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Abstract

In this research paper, a new life time family is introduced. Sadaf [1] proposed a moment exponential
power series (MEPS) distribution. Generalized moment exponential power series (GMEPS) distribution is
a general form of MEPS distribution. It is characterized by compounding GME distribution and power
series (PS) distribution. This new family has some new sub models such as GME geometric distribution,
GME Poisson (GMEP) distribution, GME logarithmic (GMEL) distribution and GME binomial (GMEB)
distribution. We provide statistical properties of GMEPS family of distributions. We find here expression
of quantile function based on Lambert W function, the density function of rth order statistic and moments
of GMEPS distribution. Descriptive expressions of Shannon entropy and Rényi entropy of new general
model are found. We provide special sub-models of the GMEPS family of distributions. The maximum
likelihood (ML) estimation method is used to find estimates of the parameters of GMEPS distribution.
Simulation study is carried out to check the convergence of new estimators. We apply GMEPS family of
distributions on two sets of real data.

*Corresponding author: E-mail: igbalzafar825@gmail.com;
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1 Introduction

In literature, probability distributions to model lifetime data are based on two parameters’ PS probability
distributions, e.g. Marshal and Olkin [2] introduced two parameter exponential distribution and proved it a
competitor of Weibull, gamma and log-normal distribution. Adamidis and Loukas [3] introduced
exponential geometric (EG) and applied it on real lifetime data. The other two parameter lifetime
distributions are exponential Poisson (EP) distribution [4] and exponential logarithmic (EL) distribution [5].
Chahkandi and Ganjali [6] introduced the exponential PS family of distributions. Exponential PS family
contain the EG distribution, EP distribution and EL distribution as sub-models. Adamidis et al. [7]
introduced the extended EG distribution. The Extended EG distribution has the constant, decreasing and
increasing hazard function. Barreto-Souza et al. [8] presented the Weibull geometric (WG) distribution.
They discussed several properties of this model. It is the extended form of EG distribution. Barreto-Souza
and Cribari-Neto [9] and Silva et al. [10] developed the general forms of the EP distribution and EG
distribution respectively. Morais and Barreto-Souza [11] introduced the Weibull PS family of distributions.
The Weibull PS family of distributions contain Weibull geometric, Weibull Poisson distribution and Weibull
logarithmic distribution.

Mahmoudi and Jafari [12] developed the generalized exponential PS distribution which is an extended form
of exponential form of exponential PS distribution. Sandhya and Prasanth [13] introduced Marshall-Olkin
discrete uniform distribution and discussed its theoretical properties.

This model is also an alternative of Weibull PS distribution. Silva and Cordeiro [14] introduced Burr XII PS
distribution and applied it to real life data. Dara [15] introduced ME distribution as:

g B =pye ", y,p>0. (1)

Y=X

Igbal and Ali [16] applied the transformation >in (1) and developed GME distribution

g a,B)=af x> e ™, x,a,p>0. @)

Noack [17] introduced PS family of discrete distributions which contain discrete distributions like binomial
distribution, geometric distribution, logarithmic distribution and Poisson distribution. Suppose Z is a discrete
random variable truncated at zero, the probability mass function of Z is:

Pz=z0)=%0 123, 3)
M(0)

where M(0) =Y a.6°, z2=1,2,3...,

z=1

and 6 is the scale parameter.

In this article, we introduce generalized moment exponential PS distributions. The shapes of generalized
moment exponential PS family of distributions are bathtub, increasing, decreasing and constant for various
values of parameters, therefore, it can use in the research areas of reliability and engineering. The new
generalized moment exponential PS family of distributions has flexibility in a real data modeling. Moreover,
the model GMEG i.e. member of GMEPS family of distributions showed significantly better in fitting on
lifetime data than Weibull distribution, exponential distribution and EE distribution.
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The contents of this research article are arranged as follows: Section 2 deals with derivation of generalized
moment exponential PS (GMEPS) distribution with some basic statistical properties and hazard function.
Section 3 contains the expressions of quantile function based on Lambert W function, moments of GMEPS,
Shannon entropy and Rényi entropy of new general model. Section 4 related to some special sub-models of
GMEPS distribution. Section 5 contains maximum likelihood (ML) estimators for the unknown parameters
on the basis of the family and a simulation study is carried out on the basis of ML estimates. In Section 6,
GMEG distribution is applied on two data sets [Murthy et al. [18], Bjerkedal [19]] and comparison is made
with existing lifetime distributions. Finally, Section 7 is devoted for some concluding remarks.

