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Abstract

Let G = (V (G), E(G)) be any finite, undirected, simple graph. A set D ⊆ V (G) is introduced in this paper

as a clique-safe dominating set of G if D is a dominating set of G and for every clique D
′
m of size m in

the subgraph induced by V (G) r D, there exists a clique Dn of size n in the subgraph induced by D such
that n ≥ m. The clique-safe domination number of G, denoted by γcs(G), is the smallest cardinality of a
clique-safe dominating set of G. This study aims to generate a few elementary properties of the parameter
and to characterize the minimum clique-safe dominating sets of paths and cycles. As a consequence, the
clique-safe domination numbers of the aforesaid graphs are obtained.
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1 Introduction

Let G = (V (G), E(G)) be a nontrivial graph which is finite, simple, and undirected. A nonempty subset D of
V (G) is a dominating set of G if for every vertex y ∈ V (G) rD, there exists x ∈ D such that xy ∈ E(G) . The
domination number of G, denoted by γ(G), is the minimum cardinality of a dominating set of G. A dominating
set D of G with |D| = γ(G) is called a minimum dominating set of G or a γ-set of G. Consider the following
examples:

Fig. 1. The Star graph K1,n and the Petersen graph P

Example 1.1. Notice that vertex x in Fig. 1a is adjacent to every other vertex in the star graph. Hence,
D = {x} is a γ-set of G and γ(G) = 1.

Example 1.2. Consider the Petersen graph P in Fig. 1b. Notice that D1 = {1, 2, 3, 4, 5} is a dominating set of
G but not a γ-set of G since we can find a dominating set of G with fewer elements, say D2= {1, 8, 9}. The fact
that D2 in this case has three elements immediately means that γ(G) ≤ 3. Since by simple inspection P does not
have a dominating set of cardinality 1 or 2, it follows right away that γ(P ) ≥ 3 . Combining the two inequalities
produces γ(P ) = 3, with the set D2 = {1, 8, 9} as a γ- set of P .

Several types of dominating sets have been investigated, including independent dominating sets, total dominating
sets, and connected dominating sets, each of which has a corresponding graphical parameter. In [1], Cockayne
and Hedetnieme presented a quick review of results and applications concerning dominating sets in graphs. They
have seen that the theory of domination resembles the well-known theory of graph colorings. Dominating sets
have applications in a variety of fields, including communication theory and political science.

A dominating set D of G is defined in this paper as a clique-safe dominating set if the subgraph induced
by D contains a clique Dn of greater cardinality than that of any clique D

′
m in the subgraph induced by

V (G) r D = Dc. The minimum cardinality obtainable from among all clique-safe dominating sets of G is
referred to as the clique-safe domination number of G, denoted by γcs(G). Any clique-safe dominating set W of
G such that |W | = γcs(G) is called a minimum clique-safe dominating set of G or a γcs-set of G.

Example 1.3. Consider the graph G in Fig. 2. Let D = {v2, v4}. Observe that D is a dominating set of G
and 〈Dc〉G is a path of order 2. This means that the largest clique in 〈Dc〉G is of size 2 which is also the size of
the largest clique in 〈D〉G. Hence, D is a clique-safe dominating set of G. Since there is no singleton subset of
V (G) that will satisfy the definition of a clique-safe dominating set, it follows now that γcs(G) = 2.
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Fig. 2. The graph G

In this study, we shall generate some few elementary properties of the clique-safe dominating sets and characterize
the minimum clique-safe dominating sets of the path Pn and cycle Cn. We shall also obtain the corresponding
formulas for the clique-safe domination numbers of these parameterized families of graphs.

The concept of clique domination was first studied by Cozzens and Kelleher in [2]. A clique dominating set
or a dominating clique is a dominating set that induces a complete subgraph. In their paper, they characterized
the classes of graphs containing some dominating sets that induce complete subgraphs. In [3], Canoy and Daniel
characterized the clique dominating sets in the join, corona, composition and cartesian product of graphs.
Dominating sets that induce complete subgraphs have great diversity of applications. In addition, the properties
of dominating sets are useful in identifying some structural properties of social networks. Domination and other
variations of domination can be found in [4] and [5].

