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ABSTRACT 
 

In the present paper, a three-parameter Weibull-Lindley distribution is considered for Bayesian 
analysis. The estimation of a shape parameter of Weibull-Lindley distribution is obtained with the 
help of both the classical and Bayesian methods. Bayesian estimators are obtained by using 
Jeffrey’s prior, uniform prior and Gamma prior under square error loss function, quadratic loss 
function and Precautionary loss function. Estimation by the method of Maximum likelihood is also 
discussed. These methods are compared by using mean square error through simulation study 
with varying parameter values and sample sizes. 
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1. INTRODUCTION 
 
There are several standard probability 
distributions that have been used over the years 
for modelling real-life datasets however research 
has shown that most of these distributions do not 
adequately model some of these heavily skewed 
datasets and therefore creating a problem in 
statistical theory and applications. Recently, 
numerous extended or compound probability 
distributions have proposed in the literature for 
modeling real-life situations and these compound 
distributions are found to be skewed, flexible and 
more better in statistical modeling compared to 
their standard counterparts [1-13]. 
 
Sequel to the fact above, [14] proposed and 
studied a new compound distribution known as 

“Weibull-Lindley distribution (WeiLinD)” with two 
shape parameters and a scale parameter.               
This distribution has been found to be               
skewed and flexible with different shapes and 
performed better than the Lomax-                      
Lindley distribution [15], two-parameter                 
Lindley distribution [16], transmuted Lindley               
distribution [17] and the conventional                   
Lindley distribution [18] based on some 
applications of the models to four real-life 
datasets [14]. 
 
From [14], the probability density function (pdf), 
the cumulative distribution function (cdf), the 
survival function (sf), the hazard function (or 
failure rate) and quantile function (qf) of the 
Weibull-Lindley distribution are respectively 
defined as: 
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In which 0, , , 0x     and where  and  are the shape parameters and   is the scale 

parameter of the Weibull-Lindley distribution.  
 
A graphical representation of the probability density function, cumulative distribution function, survival 
function and hazard function of the Weibull-Lindley distribution for some selected parameter values 
presented in Fig. 1. 
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Fig. 1. Plots of the PDF, CDF, survival function and hazard function of the WeiLinD for selected 
parameter values 

 
For details of the general behaviour of these 
functions, their properties, applications, different 
mathematical and statistical properties of the 
Weibull-Lindley distribution authors should check 
[14]. Due to the recorded performance of the 
WeiLinD in real life applications, it is deemed 
very important for the authors of this research to 
investigate and consider the most appropriate 
approach(s) for estimating the shape parameter 
of this distribution (WeiLinD) which will forever be 
useful during practical applications of this model. 
 
There are two basic approaches to parameter 
estimation and these are the classical and the 
non-classical methods. The classical theory of 
estimation involves a situation where the 
parameters are considered to be constant but 
unknown whereas the parameters are 
considered to be unknown and random just like 
variables under non classical approach. The 
most widely used method in classical theory is 

the method of maximum likelihood estimation 
while the Bayesian estimation method is used in 
the non-classical theory. However, in most real 
life problems described by lifetime distributions, 
the parameters cannot be considered as 
constants in all the life testing period [19-21]. 
Following this narrative, it becomes obvious that 
the classical (frequentist) approach can no longer 
handle adequately problems of parameter 
estimation in life time models and therefore the 
need for non-classical or Bayesian estimation in 
life time models. 
 
Estimation of parameters in a distribution differs 
by method from one parameter of the distribution 
to another and therefore this study aims at 
estimating one shape parameter of the Weibull-
Lindley distribution using Bayesian approach and 
making a comparison between the Bayesian 
approach and the method of maximum likelihood 
estimation. 
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The aim of this article is to estimate a shape 
parameter of the WeiLinD using Bayesian 
approach assuming a uniform prior, Jeffrey's 
prior and gamma prior distributions with three 
loss functions. Next to this introductory section 
are the remaining contents of this article 
presented as follows: In Section 2, maximum 
likelihood estimator (MLE) for the shape 
parameter is obtained. In Section 3, Bayesian 
estimators based on different loss functions by 
assuming a uniform, Jeffrey's and gamma prior 
distributions are derived. The proposed 
estimators are compared in the relation of their 
mean squared error (MSE) in Section 4. Lastly, 
the conclusions is provided in Section 5. 
 

