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Abstract 

 
In this paper, we shall prove the fixed point theorems in metric space using   admissible mapping. Some 

existing results of literature shall be deduced from the main results. In the end, we shall provide an example to 

support our result. 
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1 Introduction   
 

In 1922, Banach gave a principle to obtain the fixed point in the complete metric space. Since then, many 

researchers have worked on the Banach fixed point theorem (see, for example, [1-38]) and tried to generalize 

this principle. In 2012, Samet et al. [25] introduced the new concepts of mappings called   admissible 

mappings in metric space. Recently, in 2013 Farhan et al. [1] gave new contractions using   admissible 

mapping in metric spaces.  
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In this paper, we shall generalize Farhan’s et al. [1] contractions and  give fixed point theorems for such 

contractions.  

 

2 Preliminaries 

 
To prove our main results we need some basic definitions from literature as follows: 

 

Definition([39]): “Let   be a set. A metric space is an ordered pair       where   is a function           

such that 

 

(1)             non-negativity) 

(2)          iff        non-degeneracy) 

(3)                  (symmetry) 
(4)                        (triangle inequality)” 

 

Definition([40]) : “A sequence      in a metric space       is said to converge if there is a point      and for 

every        there exists     such that            for every     ”  
 

Definition: “A sequence {    in a metric space       is Cauchy if for every        there exists     such 

that             for every       ”   
 

Definition([40]) : “A metric space      is said to be complete if every Cauchy sequence is convergent”. 

 

Definition([25]) : “Let        and                We say that   is an   admissible mapping if 

          implies             for all       ”  
 

3 Main Results 
 

In this section, we shall prove fixed point theorems. 

 

Theorem 3.1: Let       be a complete metric space and        be an    admissible mapping. Assume that 

there exists a function               such that, for any bounded sequence      of positive reals,         

implies       and  

 

                                               , for all        and                                   (1) 

 

Where                                     
 

Suppose that either 

 

(3.1)   is continuous, or 

 

(3.2) If      is a sequence in   such that      ,               for all    then             
 

If there exists       such that              then   has a fixed point. 

 

Proof: Let       such that               Construct a sequence      in   as          , for all    ℕ. 

 

If           for some       then         and we are done. 

 

So, we suppose that            > 0, for all       
 

Since   is   admissible, there exists       such that             which implies             
 

Similarly, we can say that                  
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By continuing this process, we get 

 

              for all     ℕ                                                                                                             (2) 

 

By using equation (2), we have 

 

                                                                     .  

 

Now using equation (1), we get 

 

                                           ,                                                                      (3)  

 

                                                  , 
                                               ,            ,  
 

Assume that if possible                      . 

 

Then,                       .  
 

Using this in equation (3), we get 

 

                                                                                                                               (4) 

 

                        , which is a contradiction. 

 

So                        for all    
 

It follows that the sequence              is a monotonically decreasing sequence of positive real numbers. So, 

it is convergent and suppose that                       Clearly,       
 

Claim:      
 

Equation (4) implies that 

 
          

          
                 ,  

 

Which implies that                         
 

Using the property of the function    we conclude that                                                                   (5) 

 

Now, we will show that      is a Cauchy sequence. Suppose, to the contrary that      is not a Cauchy sequence. 

Then there exists      and sequences      and      such that for all positive integers  , we have  

 

                                and                      

 

By the triangle inequality, we have 

 

                                                      

                                                              for all       

 

Taking the limit as        in the above inequality and using equation (5), we get 

 

                                                                                                                                           (6) 

 

Again by triangle inequality, we have 
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Taking the limit as         together with (5) and (6), we deduce that 

 

                                                                                                                                            (7) 

 

From equations (1),(2),(6) and (7), we get 

 

                                                                              , 

                                                                
                              

  

                                                                                                                             (8) 

 

                                                                        

 

So, equation (8) implies that 

 

                                                     , 

 

Letting        we get 

 

                            
 

By using definition of   function, we get 

 

                          , which is a contradiction. 

