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Abstract

In this paper, we shall prove the fixed point theorems in metric space using @ —admissible mapping. Some
existing results of literature shall be deduced from the main results. In the end, we shall provide an example to
support our result.
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1 Introduction

In 1922, Banach gave a principle to obtain the fixed point in the complete metric space. Since then, many
researchers have worked on the Banach fixed point theorem (see, for example, [1-38]) and tried to generalize
this principle. In 2012, Samet et al. [25] introduced the new concepts of mappings called « —admissible
mappings in metric space. Recently, in 2013 Farhan et al. [1] gave new contractions using a« —admissible
mapping in metric spaces.
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In this paper, we shall generalize Farhan’s et al. [1] contractions and give fixed point theorems for such
contractions.

2 Preliminaries

To prove our main results we need some basic definitions from literature as follows:

Definition([39]): “Let X be a set. A metric space is an ordered pair (X, d) where d is a functiond: X xX - R
such that

(1) d(x,y) = 0. (non-negativity)

(2) d(x,y) = 0iff x = y. (non-degeneracy)

@) d(x,y) = d(y,x) (symmetry)

(4) d(x,z) <d(x,y) + d(y,z) (triangle inequality)”

Definition([40]) : “A sequence {x,} in a metric space (X, d) is said to converge if there is a point x € X and for
every € > 0 there exists N € N such that d(x,,, x) < € forevery n > N”.

Definition: “A sequence {x,} in a metric space (X,d) is Cauchy if for every € > 0 there exists N € N such
that d(x,,, x,,) < € forevery n,m > N”.

Definition([40]) : “A metric space (X, d)is said to be complete if every Cauchy sequence is convergent”.

Definition([25]) : “Let f:X — X and a: X XX — [0,0). We say that f is an a —admissible mapping if
a(x,y) = 1implies a(fx, fy) = 1,forallx,y € X”.

3 Main Results

In this section, we shall prove fixed point theorems.
Theorem 3.1: Let (X, d) be a complete metric space and T: X — X be an a — admissible mapping. Assume that
there exists a function f: [0, o) — [0, 1] such that, for any bounded sequence {t,} of positive reals, 8(t,) = 1
implies ¢, — 0 and
(d(Tx, Ty) + DTG < B(M(x,y) )M(x,y) + 1, forallx,y € Xand1 > 1. (1)
Where M(x,y) = max{d(x,y),d(x,Tx),d(y,Ty)}
Suppose that either
(3.1) T is continuous, or
(3.2) If {x,,} isa sequence in X such that x,, — x, a(x,, x,4+1) = 1, for all n, then (a,Tx) = 1.
If there exists x, € X such that a(x, Tx,) = 1, then T has a fixed point.
Proof: Let x, € X such that a(x,, Tx,) = 1. Construct a sequence {x,} in X as x,,; = Tx,, foralln € N.
If x,., = xp, forsomen € N, then Tx,, = x, and we are done.
So, we suppose that d(x,, x,+1) >0, foralln € N.

Since T is « —admissible, there exists x, € X such that a(x,, Tx,) = 1 which implies a(x,, x;) = 1.

Similarly, we can say that a(x, x,) = a(Tx,, T?xy) = 1.
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By continuing this process, we get

a(xp, xp4q) = 1,foralln € N. (2)
By using equation (2), we have

d(Xy, Xpe1) + 1= d(Txp_1, Txp) + 1 < (d(Tx,_q, TX,) 4+ 1)*Gn-2T¥n-)a(nTxn)
Now using equation (1), we get

d(xp, xXpe) + 1 < [)’(M(xn_l,xn))M(xn_l,xn) + 1, (3)

M (X1, X5) = max{d (xp_q, xn): d(xn—lﬂ Txp_4), d(xnt Txn)}
= max{d(xn—lr xn)r d(xn—lr xn)l d(xn! xn+1)}!

Assume that if possible d (xy, xp41) > d(xn_1, Xp).
Then, M(xp-1,%n) = d(Xp, Xn41)-
Using this in equation (3), we get
At Xa1) < B(dCn Xs1))d (X X1 @)
= d(Xp, Xpe1) < d(xn, Xne1) » Which is a contradiction.
S0 d(xp, Xpy1) < d(xp_q, xp), for all n.

It follows that the sequence {d(x,,, x,,1)} is @ monotonically decreasing sequence of positive real numbers. So,
it is convergent and suppose that lim,, _, ., d(x,, x,4+1) = d. Clearly, d = 0.

Claim: d = 0.
Equation (4) implies that

A(Xn,Xn+1)
TR < B(d(xp_1,x,) <1,

Which implies that lim,, _, . 8(d(xp_1, x,) = 1.
Using the property of the function g, we conclude that lim,, _, ., d(x,,, X,,41) = O. (5)

Now, we will show that {x,,} is a Cauchy sequence. Suppose, to the contrary that {x,} is not a Cauchy sequence.
Then there exists € > 0 and sequences m(k) and n(k) such that for all positive integers k, we have

n(k) > m(k) > k,d(xn(k),xm(k)) >e€and d(xn(k),xm(k)_l) <E.
By the triangle inequality, we have

€ < d(Xnaey X)) < Ay Xmio-1) + dCmaey—1, Xm(i))
<€ +d(xm(k)_1,xm(k)), forall k € N.