2 New Family of Distributions

In this section, the GMEPS family of new distributions is derived. We use the compounding technique to
find this new family and it is derived by compounding GMFE distribution and PS distributions.

X, 1<i<

Let " beiidr.v's having GME distribution with pdf'(1) and the following cdf:

G(x;a, B)=1-(1+ Bx*) e/
G(x;a, f)=1-H(x;a, f) where H(x;a, f) = (1+ fx*) e *

Suppose that Z has a zero truncated PS distribution with the probability mass function (pmf) (3). Let

= mi ' X | Z
Xy = min{d, X, X independent of X'S, then the probability density function of (1)| is
as:
z—1
fo (x| z50.8) = 2 g, B) (H (32, 8))
. L . X, 7
The following function is the joint pdfof = (U and £ :
za0'g(xa,p)(H(x:a.p))

fX(l;Z(xZ;aaﬂ): M(g) ) .
The probability density function of a GMEPS family of distributions is,

fxs) - PPN\ 5550 @

M)

where ©= (a’ ﬂ > 9) is a set of parameters and M(@) defined in (3). And a continuous random variable X

with pdf (4) is denoted by X~GMEPS (Ot,ﬂ > 0)'with & and 0 are shapes parameters and 'B is a scale
parameter.

Furthermore, the cdf of GMEPS family of distributions corresponding to (4) is obtained as
M'(0H ()

M@©@) )
it can easily be proved M'(HH (x)) =—0g(x;a,p)

Fs0)= [ £(.0)=1-
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ra=1 , the GMEPS family is reduced to MEPS (Sadaf [1]). Equations (6) and (7) contain the reliability of
GMEPS’ distributions and hazard rate functions for GMEPS’ distributions respectively.

R(X, @) = M , (6)
M(0)
and,
Hx:©) = Og(x;a, /M (0H (x)) o

M (6H (x))
3 Statistical Properties

In this section, we obtain expressions of some statistical properties of GMEPS family of distributions. We
deduce two propositions. The first proposition indicates that GME distribution is the limiting form of the
GMEPS family of distributions. And second proposition gives expansion of GMEPS distribution.

Proposition (1)

+
The GME distribution is a limiting case of GMEPS’ distributions when 0—0 .

Proof:

P() = iazea

By applying z=1 for X >0 incdf (4), then we obtain

LimF(x;0) = 1—LimM
0s0* 00" P(H)

By using L.H. rule, we have

Hx)[1+a Lim izaz (0H(x))™]

LimF(x;0)=1- =G(x;a,p)
60"

1+a," Li o
which is the cdf of the GME distribution (3).
Proposition (2)

The density function of GMEPS family of distribution can be expressed in the PDF of lower order statistics

Xay

Proof

10)=Y za.67,

Since z=1 then the pdf (3) can be expressed as follows
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fsw) =X PZ =50)g,, (532,

g, x:z)

where is the pdf of X given by

gy, (xz)=z(1+ By e I g(xa,p), x,a,B>0.

3.1 The Lambert W function

Lambert (1758) and Euler (1779) both developed the Lambert W function. In Algebra, Lambert W function
is a standard word and formula and it used to find the solution of special form of equation. Corless et al. [20]
gave almost complete survey of this function. This function is a solution of the following equation based on
complex number

W(z)exp(W(z))=z
The W(z) has two real branches according to negative and positive intervals of Z.

a,band c

Lemma 1:- Let be three numbers of complex type, the equation Z+ ab® =¢ has the solution

zZ=cC

—E(b)W(ab"' log(b))

where W denotes the well-known lambert W function and Z € C

3.1.1 Quantile function of the new GMEPS family

This subsection contains the derivation of o(p ), the o(p) is known as quantile function of the GMEPS
distribution at p. This function is defined byQ (P)=p , and is the root of the following equation

I_Mwagm»

M) =p, 0<p<l.whereé(x)=l—G(x)

Suppose B(p)=-(1+B(Q(P))*), and after some simplification we have the equation

M7 ((1-p)M(9))

B e8P — _
(p) 70

5

the solution of B(p) is

B(p)e"” = W[

M ((1-p)M(0))
- 1 ],
e

Consequently, the Q(p) of the GMEPS family is given by solving the following equation for (p).
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M (a=-pm@) )
(Q(p)){—l—W[—((‘f)())]] . ®)
p Oe