2. MAXIMUM LIKELIHOOD ESTIMATION 
 

Let 1 2, ,...., nX X X  be a random sample from a 

population X of size ‘n’ independently and 
identically distributed random variables with 
probability density function ( ),f x . The likelihood 

is the joint probability function of the data, but 
viewed as a function of the parameters, treating 
the observed data as fixed quantities. Given that 

the values,  1 2, ,..., nx x x x  are obtained 

independently from a WeiLinD with unknown 
parameters α, β and Ө, the likelihood function is 
given by: 
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The likelihood function,
 
 | , ,L x     based on the pdf of WeiLinD is defined to be the joint density of 

the random variables 1 2, ,......, nx x x  and it is given as: 
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For the shape parameter of the WeiLinD  , the likelihood function is given by; 
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 is a constant which is independent 

of the shape parameter,  .  
 

Let the log-likelihood function,
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Differentiating � partially with respect to α, β and Ө respectively gives; 
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And solving for ̂  gives; 
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where ̂ is the maximum likelihood estimator of 

the shape parameter, . Details concerning the 
maximum likelihood estimators of the other two 
parameters of the WeiLinD can be found in [14]. 
 

3. BAYESIAN ESTIMATION 
 
The Bayesian inference requires the appropriate 
choice of prior(s) for the parameter(s). From the 
Bayesian viewpoint, there is no clear cut way 
from which one can conclude that one prior is 
better than the other. Nevertheless, very often 
priors are chosen according to one's subjective 
knowledge and beliefs. However, if one has 
adequate information about the parameter(s), it 

is better to choose informative prior(s); 
otherwise, it is preferable to use non-informative 
prior(s). 
 

In this study, two non-informative priors (uniform 
and Jeffrey) and an informative prior (gamma) 
will be considered for estimating the shape 
parameter of the WeiLinD. These assumed prior 
distributions have been used widely by several 
authors including [22-29]. This study also 
considers three loss functions including square 
error, quadratic and precautionary loss functions 
which have also been used previously by some 
researchers such as [30-40] etc. The stated prior 
distributions and loss functions are defined as 
follows: 

 
a. The uniform prior is defined as: 
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b. Also, the Jeffrey’s prior is defined as: 
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c. Also, the gamma prior is defined as: 
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i. Squared Error Loss Function (SELF) 
 

The squared error loss function relating to the shape parameter   is defined as: 
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where SELF  is the estimator of the parameter   under SELF. 

 
ii. Quadratic Loss Function (QLF)  
 
The quadratic loss function is defined from [41] as 
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where QLF  is the estimator of the parameter   under QLF. 

 

iii. Precautionary Loss Function (PLF) 
 

The precautionary loss function (PLF) introduced by [42] is an asymmetric loss function and is defined 
as 
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 where PLF  is the estimator of the shape parameter   under PLF.  

 

The posterior distribution of a parameter is the distribution of the parameter after observing the 

available data and it is obtained by using Bayes’ theorem in relation to the shape parameter  , 

likelihood function and prior distribution as follows:  
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Also note that  p   and ( | )L x   are the prior distribution and the Likelihood function respectively.  

 

3.1 Bayesian Analysis under Uniform Prior with Three Loss Functions 
 

The posterior distribution of the shape parameter   assuming a uniform prior distribution is obtained 
from equation (17) using integration by substitution method as: 
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Now the Bayes estimators under uniform prior using SELF, QLF and PLF are given respectively as: 
 

     
0

1

1
| |

log 1 1
1

i

SELF
n

xi

i

n
E E x P x d

x
e





     











   

   
        




                      (19) 

 

 
 

 

 

 
1

1

0

2
2

0 1

|
| 1

|
| log 1 1

1
i

QLF
n

xi

i

P x d
E x n

E x xP x d e




  



   









 




  

   
        



 

                                   (20) 



 
 
 
 

Eraikhuemen et al.; AJARR, 8(4): 28-41, 2020; Article no.AJARR.54833 
 
 

 
34 

 

and 
 

    
  