Taking the limit as k — oo in the above inequality and using equation (5), we get
limk > 4o d(xn(k), xm(k)) =E€. (6)

Again by triangle inequality, we have
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d (X041, X +1) < A(Xmoey Xmao+1) + A(Xma Xngio) + d(Xnr+1 Xngio)-
Taking the limitas k — oo, together with (5) and (6), we deduce that
My S 400 d(Xn ()41 Xim@iy41) = E-

From equations (1),(2),(6) and (7), we get

A%+ Xmoe) + L < ([@(Xngo+1 Xmao+1) + l)“(xn(k)'Txn(k))“(xm(k)'Txm(k))l
_ (d(Txn(k)vTxm(k)) n l)“(xn(k)vTxn(k))a(xm(k)rTxm(k))
< BM (Xngiy Xmai) )M (Xney Xmiy) + L

M(Xn(9, Xmao) = Max {d(Xn(9, Xm)» d(Xna0» Xna+1), d(Xmaor Xmao+1)}
So, equation (8) implies that
d(Xn@9+1 Xm@9+1) < BMXn(o Xm0 )M (Xng, Xmao) < 1,
Letting k — oo, we get
limy o0 BA(Xn@i) Xm@ao) = 1.
By using definition of g function, we get
= limy_,,, d(Xn(ky, Xm(x)) = 0 < €, which is a contradiction.
Hence, {x, } is a Cauchy sequence.
Since (X, d) is a complete space, so {x,,} is convergent and assume that x,, - x asn — oo.
Since T is continuous, then we have

Tx = lim Tx, = lim x,,; = x.
n-— oo n-— oo

So, x is a fixed point of T.
Now, suppose that (3.2) holds, then a(x, Tx) = 1 and by using equations (1) and (2) we get
d(Tx, Xp41) + 1 < (d(Tx, Txy,) + De&T0eCnTxn)
< ﬁ(M(x, xn))M(x, x,) + L
Where M (x, x,,) = max{d(x, Tx), d(x, x,,),d(x, Tx,)}.
Clearly, from equation (9) and using triangle inequality, we get
d(Tx,x) < d(Tx,xpe1) + d(Xpy1, %)
< ﬂ(M(x, xn))M(x, X)) + d(Xpyq,X)
Letting n — oo, we get

d(Tx,x) = 0 which implies Tx = x.

U]

(®)
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Theorem 3.2: Let (X, d) be a complete metric space and T: X — X be an a —admissible mapping. Assume that
there exists a function B:[0,) — [0, 1] such that for any bounded sequence {¢t,,} of positive reals, 8(t,) — 1
which implies that t, — 0 and

(a(x, Tx). a(y, Ty) + 1)4TxT) < 2BMEYIMEY) for all x,y € X. (10)
Suppose that either
(3.3) T is continuous or
(3.4) If {x,,} is a sequence in X such that x, — x,a(x,,x,,1) = 1foralln, then a(x,Tx) > 1.
If there exists x, € X such that a(x,, Tx,) = 1, then T has a fixed point.
Proof: Let x, € X such that a(x,, Tx,) = 1.

Define a sequence {x,} in X as x,, = Tx,_, foralln € N.

If x,,,1 = x,, for some n €N, then Tx,, = x, and we are done. Hence, we suppose that x,,,; # x, for
alln € N. As in Theorem (3.1), we conclude that a(x,, Tx,) = 1foralln € N.

From equation (10), we get

20(Mn-1Tn) < (a(xp-1, Txp_1)a(xy, Txy) + 1)d(TXn_1’TXn)
< ZE(M(xn—lrxn))M(xn—an)

Which yields that

d(Xn' Xn+1) < B(M(Xn—lixn))M(Xn—lixn)' (11)

M (xp-1, xp) = max {d(xn_1, %), d(xp_1, Txp_1), d(xp, Tx)},
= max {d(xp_1, %), d(Xp_1, Xn), d(Xp, Xp41)}-

If possible suppose that
d(Xn, Xn+1) > d(Xp-1,Xp)-
Then M(x,,_1, %) = d(Xp, Xn41)
Using this, equation (11) implies that d (x,,, x,,+1) < d(x,,, X,,41), Which is a contradiction.
S0, d(xp, Xppq) < d(xy_q,x,) foralln €N,

So, {d(x,, x,+1)} is a monotonically decreasing sequence of positive reals. So, there existsd € R* U{0} such
that

d(Xp, Xp41) 2 dasn - oo
Claim: d = 0.
Equation (11) implies that

d(XnXn+1)
M (xp—1,%n)

IA

M(d(xp-;,x,)) < 1, which implies

doninel) < B(d(xy_ ;%)) < 1.