Throughout this paper, every graph is considered in the context of being simple, finite and undirected. Other
standard terminologies not defined in this paper can be found in [6].

2 Main Results

Our first general observations are given below:

2.1 Some basic properties of the clique-safe domination number

Theorem 2.1. The following properties hold for any graph G :

a.) 1 ≤ γ(G) ≤ γcs(G);

b.) γcs(G) = 1 if and only if G is the star K1,n.

Proof. Note that if ζ1 is the collection of all dominating sets of G and ζ2 is the collection of all clique-safe
dominating sets of G, then ζ1 is a superset of ζ2. As an immediate consequence, we have γ(G) ≤ γcs(G), where
the inequality γ(G) ≥ 1 is also clear. Part (b) is straightforward. �

Remark 2.1. We conjecture at the moment that if G is any connected graph of order n, then γcs(G) ≤ n
2

.

Theorem 2.2. Let a and n be positive integers such that 1 ≤ a ≤ n. Then there exists a graph G of order n
such that γcs(G) = a.

Proof. If a = n, then take G to be the null graph of order n and we are done. So suppose a < n. In this case,
take G to be the disjoint union of a − 1 isolated vertices together with the star K1,n−a. Clearly, G here is of
order n such that γcs(G) = a. �

In what follows are the results characterizing the clique-safe dominating sets in paths and cycles.
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2.2 Clique-Safe domination in paths and cycles

The path Pn of order n is the graph that may be drawn with distinct vertices a1, a2, a3, ..., an and edges
a1a2, a2a3, ..., and an−1an, while the cycle Cn of order n ≥ 3 is the graph that may be drawn with distinct
vertices b1, b2, b3, ..., bn and edges b1b2, b2b3, ..., bn−1bn, and bnb1.

Fig. 3. The path Pn and the cycle Cn

For the path Pn with V (Pn) = {a1, a2, a3, ..., an} and E(Pn) = {a1a2, a2a3, ..., an−1an}, where n ≥ 1 , suppose
D is the minimum clique-safe dominating set of Pn. Then D takes the following forms for n = 1, 2, 3, 4, 5, 6:

• For n = 1: D = {a1}, so that γcs(P1) = 1 = γ(P1);

• For n = 2: D = {a1} or D = {a2}, so that γcs(P2) = 1 = γ(P2)

• For n = 3: D = {a2}, so that γcs(P3) = 1 = γ(P3);

• For n = 4: D = {a2, a3}, or D = {a1, a3} or D = {a2, a4}, so that γcs(P4) = 2 = γ(P4);

• For n = 5: D = {a2, a4}, so that γcs(P5) = 2 = γ(P5);

• For n = 6: The set {a2, a5} is the unique minimum dominating set of P6 , but not a clique-safe dominating
set. This implies that γcs(P6) ≥ 3. Since we can choose a clique-safe dominating set D = {a2, a3, a5} or
D = {a2, a4, a5} or D = {a2, a5, a6}, etc., it follows that γcs(P6) ≤ 3. Combining the two inequalities, we
obtain γcs(P6) = 3.

Observe that for n = 1, 2, 3, 4, 5, γ(Pn) = γcs(Pn), but for n = 6, γ(P6) 6= γcs(P6). The following diagrams
below provide more details.

Our next results will make use of the concept of vertex covering of graphs. Recall that a vertex cover for a graph
G is a set S ⊆ V (G) such that for every edge e ∈ E(G) there exists a vertex x ∈ S such that x is an end-vertex
of e. The vertex covering number of G denoted by α(G) is the minimum cardinality of such a vertex covering S
of G.

Lemma 2.3. [7] For the path Pn of order n, α(G) = bn
2
c.

Theorem 2.4. Let Pn be a path of order n, as described in Fig. 3a, where n ≥ 10 and n ∈ {3k− 1, 3k, 3k+ 1}
for some positive integer k. Let ∅ ( D ⊆ V (Pn). Then D is a minimum clique-safe dominating set of Pn if and
only if D is a dominating set of Pn of minimum cardinality such that |D| = k + 1 and the subgraph induced by
D contains a K2 subgraph.