3.2 Moments and moment generating function

The rth moment of X for the GMEPS family of distribution, is
M= ZP(Z =z ;H)Ix ’ng(x ;2 )dx .
z=1 0
Then,

u'=> P(Z= z;H)Jzaﬂzx”z”’] (1+ Bx*) e/ dx.
z=l 0

— a _ a-1
Let X = fx* —>du=afx dx,then

M= Z zP(Z = Z;H)J[%jau(l +u) e du.
z=1 0

Expanding it using binomial series and gamma function then we have the form

e (2] aﬁzl"(r+i+lj
' - o
“, :zz{ j Crei2 ©)

" K@)z pe

z=1 i

(SK') and kurtosis (K) can be obtained from following relations respectively

Skewness
K = /"4_4/"3 /"1"'6/"2 #'12_3#'?

U Y '+ 2 13
SK = M3 2 HOu,
(u'y=u")

s s

(u'y= ")
1 1 1 1
where,’u1 Ho 5 M and 4 can be obtained from (9), by substituting " = 1,2,3,4.
Also, the mgf about origin, My (t), is defined
00 tr .
MX(I)ZZ—‘/J’ .
r=0 r:

'
where, M is the rth raw moment. And then by using (9), the mgf of GMEPS is as follows:

z—1 v .
. ( ) jaﬂT(ﬂHjt’
- 1 (24
MX(f)ZZ

|
z=1 i=0 Tai L
M(O)z= p*r!

, r=12....
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3.3 Order statistics

We obtain here the expression of probability density function of ith order statistics from the GME power
series distribution. We use this expression to find the probability density functions of the lowest and largest
order statistics.

Y<Y< <Y Y=X_,i=1..n

" be the order statistics from the sample of size n. The pdf of "~/ fn? is of

the form
F(n + 1)

C(i)T(n—i+1)

£, (x:0) = [1- F(x; 0" [F(x:0)" f(x;0), (10)

n
where, ( ) is the gamma function. By using cdf (5) and applying the binomial expansion we have

£ ) = F(n+1)f(x®)z( J {M(G_(x;a,ﬁ))J ”'.

F()F(n—z+l) M (0)

(M (6m(x)))"""

The expansion for expression is obtained as

(o) <[ Sa0e G(xap)|

1

(M (0G (x:a.p)))"" = (460G (x:c0.8))""" x

n+j—i
{1+a_29C_?(x;a,,B)+&92(5(x;a,ﬂ))z+... )
a

a; 2

Hence,

n+ j—i

( (5(x a, ﬂ))) =a""" %
[i 0 (ee*ﬂf‘ (1+ =) )jj g = o1
m=0

a,

(11)

using the result from table of integral and series

© n+j—i ©
(z_ozmy ’”j :zdnJrj—[,mYm'

m=0 Gradshteyn and Ryzhik [21]

Then (11) implies as

(K((H@(x;a, ))))M_l (o )’””Z " lm( (xa, ))nﬂ o (12)
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d . ._.,=1 .. d ... . .
where, ~ "*/710 and the coefficients ~ "*/~'-" are calculated from the following recurrence equation

dn+] it =t IZ[m(n+] _l +1)_t]€m n+j—it— m’t 21

m=1

In addition,

M'( xa,ﬁ‘) ZZCZ( xa,ﬁ‘))

z=]

Letk =z =1 then the above equation can be written as

M(6G(x;0,)) = Zﬁ(kﬂ)( oG(xa.p)) L, % (13)

After replacing expansions (12) and (13) in equation (10) We have the following expression of the ith order
statistic as

g(x;a,ﬁ)i 0, (k+ 1)(6’(7(x;a,,8))k
B(,n—i+ j)(M(H))"”;i+1

| = n+ j—i+m
S e e Sa, e a )

Jj=0

Sfin(X:0) =

Hence finally the expression of ith order statistic is:

2 2a-1 0 0 X '_1
f,.m(x;(a)—ﬂ“—xz Z(_1)J(’j}£k(k+1)

B(l n_l+.])k=0 j=0"m=0

i-1

d n+j— t+10n+1 t+m+k+lef(n+1 i+m+1+k) fx* wtjiemik
S i (10 a0
or
R 2a-1 @ TR k) B
FACIOEDIIP Il (R B :
k=0 j=0"m=0
where,