 

Hence,      is a Cauchy sequence. 

 

Since       is a complete space, so      is convergent and assume that       as        
 

Since    is continuous, then we have 

 

       
     

        
     

        

 

So,   is a fixed point of    
 

Now, suppose that (3.2) holds, then           and by using equations (1) and (2) we get 

 

                                              
 

                                                                                                                                        (9) 

 

Where                                        
 

Clearly, from equation (9) and using triangle inequality, we get 

 

                              

                               

Letting       we get 

 

           which implies       
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Theorem 3.2: Let       be a complete metric space and        be an   admissible mapping. Assume that 

there exists a function               such that for any bounded sequence      of positive reals,         

which implies that       and  

 

                                                for all                                                             (10) 

 

Suppose that either 

 

(3.3)   is continuous or 

 

(3.4) If      is a sequence in   such that                     for all    then            
 

If there exists       such that            , then    has a fixed point. 

 

Proof: Let       such that               
 

Define a sequence      in   as          for all       
 

If           for some       then         and we are done. Hence, we suppose that          for 

all       As in Theorem (3.1), we conclude that             for all       
 

From equation (10), we get 

 

                                                        

                           
 

Which yields that 

 

                                                                                                                             (11) 

 

      ,                                             , 
                                                 ,            . 
 

If possible suppose that 

 

                      . 
 

Then                        
 

Using this, equation (11) implies that                      , which is a contradiction. 

 

So,                       for all     . 

 

So,              is a monotonically decreasing sequence of positive reals. So, there exists            such 

that 

 

             as       

 

Claim:      
 

Equation (11) implies that  

 
          

          
                    which implies 
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Taking        we get lim                     Using definition of   function, we get 

 

  lim                                                                                                                                    (12) 

 

We prove that      is a Cauchy sequence. Suppose, to the contrary, that      is not a Cauchy sequence. Then 

there exists      and sequences      and      such that for all positive integers    
 

                                and                      

 

Following the related lines in the proof of Theorem (3.1), we get 

 

lim                                                                                                                                      (13) 

 

and lim                                                                                                                             (14) 

 

Using equations (10), (13) and (14), we get 

 

                                                                           

                                                                                   

                                                                

 

Where                ma                                                     

 

Hence, 
                  

              
                     . 

 

By taking      , we get 

 

lim                          

 

 lim                          which is a contradiction. 

 

So,      is a Cauchy sequence and as   is complete, so         
 

Now suppose the   is continuous. 

 

                                  
 

        
   is fixed point of  . 

 

Next, we suppose that the condition (3.4) holds, then             
 

Now by equation (10), we get 

 

                                              

                                       ,    

 

Where 

 

                                         
 

                                                                                                                           (15) 

 

Using triangle inequality, 
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                             . 
 

Letting        and using (15), we get 

 

              
        

 

Theorem 3.3: Let       be a complete metric space and        be an   admissible mapping. Assume that 

there exists a function               such that, for any bounded sequence      of positive reals,         

implies        and 

 

                                                                                                               (16) 

 

Suppose that either 

 

(3.5)   is continuous or 

 

(3.6) If      is a sequence in X such that       and              for all    then            
 

If there exists        such that              then   has a fixed point. 

 

Proof: Let       such that            . Construct a sequence      in   such that                  If 
         for some       then         and we are done. 

 

So, assume           for all       
 

As in Theorem (3.1), we conclude that              for all  .                                                      (17)  

 

Now by equation (16), we get 

 

                                                                      .                    (18) 

 

Where            ma                                      
                                   ma                                     
 

If possible assume that                         then                        
 

Using this from equation (16), we get 

 

                                                                                                                               (19) 

 

                      , which is a contradiction. 

 

So,                      for all       
 

It follows that              is a monotonically decreasing sequence of positive reals. So, there exists      

such that              as        
 

Therefore, (19) implies that 

 
          

          
                    

 

Thus we find that lim                      
 

  lim                                                                                                                                   (20) 
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Next, we will prove that the sequence      is Cauchy. Suppose, to the contrary, that      is not a Cauchy 

sequence. Then there exists      and sequences      and      such that for all positive integers    
 

                                 and                    . 