1
21

2

0.5

2 2

0

1

1 2
| |

log 1 1
1

i

PLF
n

xi

i

n n
E x P x d

x
e





    










         
       

        




            (21) 

 

3.2 Bayesian Analysis under Jeffrey’s Prior with Three Loss Functions 
 

The posterior distribution of the shape parameter   for a given data assuming a Jeffrey’s prior 
distribution is obtained from equation (17) using integration by substitution method as: 
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Again the Bayes estimators under Jeffrey’s prior using SELF, QLF and PLF are given respectively as: 
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3.3 Bayesian Analysis under Gamma Prior with Three Loss Functions 
 

The posterior distribution of the shape parameter   for a given data assuming a gamma prior 
distribution is obtained from equation (17) using integration by substitution method as 
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Table 1. Estimates and mean squared errors (within parenthesis) for ̂  under uniform prior 
 

Sample 
size (n) 

Parameter (True value) Methods of estimation 

     a b ˆ
MLE  ˆ

SELF  ˆ
QLF  ˆ

PLF  

25 0.5 0.5 0.5 1.0 2.0 0.6728 
(1.1980)  

0.6997 
(1.3033)  

0.6459 
(1.0978)  

0.7130 
(1.3574) 

0.5 1.0 0.5 1.0 1.0 0.5202 
(0.0123) 

0.5410 
(0.0146) 

0.4994 
(0.0110) 

0.5513 
(0.0160) 

1.0 1.0 1.0 1.0 1.0 1.0457 
(0.0505) 

1.0875 
(0.0600) 

1.0039 
(0.0446) 

1.1082 
(0.0661) 

2.0 1.0 1.0 1.0 1.0 2.0914 
(0.2021) 

2.1750 
(0.2401) 

2.0077 
(0.1786) 

2.2165 
(0.2644) 

1.0 1.0 2.0 1.5 1.0 1.0457 
(0.0505) 

1.0875 
(0.0600) 

1.0039 
(0.0446) 

1.1082 
(0.0661) 

50 0.5 0.5 0.5 1.0 2.0 0.2594 
(0.8420) 

0.2646 
(0.8712) 

0.2542 
(0.8135) 

0.2672 
(0.8860) 

0.5 1.0 0.5 1.0 1.0 0.5095 
(0.0055) 

0.5197 
(0.0060) 

0.4993 
(0.0052) 

0.5248 
(0.0063) 

1.0 1.0 1.0 1.0 1.0 1.0235 
(0.0220) 

1.0440 
(0.0242) 

1.0030 
(0.0206) 

1.0542 
(0.0257) 

2.0 1.0 1.0 1.0 1.0 2.047 
(0.088) 

2.088 
(0.097) 

2.0061 
(0.0824) 

2.1083 
(0.1027) 

1.0 1.0 2.0 1.5 1.0 1.0235 
(0.0220) 

1.0440 
(0.0242) 

1.0030 
(0.0206) 

1.0542 
(0.0257) 

100 0.5 0.5 0.5 1.0 2.0 0.0263 
(0.3439) 

0.0266 
(0.3460) 

0.0261 
(0.3417) 

0.0267 
(0.3471) 

0.5 1.0 0.5 1.0 1.0 0.5046 
(0.0026) 

0.5096 
(0.0028) 

0.4996 
(0.0026) 

0.5122 
(0.0029) 

1.0 1.0 1.0 1.0 1.0 1.0079 
(0.0102) 

1.0180 
(0.0106) 

0.9979 
(0.0099) 

1.0231 
(0.0109) 

2.0 1.0 1.0 1.0 1.0 2.0159 
(0.0407) 

2.0361 
(0.0425) 

1.9957 
(0.0396) 

2.0461 
(0.0438) 

1.0 1.0 2.0 1.5 1.0 1.0079 
(0.0102) 

1.0180 
(0.0106) 

0.9979 
(0.0099) 

1.0231 
(0.0109) 

150 0.5 0.5 0.5 1.0 2.0 0.0083 
(0.2882) 

0.0084 
(0.2888) 

0.0083 
(0.2876) 

0.0084 
(0.2890) 

0.5 1.0 0.5 1.0 1.0 0.5030 
(0.0017) 

0.5064 
(0.0018) 