_( 1) alﬂk(k + 1)9»1+/ i+m+k+1 n+/ t+ldn+j_[’m
B(i,n —i+ j)(M (9))"” o '

when we use binomial expansion we have another form of pdf as:

i—1 n+j—i+m+k

f;-:n (x; @) — ﬂz Z Z 77./"/(’m’h.xa(h+1)e_(n+j_i+m+k+l)ﬁxa ’ (14)

k=0 j=0'm=0  h=0
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where,

n+j—i,m

i— 1 m+n+ j —i+ k aﬂh+lgn+_[—i+m+k+l€k(k + l)a:Hj—H]d
J h B(i,n—i+ j)(M (@)™

Mo :(_l),[

Now we obtain the pdfs of lowest order statistics and highest order statistics by replacingl =Ln , in (14),

respectively, and expressions of both are as follows

) o n+j—i+m+k

ﬂn(x @ _ Z Z ¢k$m,hﬂxa(h+l)e—(n+m+k)ﬁxa ,

k=0 "m=0 h=0

’ (m +n+-1+ kj nafp", (k+1)0"" " a"d,
k,m,h =

h (M ()"
o n-1 o j+m+k . .
f;ﬁn ('x’®) :z Z gj,k,m,hﬂxa(hﬂ)ei(jﬂnﬂcﬂ)ﬂx 5
and , k=0 j=0"'m=0 h=0
where,
_ m+j+k n_l ( 1)/ nﬂh+la£k(k+1)9j+m+k+la]j+ldjm
Sl = h Jj (M ()
3.4 Rényi Entropy /r(¥)
I (x)

The Rényi entropy is a general form of Shannon entropy. Rényi entropy is used in such uncertainty

where the other uncertainty measures like Shannon entropy are not suitable. The Iy (x)’ for P~ O’and

p#l is defined as

I (x)=(1-p) ' log, (

S —y 8

(f(x; ®))pdx].

= T( f(x;9)) dx

Let, 0 then IP can be written as follows:

- T(ﬁg (x:a.B)) M,(HG(x;a’ﬂ))}pdx.

M (0)

But

(M'(6G(x;.8))) =4 [Zd (6G(xa.8))" Jp 8 = =12,

m=0 a
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Shletisan) | 3. (aisas)”

[See Gradshteyn and Ryzhik [21]]

Therefore,

(M'(6G (x:a.8))) = afid,m (0G(x;a.8))". (15)

z=1

Using the following coefficients for I > 1 and they are computed from the following recurrence equation:

d,, =t [m(p+1)-116,d,, ,.d,,=1

Using binomial expansion for( x“) , then (15) will be as follows:
(M'(0G (x:e.8))) a{'if[ ]dp,mememﬂ’f“ (px)
z=1 k=0

Then the ZP can be rewritten as follows

1= f(aposa ) 0o prty 330,00 st e a
0 m=0 k=0
w0 i o\ Kk )\ A ’ 0

After some simplification, then the Rényi entropy takes the following form

= o (m p) dp,mﬂmpa‘”a{’l“(p( +k+h)
]R(x):(l_p)_l logh k][h) p(a el . (16)
o ”*[ KO (rip)

4 Reduced Models

Some reduced models from GMEPS family of distributions for selected values of the parameters are
presented in this section. Also, some sub-models; which are the generalized moment exponential Poisson
distribution and moment exponential Poisson distribution are discussed in more details. Here we discuss
some reduced models as:

M@)=e’ -1

1. For , (4) is a GMEP distribution with cdf:

e —exp[&G(x a, /)’)]

F(x;0)= O

x,a,A,8>0. (17)

10
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2. ForM(g) =’ ~La=1 (4) is an MEP distribution with cdf:
F(x;ﬂ,9)=ee_expl;,ehi(x;ﬂ)], x, 3,0 >0.
PO
3. ForM(0)=~In(1=0) ' 4) s an GMEL distribution with cdf:
F(x;@):l—ln[l_eé(x;a’ﬂ)}, x,f.a>0, 0<O<l.

