNN is given in 
equation (4). 
 

0
1 1

( , ) ( ( ))
H J

k i k hk h h jh ij
h j

y x w w w x 
 

     


               (4) 

 

That is, the sum of the product of the weights jhw  and the inputs ijx plus a bias term h  gives us a node in 

the hidden layer. An activation function is applied to each node. An activation function also called a 
threshold or transfer function is a non-linear transformation applied to the input. The sum is taken over the 
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hidden neurons H of the product of the transformed input and the weights hkw plus a bias term k . A final 

transformation 0 is applied to the output. We have different activation function for both the transmission 

from the input units to the hidden units and from the hidden units to the output units, namely: linear 
activation function, unit step activation function, rectified linear unit activation function, hyperbolic tangent 
activation function, sigmoid activation function, logistic activation function, etc. 
 
The error function is minimized to get an estimate of the weight w for both the input and the hidden layer. 
The commonly used error function has been the quadratic error function while cross-entropy error function 

is more suitable for binary classification. The Quadratic error function QE  and cross entropy error function 

CE  are given below 

 

QE = 
2

1 1

ˆ( ( , ) )
K n

i ik
k i

y x w y
 

                   (5) 

 

CE = 
1 1

ˆlog ( , ) (1 ) log[1 ( , )]
K n

ik k i ik k i
k i

y y x w y y x w
 

   


              (6) 

 

The more the nodes in the hidden layer, the more complicated non-linear relationship can be modelled. 
Increasing the nodes in the hidden layer also increases the likelihood of training an over fitted model. A 
model is over fitted when it does not generalize well to new observations though it will still perform very 
well on the training set. 
 

The dataset is divided into two - the training set and the testing set. It should be noted that 70% of the data 
were used as the training set and the other 30% as the testing set. The training set is used to train the network 
and the optimally performing hyper parameters are identified. The final model performance is then tested 
using the testing set. 
 

3 Empirical Illustration 
 
3.1 Illustration 1 
 
The real life data used in this study is a secondary data on Nigerian Insurance Expenditure from 1996 to 
2011. The data was tested for missing values to ensure a good quality dataset and no missing value was 
found. Seven quantitative variables namely: Claims, fire, accident, motor, employers, marine, miscellaneous 
were used as the independent variables with expenditure as the dependent variable. That is, 
 

eExpenditurY

ousMiscellaneX

MarineX

EmployersX

MotorX

AccidentX

FireX

ClaimsX

















7

6

5

4

3

2

1

 
 

The seven independent variables will be regularized by subtracting the variable mean from each of the 
variables and dividing it by their respective standard deviation to help the neural network to converge 
quickly. 
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3.1.1 Test for multicollinearity 
 
The correlation matrix was used to establish the presence of multicollinearity. Table 1 below is the 
correlation matrix for the data. 
 

Table 1. Correlation matrix for the real life data 
 

1 0.800667 0.972993 0.9843 0.931225 0.954349 0.818016099 
0.800667 1 0.664078 0.802241 0.559947 0.623471 0.330163173 
0.972993 0.664078 1 0.956963 0.96467 0.970487 0.888117153 
0.9843 0.802241 0.956963 1 0.900635 0.917368 0.763616208 
0.931225 0.559947 0.96467 0.900635 1 0.991298 0.948715023 
0.954349 0.623471 0.970487 0.917368 0.991298 1 0.930325184 
0.818016 0.330163 0.888117 0.763616 0.948715 0.930325 1 

 
From Table 1, there is high multicollinearity in the data since most of the independent variables are highly 
correlated. 
 
3.1.2 Ordinary least squares regression for the real life data 
 

Table 2. Overall fit for the life data 
 

Multiple R 0.996305 

R Square 0.992623 

Adjusted R Square 0.986169 

Standard Error 2917.984 

Observations 16 
 

Table 3. ANOVA table for the real life data 
 

    Alpha 0.05  

  df SS MS F p-value Sig 

Regression 7 9.17E+09 1.31E+09 153.789 6.84E-08 Yes 

Residual 8 68117033 8514629    

Total 15 9.23E+09         
 

Table 4. OLSR parameter estimates for the real life data 
 

  Coeff std err t stat p-value lower Upper 

Intercept 1346.411 2425.234 0.555167 0.593959 -4246.19 6939.011915 

Claims 2.867821 2.354802 1.217861 0.257975 -2.56236 8.298002766 

Fire -3.78929 3.977479 -0.95269 0.368643 -12.9614 5.382793653 

Accident -2.21072 2.9512 -0.74909 0.475249 -9.0162 4.594762006 

Motor  0.778697 2.750741 0.283086 0.784298 -5.56452 7.121915705 

Employers -17.4773 57.36528 -0.30467 0.768395 -149.762 114.8072724 

Marine -1.36654 3.986157 -0.34282 0.740566 -10.5586 7.825552293 

Miscellaneous -3.19616 3.414654 -0.93601 0.376657 -11.0704 4.67804833 
 
Although the R-square value (0.9926) for the model is high, all of the regression coefficients are not 
significant since their p values > 0.05 at 0.05 level of significance and their confidence intervals are large. 
This contradiction is as a result of the assumption of multicollinearity not being satisfied. 
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3.1.3 Artificial neural network for the real life data 
 