Proof. Consider 3 cases:

i. For n = 3k for some k ≥ 4:
Note first that the setW = {a2, a5, ..., an−1} containing exactly k elements from V (Pn) = {a1, a2, a3, ..., an}
is the unique γ-set of Pn, although not a clique-safe dominating set. As a consequence, γcs(Pn) > k. Now
if D is a minimum clique-safe dominating set of Pn, then D is clearly dominating and |D| > k. Since
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the set W ∪ {an} which contains k+ 1 elements is a clique-safe dominating set of Pn, it follows now that
|D| = k+ 1. Since by Lemma 2.3 the minimum number of vertices needed to provide a covering of all the
edges of Pn is equal to bn

2
c = b 3k

2
c > k+ 1 for k ≥ 4, it follows that the subgraph induced by V (Pn)rD

contains a K2 subgraph. Thus, the subgraph induced by D also contains a K2-subgraph.

ii. For n = 3k + 1 for some k ≥ 3:
Any subset W ⊆ V (Pn) with at most k elements cannot dominate the path Pn = [a1, a2, ..., an]. This
means that γ(Pn) > k and, by Theorem 2.1(a), γcs(Pn) > k. So if D is a minimum clique-safe dominating
set of Pn, then D is clearly a dominating set and |D| > k. Since the set W = {a2, a5, a8, ..., an−2, an−1}
which contains k + 1 elements is a clique-safe dominating set of Pn, it follows that |D| = k + 1. Since by
Lemma 2.3 the minimum number of vertices needed to provide a covering of all the edges of Pn is equal
to bn

2
c = b 3k+1

2
c > k + 1 for k ≥ 3, it follows that the subgraph induced by V (Pn) r D contains a K2

subgraph. Thus, the subgraph induced by D also contains a K2-subgraph.
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iii. For n = 3k − 1 for some k ≥ 4:
Any subset W ⊆ V (Pn) with at most k elements cannot clique-safe dominate the path Pn with V (Pn) =
{a1, a2, ..., an}. So if D is a minimum clique-safe dominating set of Pn, then we have D dominating
and |D| > k. Since the set W = {a2, a5, a8, ..., a3k−4, a3k−2, a3k−1} which contains k + 1 elements is a
clique-safe dominating set of Pn, it follows that |D| = k + 1. Since by Lemma 2.3 the minimum number
of vertices needed to provide a covering of all the edges of Pn is equal to bn

2
c = b 3k−1

2
c > k+ 1 for k ≥ 4,

it follows that the subgraph induced by V (Pn)rD contains a K2 subgraph. Thus, the subgraph induced
by D also contains a K2-subgraph.

The converse is straightforward. �

Corollary 2.5. The clique-safe domination number of the path Pn is given by the following expression:

γcs(Pn) =


1 if n = 1, 2, 3

2 if n = 4, 5

3 if n = 6, 7

k + 1 if n ≥ 8 and n ∈ {3k − 1, 3k, 3k + 1} for some positive integer k

(2.1)

Proof. The additional instances γcs(P7) = 3, γcs(P8) = γcs(P9) = 4 can be verified analogously. For n ≥ 10
with n ∈ {3k, 3k + 1, 3k − 1} for some positive integer k, Theorem 2.4 asserts that γcs(Pn) = k + 1. �

For the cycle Cn with V (Cn) = {b1, b2, b3, ..., bn} and E(Cn) = {b1b2, b2b3, ..., bnb1}, where n ≥ 3, suppose D is
the minimum clique-safe dominating set of Cn. Then D takes the following forms for n = 3, 4, 5:

• For n = 3: D = {b1, b2} or D = {b1, b3} or D = {b2, b3}, so that γcs(C3) = 2;

• For n = 4: D = {b1, b2} or D = {b1, b3} or D = {b1, b4} or D = {b2, b3} or D = {b2, b4} or D = {b3, b4},
so that γcs(C4) = 2

• For n = 5: D = {b1, b2, b3} or D = {b1, b2, b4} or D = {b1, b2, b5} or D = {b1, b3, b4} or D = {b1, b3, b5}
or D = {b1, b4, b5} or D = {b2, b3, b4} or D = {b2, b3, b5} or D = {b2, b4, b5} or D = {b3, b4, b5}, so that
γcs(C5) = 3;

For n = 6, 7, 8, the clique safe domination number can be obtained analogously, where γcs(P6) = γcs(P7) = 3
and γcs(P8) = 4.