In(1-6)
) 9(2/ﬂ+1)g(x;a,ﬂ)
)= a1=0) (1=6G (via. §))

M(©)=-In(1-0),a =1

4. For > (4) is the MEL distribution with cdf:

In[1-0H (x:8)]

F(x;68,0)=1- , , B3>0, 0<f0<l.
(x;8,0) In(l—0) x,
_ 1
5. ForM @)=001-0)", (4) is the generalized MEG distribution with cdf:
G(x;a,p)
F(x;0)=————F—, x,pB,a>0, 0<O<I1.
1-6G (x;a, )
1
6. For M(@)=00-0)",a =1 4 i the MEG distribution with cdf:
H (x;
F(x;ﬁ,9)=M, X, f>0, 0<0<1.
1-6H (x; )

M(@)=(1-0)"-1

7. For > (4) is the MEB distribution with cdf:

(1-0)"-[1-0G (x;a,8)]"

Fx0)= (1—6)y" -1

, x,B,a>0, 0<@<1.

4.1 GME Poisson distribution

GMEP distribution is a reduced model of GMEPS’ distribution. The pdf of the GMEP distribution
corresponding to (17) is of the form

ag(x;a,ﬂ)exp(aé(X;“"B)) x,B,0,0 >0

;0) = 7
f(x;0) @D s

The reliability of GMEP distribution and hazard rate function of GMEP distribution have the expressions as:

exp[&é(x;a,ﬂ)] -1

e’ -1

R(x;0) =

s

11
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g(x;a,ﬁ)exp(@(_;(x;a,ﬂ))
[exp(@é(x;a,ﬁ))— l] .

4
h(x;0) =

and

Figs. 1 and 2 discuss the behavior of PDF of GMEP distribution and hazard rate function for parameter
values.

........ a=1,8=1,6=001

a=2,8=1,6=001
f(x)

a=3,8=1,6=001

08
a=09 ,8=1,6=005

06 a=05,8=1,6=006

o4 N\ A....

02

X
1 2 3 4 5
Fig. 1. The pdf plots of the GMEP distribution
-------- a=1,8=1,6=001
- - a=2,6=1,6=001
h(x)

— a=3,8=1,6=001

15 — a=09 ,6=1,0=005
e a=05,8=1,0=006

10

05 ¥ ----- z==so-"""T Ehlhb

R
P e
=" x
02 04 06 08 10 12 14

Fig. 2. The hazard rate plots for the GMEP distribution

Fig. 2 provides increasing, decreasing and constant failure rates of GMEP distribution. The o(p) for the
GMEP distribution can be found from (8) as

1 In(p+(1-p)e’)

Q(p))” = ! 20 .

Solving this equation for Q(p)’ the quantile function of GMEP is obtained.

Furthermore, the rth moment of the GMEP distribution about zero is given by

e ’6°

P =20 Hazeny

z =1,2,...

in (9) as follows

12
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z r .
e (o141 9F(;+z+l)
I DIDID . l. I
= zl(e? =)z A«
r=1,2....

>

K@) =¢’ -1

Additionally the Rényi entropy is obtained by substituting >in (16) as follows

© m

L(x)=(1-p)"log,| D>

4 et it h pla-1)+1
m= =

("= (m+p) «

+k+h

mip o pla-+1
i[m](pjdp,mﬁ Lo’ ]afF(T+k+h) |
k

4.2 GME geometric distribution

GMEG distribution is a member of GMEPS family of distribution as a special case. The pdf of the GMEG
distribution corresponding to (18) is of the form

g(xa,p)1-6) ’
[1—(67C_?(x;oc,ﬂ)ﬂ2

S(x0)= x>0,0<6<La,>0.

(19)

R(x;0) h(x;0)

The expressions of reliability function and hazard rate function are:

1-9)G(x;a,p)

R(x0)= 1-0G(x;a,8)

and,

O)— g(xa.p)
H(x:0) C_i(x;a,ﬂ)[l—(ﬁc_i(x;a,ﬂ))]

Figs. 3 and 4 represent pdf and hrfs plots for GMEG distribution for some selected values of parameters.

........ a=1,8=1,6=001

- - a=2,=1,6=001

— a=3,8=1,6=001
005
_ a=09,B=1,0=006

000
a=05,8=1,6=006

0015

0010

0006

..............
--------
----------
-----------

Fig. 3. The pdf plots of the GMEG distribution

13
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........ a=1,5=1,6=001
- - a=2,5=1,6=001
h(x)
14 — a=3,5=1,6=001
12 —_— a=09,B=1,6=006
10 — a=05,8=1,6=006

N A~ O

Fig. 4. The hazard rate plots of the GMEG distribution

It is observed that the shapes of the 4rf are decreasing increasing bathtub shape, decreasing, increasing and
constant at some parameter values.