0.4996 
(0.0017) 

0.5080 
(0.0018) 

1.0 1.0 1.0 1.0 1.0 1.0066 
(0.0068) 

1.0133 
(0.0071) 

0.9999 
(0.0067) 

1.0166 
(0.0072) 

2.0 1.0 1.0 1.0 1.0 2.0132 
(0.0273) 

2.0266 
(0.0282) 

1.9997 
(0.0268) 

2.0333 
(0.0288) 

1.0 1.0 2.0 1.5 1.0 1.0066 
(6.8e-3) 

1.0133  
(7.1e-3) 

0.9999  
(6.7e-3) 

1.0166 
(7.2e-3) 

200 0.5 0.5 0.5 1.0 2.0 0.00 (0.25) 0.00 (0.25) 0.00 (0.25) 0.00 (0.25) 
0.5 1.0 0.5 1.0 1.0 0.5028 

(1.3e-3) 
0.5054  
(1.3e-3) 

0.5003  
(1.3e-3) 

0.5066 
(1.3e-3) 

1.0 1.0 1.0 1.0 1.0 1.0057 
(5.3e-3) 

1.0107  
(5.4e-3) 

1.0006  
(5.2e-3) 

1.0132 
(5.5e-3) 

2.0 1.0 1.0 1.0 1.0 2.011 
(0.0211) 

2.0214 
(0.0217) 

2.0013 
(0.0208) 

2.0264 
(0.0220) 

1.0 1.0 2.0 1.5 1.0 1.0057 
(5.3e-3) 

1.0107  
(5.4e-3) 

1.0006  
(5.2e-3) 

1.0132 
(5.5e-3) 

MLE = Maximum likelihood estimator, SELF = Square error loss function, QLF = Quadratic loss function,               
PLF = Precautionary loss function 
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Table 2. Estimates and mean squared errors (within parenthesis) for ̂  under Jeffrey’s prior 
 
Sample 
size (n) 

Parameter (True value) Methods of estimation 

     a b ˆ
MLE  ˆ

SELF  ˆ
QLF  ˆ

PLF  

25 0.5 0.5 0.5 1.0 2.0 0.6728 
(1.1980) 

0.6728 
(1.1980) 

0.6190 
(1.0028) 

0.6861 
(1.2495) 

0.5 1.0 0.5 1.0 1.0 0.5202 
(0.0123) 

0.5202 
(0.0123) 

0.4786 
(0.0105) 

0.5305 
(0.0133) 

1.0 1.0 1.0 1.0 1.0 1.0457 
(0.0505) 

1.0457 
(0.0505) 

0.9620 
(0.0424) 

1.0664 
(0.0548) 

2.0 1.0 1.0 1.0 1.0 2.0914 
(0.2021) 

2.0914 
(0.2021) 

1.9241 
(0.1697) 

2.1328 
(0.2191) 

1.0 1.0 2.0 1.5 1.0 1.0457 
(0.0505) 

1.0457 
(0.0505) 

0.9620 
(0.0424) 

1.0664 
(0.0548) 

50 0.5 0.5 0.5 1.0 2.0 0.2594 
(0.8420) 

0.2594 
(0.8420) 

0.2491 
(0.7856) 

0.2620 
(0.8565) 

0.5 1.0 0.5 1.0 1.0 0.5095 
(0.0055) 

0.5095 
(0.0055) 

0.4891 
(0.0051) 

0.5146 
(0.0057) 

1.0 1.0 1.0 1.0 1.0 1.0235 
(0.0220) 

1.0235 
(0.0220) 

0.9826 
(0.0201) 

1.0337 
(0.0230) 

2.0 1.0 1.0 1.0 1.0 2.047 
(0.088) 

2.047 
(0.088) 

1.9651 
(0.0803) 

2.0674 
(0.0920) 

1.0 1.0 2.0 1.5 1.0 1.0235 
(0.0220) 

1.0235 
(0.0220) 

0.9826 
(0.0201) 

1.0337 
(0.0230) 

100 0.5 0.5 0.5 1.0 2.0 0.0263 
(0.3439) 

0.0263 
(0.3439) 

0.0258 
(0.3396) 

0.0265 
(0.3449) 