Ten ANN models with different number of nodes in the hidden layer were trained. We used 1 to 10 nodes in 
the hidden layers to know which one of them will yield the best estimate of the parameters of the network 
using the RMSE as the performance measure. The logistic activation function was used for the transmission 
from input units to hidden units and the linear activation function was used for the transmission from hidden 
units to output units. The quadratic error function was used to determine the weights of the network. Table 5 
below gives us the summary of the result. 
 

Table 5. RMSE statistics for the real life data 
 

  OLSR ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8 ANN9 ANN10 
RMSE 
(testing) 

3188.1 1875.1 2522.9 2105.9 1350.7 2030.2 1526.8 1608.8 2633.7 4512.5 3387.2 

RMSE 
(training) 

2786.6 1982.0 2347.9 1781.8 1493.6 2376.6 1663.1 953.1 1916.6 1259.6 1470.3 

 
From Table 5, the ANN models had a lesser RMSE than the OLSR model for all the different models except 
the models with nine and ten hidden nodes, the ANN models with nine and ten hidden nodes over fitted the 
training set. It modelled well the training set but could not predict well the testing set. It was observed that 
ANN performed better than the OLSR model for all the different ANN models except the models with nine 
and ten hidden nodes. The network with four hidden nodes modelled the data very well than the other ANN 
models. It did not over fit the training set and also predicts well the testing set. It has the least RMSE when 
used on the testing set. Below is the estimate of the parameters of the ANN model with four hidden nodes 
and the graphical representation of the model. 
 
Intercept.to.1layhid1 -1.119624897 
X1.to.1layhid1         0.630956846 
X2.to.1layhid1        -0.121533513 
X3.to.1layhid1         1.126946335 
X4.to.1layhid1         1.325447728 
X5.to.1layhid1        -1.131424271 
X6.to.1layhid1         0.212902953 
X7.to.1layhid1        -0.041508678 
Intercept.to.1layhid2  1.926037650 
X1.to.1layhid2        -0.750716229 
X2.to.1layhid2        -0.325200164 
X3.to.1layhid2        -0.485294045 
X4.to.1layhid2        -0.627234654 
X5.to.1layhid2         1.284860662 
X6.to.1layhid2        -0.426399785 
X7.to.1layhid2        -1.047225798 
Intercept.to.1layhid3  1.265501183 
X1.to.1layhid3         0.204966188 
X2.to.1layhid3        -0.219213203 
X3.to.1layhid3        -0.875358244 
X4.to.1layhid3        -1.012126040 
X5.to.1layhid3        -0.053855979 
X6.to.1layhid3        -0.308241782 
X7.to.1layhid3        -0.024684527 
Intercept.to.1layhid4 -0.339802202 
X1.to.1layhid4        -0.886280005 
X2.to.1layhid4         1.078712791 
X3.to.1layhid4        -4.978679098 
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X4.to.1layhid4        -1.052764500 
X5.to.1layhid4        -0.079364780 
X6.to.1layhid4        -2.527453252 
X7.to.1layhid4        -1.951514060 
Intercept.to.y         1.525232613 
1layhid1.to.y          0.577550927 
1layhid2.to.y         -1.041176296 
1layhid3.to.y         -0.583267342 
1layhid4.to.y         -0.730115784 
 

 
 

Fig. 2. Single hidden layer feed forward neural network for the real life data 
 

3.2 Illustration 2 
 
We simulated a correlated data with six independent variables and one dependent variable replicated 150 
times. 
 
3.2.1 Test for multicollinearity 
 
The correlation matrix was used to establish the presence of multicollinearity. Below is the correlation 
matrix for the simulated data. 
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Table 6. Correlation matrix for the simulated data 
 

1 0.98 0.93 0.89 0.87 0.83 
0.98 1 0.95 0.90 0.91 0.77 
0.93 0.95 1 0.96 0.84 0.71 
0.89 0.90 0.96 1 0.80 0.69 
0.87 0.91 0.84 0.80 1 0.67 
0.83 0.77 0.71 0.69 0.67 1 

 

From the correlation matrix, high multicollinearity was observed in the data since most of the independent 
variables were highly correlated. 
 