The Q(p ) function for the GMEG distribution is as:

oo Loy (=p)
Q)" == W= gyt

Solving this equation for o), for different values of p.

The rth moment about zero can be obtained by

P(Z=20)=1-0)0"", z=1,2

>*>in (9) as follows

} . 92-1(1—0)r£”+i+1j
o z-1 j+l _1 1
“'=22 (Z j(”j —Z , r=12... (20)

) Iy -
z% A“

_ 01 oyl
Further, the Rényi entropy is obtained by substituting M(©)=0(-0)", in (16) as follows

m 4 p+h+ - p(a_1)+1
m\( p d, 0" 2" a” l(l—H)ﬁa{’F(T+k+h)
k )\ h

L=0-p)log,| $3 3

pla-1)+1
m=0 k=0 h=0

(m+p) “

+k+h

5 Parameter Estimation of the GMEPS Family

In this section, parameters’ estimation of the parameters is conducted through maximum likelihood method.

14
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X ,X,,.X

Let = 7" 227" " n be a simple random sample from the GMEPS family with set of parameters

©=(a.p.0). The log-likelihood function based on the observed random sample of size 77 is given by:

_Og(xaf)M(0G(x.cf)
Jx0)= MO X, 3,06,6,>0.
P2 2 2a-1 —ﬂxaM' 9(_; ‘a,
f(x;0)= P e ( (x5 ﬁ)),x,ﬂ,a,9,>0.

M(0)

ﬁ 2a-1 _ﬂz”:xa HM'(@(_;(x;a,ﬁ))
(M(0))

InL(x;®)=nlna+2nnf+nno+(2 a- 121r1x /i’Zx

i=1

+Z1n( (0G(x;, B)))—nIn(M(6)).

where, InL=1InL(x;0) . The partial derivatives of the log-likelihood function w.r.t the parameters:

olnL _n . M "(0G(x;a, B)) 0G(x;ax, )
o +221nx /)’Zx Inx, - 92 ‘(9G(xaﬂ)) e ,

oL _2n &, -M'(0G(xa,p)) 0G(x;a. f)
55 2 GG e s op

b

n | MM 0@ a, _ [
OlnL 1 92 ( 7()60(,8)) G(x;a,ﬂ)—nM (9)’
00 B T M(OG(x;a,p)) M(0)
where,
6G 'Ble_zae—ﬂx,” Inx, 5£ _ _ﬂxiZU('
oo and, op

InL_ lnL_ InL
oa 0B

The solution of equations through software will be the estimates of

parameters.
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5.1 A Simulation Study

A

We use the Monte Carlo (MC) simulation to check the convergence of ML estimator's of © through
Mathematica 10.2 version. We generate random sample of size n from the model of GMEG distribution. We
find the ML estimates of the parameters for different sample sizes. The amount of bias with mean square
error (MSE) under the repetition10000 is calculated for each sample. From table the amount of bias and
MSE are decreases as sample sizes increases.

Table 1. The Bias and MSE on Monte Carlo simulation for parameters values for the GMEG model

Parameter True value Sample size n Mean Bias MSE
n=30 22437 0.2437 1.0321
n=50 22321 0.2321 0.9014
22232 0.2232 0.7932
a 2 n=100 2.1524 0.1524 0.5012
n=300 2.0517 0.0517 0.3223
n=500 2.0039 0.0039 0.2015
n=1000
n=30 3.2537 0.2537 0.9423
n=50 3.2420 0.2420 0.8317
3.2412 0.2412 0.7694
A 3 n=100 32015 0.2015 0.7062
n=300 3.1436 0.1436 0.4319
n=500 3.0219 0.0219 0.1726
n=1000
n=30 0.6813 0.1813 0.4536
=50 0.6801 0.1801 0.3998
0.6521 0.1521 0.3457
P 0.5 n=100 0.5523 0.0523 0.1929
n=300 0.5176 0.0176 0.1612
n=500 0.5069 0.0069 0.0134
n=1000

In Table 2 we use the technique of method of moments to find the estimated interval of values for each
parameter. We see that by increasing sample size we have larger amount of percentage for two specific

values.
. 0=(a,B,0)
Table 2. Percentage of sample estimates of through method of moments (MM) for the
GMEG model
N % estimated values for ® =2 o, estimated values for # =3 % estimated values ¢ = 0.5
1.4<é<2.6 2.5< <35 03<6<07
30 87.58% 86.18% 80.02%
50 93.04% 90.26% 85.52%
100 97.35% 93.94% 88.71%
250 98.92% 97.42% 94.56%
500 99.59% 99.01% 96.69%
1000 99.86% 99.45% 98.94%
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6 Applications

In this section, we apply the special models of GMEPS to two real data set and check its flexibility.