 

Again, by following the lines of the proof of Theorem (3.1), we derive that 

 

lim                                                                                                                                      (21) 

 

and lim                                                                                                                            (22) 

 

now, combining (16), (21) and (22), we get 

 

                                                                     

                                                 

                                .                                                                                                 (23) 

 

Where                 ma                                                     

 

Now, equation (23) implies 

 
                  

              
                        

 

Taking      , we get 

 

lim                       . 

 

  lim                           which is a contradiction. 

 

So,      is a Cauchy sequence. Since   is complete, so            
 

First suppose that   is continuous. So,   

 

       
       

        
     

        

 

    is fixed point. 

 

Now suppose that (3.6) holds, then           and using (16), we have 

 

                                     

                                                                                                                                          (24) 

 

Where          ma                              
 

and                               
 

Using (24), we get 

 

                                      
 

Taking as      , we get 
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Theorem 3.4: Assume that all the hypothesis of theorem (3.1), (3.2) and (3.3) hold. Adding the following 

condition: 

 

(3.7) If     , then            
 

We obtain the uniqueness of fixed point. 

 

Proof: Let   and    be two distinct fixed point of   in the setting of Theorem (3.1) and condition (3.7) holds, 

then 

 

          and              
 

So,                                        
       

 

                      .                                                                                                              (25) 

 

Where          ma                             
                                     
 

So, equation (25) implies 

 

                                       

                 

                     
 

Similarly, one can prove for theorem (3.2) and (3.3). 

 

Example 3.5: Let           and               Clearly,       is a complete metric space. 

 

Define                 and          
 

All possible pairs of       are as follows: 

 

                                             
                

                

                

                

                

                

 

Let     and    
 

 
  

 

Putting these values in equation (1), we get 

 

When            ,        
 

 
             

 

When                    
 

 
           

 

 
    

 

When                    
 

 
                 

 

When                    
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When                    
 

 
             

 

 
    

 

When                    
 

 
             

 

Hence, theorem (3.1) is verified. 

 

4 Consequences 
 

Some existing results of literature can be deduced from our main results as follows: 

 

Corollary 4.1.(Farhan et al. [1]) Let       be a complete metric space and        be an   admissible 

mapping. Assume that there exists a function               such that, for any bounded sequence      of 

positive reals,         implies       and  

 

                                               
 

for all        where       Suppose that either 

 

(a)   is continuous, or 

(b) if {  } is a sequence in   such that                    for all    then           
 

If there exists       such that               then   has a fixed point. 

 

Proof: Taking               in Theorem 1, one can get the proof. 

 

Corollary 4.2. (Farhan et al. [1]) Let       be a complete metric space and       be an   admissible 

mapping. Assume that there exists a function               such that, for any bounded sequence      of 

positive reals,         implies       and 

 

                                              
 

for all         Suppose that either  

 

(a)   is continuous, or 

(b) If      is a sequence in   such that                    for all    then            
 

If there exists       such that            , then   has a fixed point. 

 

Proof: Taking               in Theorem 2. 

 

Corollary 4.3. (Farhan et al. [1]) Let       be a complete metric space and       be an   admissible 

mapping. Assume that there exists a function               such that, for any bounded sequence      of 

positive reals,         implies       and 

 

                                        
 

for all         Suppose that either 

 

(a)   is continuous, or 

(b) If      is a sequence in   such that                    for all    then            
 

If there exists       such that            , then   has a fixed point. 

 

Proof: Taking               in Theorem 3, one can get the proof easily. 
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Corollary 4.4. (Farhan et al. [1]) Assume that all the hypotheses of theorem (1), (2) and (3) hold. Adding the 

following condition: 

 

(c) If     , then            
 

we obtain the uniqueness of the fixed point of    
 

Proof: Taking               in Theorem 4. 
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