0.5 1.0 0.5 1.0 1.0 0.5046 
(0.0026) 

0.5046 
(0.0026) 

0.4945 
(0.0026) 

0.5071 
(0.0027) 

1.0 1.0 1.0 1.0 1.0 1.0079 
(0.0102) 

1.0079 
(0.0102) 

0.9878 
(0.0099) 

1.0130 
(0.0104) 

2.0 1.0 1.0 1.0 1.0 2.0159 
(0.0407) 

2.0159 
(0.0407) 

1.9756 
(0.0394) 

2.0259 
(0.0415) 

1.0 1.0 2.0 1.5 1.0 1.0079 
(0.0102) 

1.0079 
(0.0102) 

0.9878 
(0.0099) 

1.0130 
(0.0104) 

150 0.5 0.5 0.5 1.0 2.0 0.0083 
(0.2882) 

0.0083 
(0.2882) 

0.0082 
(0.2871) 

0.0084 
(0.2885) 

0.5 1.0 0.5 1.0 1.0 0.5030 
(0.0017) 

0.5030 
(0.0017) 

0.4963 
(0.0017) 

0.5047 
(0.0017) 

1.0 1.0 1.0 1.0 1.0 1.0066 
(0.0068) 

1.0066 
(0.0068) 

0.9932 
(0.0067) 

1.0099 
(0.0069) 

2.0 1.0 1.0 1.0 1.0 2.0132 
(0.0273) 

2.0132 
(0.0273) 

1.9863 
(0.0266) 

2.0199 
(0.0277) 

1.0 1.0 2.0 1.5 1.0 1.0066  
(6.8e-3) 

1.0066  
(6.8e-3) 

0.9932 
(6.7e-3) 

1.0099 
(6.9e-3) 

200 0.5 0.5 0.5 1.0 2.0 0.00 (0.25) 0.00 (0.25) 0.00 (0.25) 0.00 (0.25) 
0.5 1.0 0.5 1.0 1.0 0.5028  

(1.3e-3) 
0.5028  
(1.3e-3) 

0.4978 
(1.2e-3) 

0.5041 
(1.3e-3) 

1.0 1.0 1.0 1.0 1.0 1.0057  
(5.3e-3) 

1.0057  
(5.3e-3) 

0.9956 
(5.2e-3) 

1.0082 
(5.3e-3) 

2.0 1.0 1.0 1.0 1.0 2.0114 
(0.0211) 

2.0114 
(0.0211) 

1.9912 
(0.0206) 

2.0164 
(0.0214) 

1.0 1.0 2.0 1.5 1.0 1.0057  
(5.3e-3) 

1.0057  
(5.3e-3) 

0.9956 
(5.2e-3) 

1.0082 
(5.3e-3) 

MLE = Maximum likelihood estimator, SELF = Square error loss function, QLF = Quadratic loss function,            
PLF = Precautionary loss function 
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Table 3. Estimates and mean squared errors (within parenthesis) for ̂  under gamma prior 
 

Sample 
size (n) 

Parameter (True value) Methods of estimation 

     a b ˆ
MLE  ˆ

SELF  ˆ
QLF  ˆ

PLF  

25 0.5 0.5 0.5 1.0 2.0 0.6728 
(1.1980)  

0.6629 
(1.1529) 

0.6138 
(0.9787) 

0.6751 
(1.1988) 

0.5 1.0 0.5 1.0 1.0 0.5202 
(0.0123) 

0.5295 
(0.0126) 

0.4888 
(0.0102) 

0.5396 
(0.0138) 

1.0 1.0 1.0 1.0 1.0 1.0457 
(0.0505) 

1.0421 
(0.0456) 

0.9619 
(0.0388) 

1.0619 
(0.0494) 

2.0 1.0 1.0 1.0 1.0 2.0914 
(0.2021) 

2.0009 
(0.1481) 

1.8470 
(0.1496) 

2.0390 
(0.1553) 

1.0 1.0 2.0 1.5 1.0 1.0457 
(0.0505) 

1.0208 
(0.0407) 

0.9423 
(0.0376) 

1.0403 
(0.0434) 

50 0.5 0.5 0.5 1.0 2.0 0.2594 
(0.8420) 