Murthy et al. ([18], p.297) used data set related failure times of 84 model aircraft windshield with unit of
measurement is 1000 h. The data are: 4.602, 1.757,2.324, 3.376, 4.663,1.619,2.224, 2.688, 3.924,1.505,
2.154,2.964 1.303, 2.089, 2.902, 4.278,2.823, 4.035, 1.281, 2.085, 2.890, 4.121, 2.661, 3.779, 1.248, 2.010,
2.223,3.114, 4.449, 2.962, 4.255, 3.117, 4.485, 1.652 4.167, 1.432,2.097, 2.934, 4.240, 1.480, 2.135,0.040,
1.070,1.914, 2.646, 1.866, 2.385, 3.443, 3.467, 0.309,1.899, 2.610, , 2.229, 3.166, 4.570, 1.652, 1.506,2.190,
3.000, 3.103, 4.376, 1.615,2.300, 3.478, 0.557, 1.911, 2.625, 1.281,2.038, 4.305, 1.568, 1.981, , 2.194,
3.578,0.943, 1.912, 2.632, 3.595, 0.301, 1.876, 2.481, 3.699, 1.124, 3.344.

We estimate unknown parameters of the GMEG distribution by ML method as describe in section 5 by using
the R code. We calculate the value of Kolmogorov Smirnov test statistics and some other measures for
goodness. We see that GMEG distribution proves better fit than other models shown in the following table.
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Fig. 5. Estimated densities of models for the second data set
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Fig. 7. The probability—probability plots for the aircraft windshield data set

Table 3. Criteria for comparison for second data set

Model k-s -Log L AlC CAIC BIC

GMEG 0.681 123.79 263.58 195.89 268.96
WD 0.742 128.05 264.10 205.06 270.87
EE 0.721 137.84 283.68 227.93 288.54
E 0.694 161.88 327.75 218.85 330.18

Smaller values of these statistics indicate a better fit.
k-s denotes Kolmogorov- Smirnov test statistic

(=1
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W ei
EE
—_— GMEG
oo
=
o
= =
=
—
a
(] -
— |
o
o
— |
—

(] 1 2 3 4 5 (=]
Data set 2

Fig. 8. Estimated densities of models for the data set Bjerkedal [19]

The second data set related to the survival times (measured in days) of 72 guinea pigs infected with virulent
tubercle bacilli, observed and reported by Bjerkedal [19]. The data are as follows:

1.09, 1.83, 2.3,1.15, 2.53, 2.54, 2.78, 1.12, 1.63, 1.97, 1.46, 2.02, 2.13, 5.55,2.15, 1.96, 1.53, 1.59, 1.6,
1.36, 2.54, 0.77, 1.3, 1.34, 1, 1.02, 0.72,1.08, 1.21, 1.22, 1.68, 0.44,1.13, 0.1, 0.33, 2.93, 2.31, 2.4, 2.45,
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2.51,3.42,3.47,1.08,1.22,3.27, 1.16, 1.2, 0.59, 0.59,1.08, 1.39, 1.44, 1.95, 1.07,2.16,1.24, 2.22, 0.74, 0.92,

1,1.71, 1.72, 1.76, 0.56, 4.58, 1.05, 1.07,3.61, 4.02, 4.32, 0.93, 0.96.