3.2.2 Ordinary least squares regression for the simulated data 
 

Table 7. Overall fit for the simulated data 
 

Multiple R 0.693028 
R Square 0.480288 
Adjusted R Square 0.458482 
Standard Error 9.589799 
Observations 150 

 

Table 8. ANOVA table for the simulated data 
 

    Alpha 0.05  
 Df SS MS F p-value sig 
Regression 6 12153.3 2025.549 22.0254 3.01E-18 yes 
Residual 143 13150.89 91.96425    
Total 149 25304.18         

 

Table 9. OLSR parameter estimates for the simulated data 
 

  Coeff std err t stat p-value lower upper 
Intercept -92.7866 159.8667 -0.5804 0.562559 -408.794 223.2207 
X1 -1.4703 5.114539 -0.28748 0.774165 -11.5802 8.639566 
X2 5.355521 6.111732 0.876269 0.382353 -6.72549 17.43653 
X3 -1.18115 4.103448 -0.28784 0.773883 -9.29241 6.930103 
X4 2.382363 2.891732 0.823853 0.411395 -3.3337 8.098428 
X5 4.736788 2.019845 2.345124 0.020396 0.744176 8.7294 
X6 -0.656 1.542828 -0.4252 0.671333 -3.7057 2.393691 

 

From Table 9, all of the regression coefficients except X5 are not significant since their p values > 0.05 at 
0.05 level of significance and the confidence intervals are large. This again, is as a result of the assumption 
of multicollinearity not being satisfied. 
 

3.2.3 Artificial neural network for the simulated data 
 

Table 10 below gives us the summary of the result. 
 

Table 10. RMSE statistics for the simulated data 
 

 
OLSR ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8 ANN9 ANN10 

RMSE (testing) 13.5 13.9 13.1 31.5 16.5 18.9 20.5 45.0 19.1 20.3 31.8 
RMSE (training) 13.1 12.9 11.4 9.5 9.9 8.6 8.2 7.8 6.3 4.1 3.6 
 

The ANN model with two hidden nodes gave us the least RMSE when compared to the OLSR model and the 
other ANN modelled with one, three, four, five, six, seven, eight, nine and ten hidden nodes in the testing 
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set. The network with two hidden nodes modelled the data very well. It did not over fit the training set and 
also predicted well the testing set. Below is the estimate of the parameters of the ANN model with two 
hidden nodes and the graphical representation of the model. 
 
Intercept.to.1layhid1  1.273894e+01 
X1.to.1layhid1          -2.898659e+01 
X2.to.1layhid1           3.031801e+01 
X3.to.1layhid1           3.055071e+00 
X4.to.1layhid1           6.036519e+00 
x5.to.1layhid1           -3.347070e+00 
X6.to.1layhid1           3.823806e+00 
Intercept.to.1layhid2  5.311924e+01 
X1.to.1layhid2          -4.439429e+01 
X2.to.1layhid2          -2.063232e+01 
X3.to.1layhid2           3.065635e+00 
X4.to.1layhid2          -9.005025e-01 
x5.to.1layhid2          -4.693254e+01 
X6.to.1layhid2           4.037516e+01 
Intercept.to.y            -6.110575e-01 
1layhid1.to.y             1.615394e+00 
1layhid2.to.y            -1.041508e+00 
 

 
 

Fig. 3. Single hidden layer feed forward neural network for the simulated data 
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4 Conclusion 
 
Correlation coefficient was used to establish the presence of multicollinearity in the two data sets and both 
the real life and simulated data failed to satisfy the multicollinearity assumption. The ANN models had a 
lesser RMSE than the OLSR model for all the different models except the models with nine and ten nodes in 
the hidden layer for the real life data, the ANN models with nine and ten hidden nodes over fitted the 
training set. The network with four hidden nodes had the least RMSE when used on the testing set. It did not 
over fit the training set and also predicted well the testing set. 
 
For the simulated data, the ANN model with two hidden nodes gave us the least RMSE when compared to 
the OLSR model and the other ANN models with one, three, four, five, six, seven, eight, nine and ten hidden 
nodes in the testing set. The network with two hidden nodes modelled the data very well. It did not over fit 
the training set and also predicted well the testing set. 
 
When there is multicollinearity, it is advisable to use the ANN to model the data since unlike the OLSR 
method, it has no assumption that must be satisfied and it achieves a better fit and forecast than the OLSR in 
the presence of multicollinearity as seen from this study using a real life and a simulated data. 
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