0.2532 
(0.8068) 

0.2435 
(0.7554) 

0.2556 
(0.8199) 

0.5 1.0 0.5 1.0 1.0 0.5095 
(0.0055) 

0.5144 
(0.0056) 

0.4942 
(0.0050) 

0.5194 
(0.0059) 

1.0 1.0 1.0 1.0 1.0 1.0235 
(0.0220) 

1.0226 
(0.0210) 

0.9825 
(0.0192) 

1.0326 
(0.0220) 

2.0 1.0 1.0 1.0 1.0 2.047 
(0.088) 

2.0043 
(0.0756) 

1.9257 
(0.0752) 

2.0239 
(0.0776) 

1.0 1.0 2.0 1.5 1.0 1.0235 
(0.0220) 

1.0123 
(0.0198) 

0.9726 
(0.0189) 

1.0222 
(0.0205) 

100 0.5 0.5 0.5 1.0 2.0 0.0263 
(0.3439) 

0.0257 
(0.3386) 

0.0252 
(0.3347) 

0.0258 
(0.3396) 

0.5 1.0 0.5 1.0 1.0 0.5046 
(0.0026) 

0.5071 
(0.0027) 

0.4970 
(0.0025) 

0.5096 
(0.0027) 

1.0 1.0 1.0 1.0 1.0 1.0079 
(0.0102) 

1.0078 
(0.0100) 

0.9878 
(0.0097) 

1.0127 
(0.0102) 

2.0 1.0 1.0 1.0 1.0 2.0159 
(0.0407) 

1.9954 
(0.0380) 

1.9559 
(0.0385) 

2.0053 
(0.0384) 

1.0 1.0 2.0 1.5 1.0 1.0079 
(0.0102) 

1.0027 
(0.0097) 

0.9829 
(0.0096) 

1.0077 
(0.0099) 

150 0.5 0.5 0.5 1.0 2.0 0.0083 
(0.2882) 

0.0081 
(0.2863) 

0.0080 
(0.2852) 

0.0082 
(0.2865) 

0.5 1.0 0.5 1.0 1.0 0.5030 
(0.0017) 

0.5046 
(0.0017) 

0.4980 
(0.0017) 

0.5063 
(0.0018) 

1.0 1.0 1.0 1.0 1.0 1.0066 
(0.0068) 

1.0065 
(0.0067) 

0.9932 
(0.0066) 

1.0098 
(0.0068) 

2.0 1.0 1.0 1.0 1.0 2.0132 
(0.0273) 

1.9996 
(0.0261) 

1.9731 
(0.0261) 

2.0062 
(0.0263) 

1.0 1.0 2.0 1.5 1.0 1.0066 
(0.0068) 

1.0031 
(0.0066) 

0.9898 
(0.0065) 

1.0064 
(0.0067) 

200 0.5 0.5 0.5 1.0 2.0 0.00  
(0.25) 

0.00 
(0.2500) 

0.00  
(0.2500) 

0.00 
(0.2500) 

0.5 1.0 0.5 1.0 1.0 0.5028 
(1.3e-3) 

0.5041  
(1.3e-3) 

0.4991  
(1.2e-3)  

0.5053 
(1.3e-3)  

1.0 1.0 1.0 1.0 1.0 1.0057  
(5.3e-3) 

1.0056  
(5.2e-3) 

0.9956  
(5.1e-3) 

1.0081 
(5.3e-3) 

2.0 1.0 1.0 1.0 1.0 2.0114 
(0.0211) 

2.0012 
(0.0204) 

1.9813 
(0.0203) 

2.0062 
(0.0205) 

1.0 1.0 2.0 1.5 1.0 1.0057  
(5.3e-3) 

1.0031  
(5.2e-3) 

0.9931  
(5.1e-3) 

1.0056 
(5.2e-3) 

MLE = Maximum likelihood estimator, SELF = Square error loss function, QLF = Quadratic loss function,               
PLF = Precautionary loss function 



 
 
 
 

Eraikhuemen et al.; AJARR, 8(4): 28-41, 2020; Article no.AJARR.54833 
 
 

 
38 

 

Also the Bayes estimators under gamma prior using SELF, QLF and PLF are given respectively as: 
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4. RESULTS AND DISCUSSION 
 