Table 4. Criteria for comparison for 2nd data set

Model k-s -Log L AIC CAIC BIC

GMEG 0.823 88.765 193.53 193.87 200.34
WD 0.832 94.03 196.06 196.22 200.60
EE 0.853 93.475 194.95 195.33 201.50
E 0.844 109.45 226.89 226.95 229.16

For the second data set, the values of k-s, AIC, BIC and CAIC are recorded. The plots of the estimated
densities are shown in Fig. 8.
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Fig. 9. Estimated cumulative densities of models for the second data set
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Fig. 10. The probability—probability plots for the Bjerkedal [19] data set
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We observe from the table values and graphs that the new GMEG provides better fit than other models.
7 Concluding Remarks

In this research paper we develop a new family for lifetime data. This model is generated through compound
technique. The GMEPS is compounded through the GME distribution and truncated power series
distribution. We have shown a number of sub-models of GMEPS distribution which indicate its flexibility.
We have derived some statistical properties of this new distribution. The hazard rate functions of sub-models
have various shapes such as decreasing, increasing, and bathtub. The amount of bias and MSE approach to
zero when sample size tends to indefinitely large. The related model GMEG distribution associated to this
family are applied on two real data sets. The new family proves better fit than some of existing models
available in literature.

Acknowledgement

The authors are very grateful to the Editor-in-chief and three referees for their careful reading and
constructive comments which great help in improving this article.

Competing Interests
Authors have declared that no competing interests exist.

References

[1]  Sadaf A. A new compound family of moment exponential distribution and power series distribution
with applications. M.Phil. Thesis. Allama Igbal Open University, Islamabad; 2014.

[2] Marshall AW, Olkin I. A new method for adding a parameter to a family of distributions with
application to the exponential and Weibull families. Biometrika. 1997;84(3):641-652.

[3] Adamidis K, Loukas S. A lifetime distribution with decreasing failure rate. Statistics and Probability
Letters. 1998;39(1):35-42.

[4] Kus C. A new lifetime distribution. Computational Statistics and Data Analysis. 2007;51(9):4497-
4509.

[5] Tahmasbi R, Rezaei S. A two-parameter lifetime distribution with decreasing failure rate.
Computational Statistics & Data Analysis. 2008;52(8):3889-3901.

[6] Chahkandi M, Ganjali M. On some lifetime distributions with decreasing failure rate. Computational
Statistics and Data Analysis. 2009;53(12):4433—-4440.

[71 Adamidis K, Dimitrakopoulou T, Loukas S. On an extension of the exponential-geometric
distribution. Statistics & Probability Letters. 2005;73(3):259-269.

[8] Barreto-Souza W, Morais AL, Cordeiro GM. The Weibull-geometric distribution. Journal of
Statistical Computation and Simulation. 2011;81(5):645- 657.

[9] Barreto-Souza W, Cribari-Neto F. A generalization of the exponential-Poisson distribution. Statistics
& Probability Letters. 2009;79(24):2493-2500.

20



Igbal et al.; AJPAS, 6(1): 1-21, 2020; Article no.AJPAS.53280

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Silva RB, Bourguignon M, Dias CRB, Cordeiro GM. The compound class of extended Weibull power
series distributions. Computational Statistics and Data Analysis. 2013;58:352-367.

Morais AL, Barreto-Souza W. A compound class of Weibull and power series distributions.
Computational Statistics and Data Analysis. 2011;55(3):1410-1425.

Mahmoudi E, Jafari AA. Generalized exponential-power series distributions. Computational Statistics
and Data Analysis. 2012;56(12):4047—-4066.

Sandhya E, Prasanth CB. Marshall-Olkin discrete uniform distribution. Journal of Probability; 2014.

Silva RB, Corderio GM. The Burr XII power series distributions: A new compounding family.
Brazilian Journal of Probability and Statistics. 2015;29(3):565-589.

Dara S. Reliability analysis of size biased distribution. Ph.D Thesis. National College of Business
Administration and Economics, Lahore; 2012.

Igbal Z, Wasim M, Riaz N. Exponentiated moment exponential distribution and power series
distribution with applications: A new compound family. International Journal of Advance Research.
2017;5(7):1335-1355.

Noack A. A class of random variables with discrete distribution. Annals of Mathematical Statistics.
1950;21(1):127-132.

Murthy DNP, Xie M, Jiang R. Weibull models. Wiley; 2004.

Bjerkedal T. Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle
bacilli. American Journal of Epidemiol. 1960;72(1):130-148.

Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE. On the Lambert W function. Advances
in Computational Mathematics. 1996;5(1):329-359.

Gradshteyn IS, Ryzhik IM. Table of integrals, series and products. San Diego: Academic Press; 2000.

© 2020 Igbal et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)

http.://www.sdiarticle4.com/review-history/53280

21