Theorem 2.6. Let Cn be a cycle of order n as described in Fig. 3b, where n ≥ 9 and n ∈ {3k−1, 3k, 3k+1} for
some positive integer k. Let D ⊆ V (Cn) be a nonempty set. Then D is a minimum clique-safe dominating set
of Cn if and only if D is a dominating set of Cn of minimum cardinality such that |D| = k+ 1 and the subgraph
induced by D contains a K2 subgraph.

Proof. Consider 3 cases:

i. For n = 3k for some k ≥ 3:
Note first that the sets W1 = {b1, b4, ..., bn−2}, W2 = {b2, b5, ..., bn−1}, and W3 = {b3, b6, ..., bn} containing
exactly k elements each from V (Cn) = {b1, b2, b3, ..., bn} are the γ-sets of Cn, but none of which is a clique-
safe dominating set. As a consequence, γcs(Cn) > k. Now if D is a minimum clique-safe dominating
set of Cn, then D is clearly dominating and |D| > k. Note that adding another vertex to the set Wi

for i = 1, 2, 3 to form W ∗
i would make W ∗

i a clique-safe dominating set of Cn, where |W ∗
i | = k + 1.

Since the minimum number of vertices needed to provide a covering of all the edges of Cn is equal to
dn
2
e = d 3k

2
e > k+1 for k ≥ 3, it follows that the subgraph induced by V (Cn)rD contains a K2 subgraph.

Thus, the subgraph induced by D also contains a K2-subgraph.
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ii. For n = 3k + 1 for some k ≥ 3:
Any subsetW ⊆ V (Cn) with at most k elements cannot dominate the cycle Cn with V (Cn) = {b1, b2, ..., bn}.
This means that γ(Cn) > k and, by Theorem 2.1(a), γcs(Cn) > k. So if D is a minimum clique-
safe dominating set of Cn, then D is clearly a dominating set and |D| > k. Since the set W ∗ =
{b1, b4, ..., bn−3, bn−2} containing exactly k + 1 elements is a clique-safe dominating sets of Cn, it follows
that |D| = k + 1. Since the minimum number of vertices needed to provide a covering of all the edges
of Cn is equal to dn

2
e = d 3k+1

2
e > k + 1 for k ≥ 3, it follows that the subgraph induced by V (Cn) r D

contains a K2 subgraph. Thus, the subgraph induced by D also contains a K2-subgraph.

iii. For n = 3k − 1 for some k ≥ 4:
Any subset W ⊆ V (Cn) with at most k elements cannot clique-safe dominate the cycle Cn with V (Cn) =
{b1, b2, b3, ..., bn}. So if D is a minimum clique-safe dominating set of Cn, then we have D dominating
and |D| > k. Since the set W ∗ = {b2, b5, b8, ..., bn−1, bn} which contains k + 1 elements is a clique-safe
dominating set of Cn, it follows that |D| = k + 1. Since the minimum number of vertices needed to
provide a covering of all the edges of Cn is equal to dn

2
e = d 3k−1

2
e > k + 1 for k ≥ 4, it follows that the

subgraph induced by V (Cn)rD contains a K2 subgraph. Thus, the subgraph induced by D also contains
a K2-subgraph.

The converse is straightforward. �

Corollary 2.7. The clique-safe domination number of cycle Cn where n ≥ 9 and n ∈ {3k − 1, 3k, 3k = 1} for
some positive integer k, is given by γcs(Cn) = k + 1.

Proof. This is a direct consequence of Theorem 2.6. �

3 Conclusion

In this article the concept of clique-safe domination is introduced and its corresponding parameter clique-safe
domination number investigated. Furthermore, the corresponding expressions for the clique-safe domination
number of the paths and cycles are determined for some specific orders. Finally, the parameter introduced in
this paper may be explored further to address some relevant problems as done in [8], [9], [10], [11], [12], , and [13].
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