In this section, Monte Carlo simulation with R 
software under 10,000 replications is considered 
to generate random samples of sizes n = (25, 50, 
100, 150, 200) from Weibull-Lindley distribution 
using the quantile function (inverse 
transformation method of simulation) under the 
following combination of parameter values:

 
0.5, 0.5, 0.5, 1a       and 2b  ; 

0.5, 1.0, 0.5, 1.0a       and 1.0b  ; 

1.0, 1.0, 1.0, 1.0a       and 1.0b  , 

2.0, 1.0, 1.0, 1.0a       and 1.0b   
and 1.0, 1.0, 2.0, 1.5a       and 

1.0b  . The following tables present the results 
of our simulation study by listing the average 
estimates of the shape parameter with their 
respective Mean Square Errors (MSEs) under 
the appropriate estimation methods which 
include the Maximum Likelihood Estimation 
(MLE), Squared Error Loss Function (SELF), 
Quadratic Loss Function (QLF), and 
Precautionary Loss Function (PLF) under 
Uniform Jeffrey and gamma priors respectively. 
The criterion for evaluating the performance of 
the estimators in this study is the Mean Square 

Error (MSE):  
21 ˆ .

n
MSE E   

 
 
Considering the results from Tables 1-3, it is 
revealed that the estimators of the shape 
parameter using QLF under Gamma, uniform 
and Jeffrey priors is better than the other 
estimators based on the fact that it has a smaller 
MSE despite the changes in the samples and 

chosen parameter values. This consistent 
smaller value of the MSE for Bayesian estimators 
(using QLF under Uniform, Jeffrey and gamma 
priors) is an indication that the method is the 
more efficient for estimating this shape 
parameter compared to the Method of Maximum 
Likelihood estimation (MLE) and Bayesian with 
the other two loss functions. Also, making 
comparison across the prior distributions it is 
revealed that the QLF under the gamma prior 
has the smallest MSEs compared to the QLF 
under uniform and Jeffrey priors irrespective of 
the allocated parameter values and the sample 
sizes and this performance of the QLF is found to 
be consistent despite all odds. 
 
On a general note, the results in Tables 1-3 has 
shown that the average estimates of the shape 
parameter tend to be closer to the true parameter 
value when sample size increases and the mean 
square errors (MSEs) all decrease as sample 
size increases which satisfies the first-order 
asymptotic theory. Also, Bayesian estimators and 
maximum likelihood estimators (MLEs) all 
become better when the sample size increases. 
In fact, for very large sample sizes the 
performances of these estimators are observed 
to be the same for both methods of estimation. 
 

5. CONCLUSION  
 
This study has derived Bayesian estimators for a 
shape parameter of Weibull-Lindley distribution 
by assuming Uniform, Jeffrey and gamma prior 
distributions with three loss functions which 
include Squared Error Loss Function, Quadratic 
Loss Function and Precautionary Loss Function. 
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The Posterior distributions and Bayes estimators 
of this parameter are derived and simplified using 
the priors and loss functions respectively. The 
performance of these estimators have been 
assess on the basis of their mean square errors 
using the inverse transformation method of 
Monte Carlo Simulations for different parameter 
values and sample sizes. The results of the 
simulation and comparison show that using the 
QLF gives estimators with the smallest MSEs 
under all the prior distributions (gamma, Jeffreys 
and uniform). Most importantly, it is revealed that 
Bayesian Method using Quadratic Loss Function 
under gamma prior produces the best estimators 
of the shape parameter compared to estimators 
using Maximum Likelihood method, Squared 
Error Loss Function and Precautionary Loss 
Function (PLF) under both Uniform and Jeffrey 
priors irrespective of the selected values of the 
parameters and the allocated sample sizes. This 
research also found that the variation in the 
values of the other two parameters of the 
distribution do not influence the performance of 
the estimators of the estimated shape parameter, 
however, it is suggested that since this study 
considers only a shape parameter of the 
WeiLinD, upcoming research works should look 
at the remaining two parameters of the 
distribution because in practical applications of 
this model it will be very necessary to                
identify and understand the best method for 
estimating all the unknown parameters of the 
model.  
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