d(en—1.%n)
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Takingn — oo, we get lim,, _, ,, B(d (x,,_;, x,,) = 1. Using definition of 8 function, we get
= limy, o d(x,, Xpyy) = 0. (12)

We prove that {x, } is a Cauchy sequence. Suppose, to the contrary, that {x,} is not a Cauchy sequence. Then
there exists € > 0 and sequences m(k) and n(k) such that for all positive integers k,

n(k) > mk) > k, d(Xngo, Xmao) = € and d (%0 Xmao—1) < €
Following the related lines in the proof of Theorem (3.1), we get
limy -, o0 d(Xn iy Xma)) = € (13)
and limy, -, 1., d(Xn(y+ 1 Xm@oy+1) = E- (14)
Using equations (10), (13) and (14), we get

240G+ 1Xmi0+1D) < (a(xn(k)rTxn(k))a(xm(k):Txm(k)) + ])d(xn(k)+1'xm(k)+1)
= (@ T )@ (e Tmiy) + )0 mao)
< 2BM(xn (i) Xm0 )M Con (i) Xm (1)

Where M (i), Xm(e)) = max{d (o, Xmao ) d(Xnaos Xnger+1)s @ (maey Xmao+1)}-

A(Xn )+ 1Xmk)+1)

Hence,
M (n (k) Xm(k))

< BM (Xn) X)) < 1.
By taking k — oo, we get

limy, -, o, B(A(Xn(i) Xmay) = 1.
= limy _, o, d(Xn 00y, Xmy) = 0 < €, which is a contradiction.
So, {x,,} is a Cauchy sequence and as X is complete, so {x,} — x.
Now suppose the T is continuous.

Tx = lim, , o Tx, = limy |, o Xpy1 = X

= Tx = x.
= x is fixed point of T.

Next, we suppose that the condition (3.4) holds, then a(x, Tx) > 1.
Now by equation (10), we get

24T xxn+1) (a(x, Tx)a(x,, Tx,) + 1)4T*Txn),

<
< 2P(MCGexn)Mxxn)
Where
M(x, x,) = max{d(x,x,), d(x, Tx), d(X,, Xn+1)}
= d(Tx, %n1)) < B(M (% 2))M (%, %) (15)

Using triangle inequality,
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d(Tx, x) < d(Tx, Xp41) + d(Xpi1, X)-
Letting n — oo and using (15), we get

d(Tx,x) = 0.
= Tx =x.

Theorem 3.3: Let (X, d) be a complete metric space and T: X — X be an a —admissible mapping. Assume that
there exists a function B: [0,) — [0, I] such that, for any bounded sequence {t,} of positive reals, B(t,) - /
implies t, — 0and

a(x, Tx)a(y, Ty)d(Tx, Ty) < B(M(x, y))M(x, y),Vxy €X (16)
Suppose that either
(3.5) T is continuous or
(3.6) If {x,,} is a sequence in X such that x,, — x and a(x,,, x,,;) = I for all n, then a(x,Tx) = 1.

If there exists x, € X such that a(x,, Tx,) = 1, then T has a fixed point.

Proof: Letx, € X such that a(x,, Tx,) = I. Construct a sequence {x,} in X such that x,,,; = Tx, Vn € N. If
Xn4; = Xn forsome n €N, then Tx,, = x, and we are done.

So, assume x,, # x,,; foralln > I.

As in Theorem (3.1), we conclude that a(x,, x,,,;) = I for all n. @an
Now by equation (16), we get

A0 Xn1) < 4Gt Ti- (g, Tx)d(Txp_g, T) < B(M oy, %) )M (Ko, Xp). (18)

Where M (x,,_;, %) = max{d(x,,_;, %), d ey, T )d (6, Tx) 3.
= max {d(Xn_;, Xn), d(Xp—1, X5), d(Xp, X4 1)}

If possible assume that d(x,—;, x,) < d(xpn, Xpep), then M(x,_;, x,) = d (%, Xpap)-
Using this from equation (16), we get
d(Xn, Xn+1) < B(AXp-1, Xn)d(Xp-1, Xn) (19)
d(xp, Xne 1) < d(Xp, Xn41), Which is a contradiction.
S0, d(xp, Xy 1) < d(xp, x,_;)foralln € N.

It follows that {d(x,, x,4+;)} is @ monotonically decreasing sequence of positive reals. So, there existsd > 0
such that d(x,, xp4.;) > dasn — oo.

Therefore, (19) implies that

d(Xn' Xn+1) <

Wy = PG ) < 1.

Thus we find that lim,, _, ., B(d (xp, Xn1 1)) = 1.

= lim, |, d(x,, xp47) = 0. (20)
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Next, we will prove that the sequence {x,} is Cauchy. Suppose, to the contrary, that {x,} is not a Cauchy
sequence. Then there exists € > 0 and sequences m(k) and n(k) such that for all positive integers k,

n(k) > m(k) > k, d(xn(k),xm(k)) >€ and d(xn(k),xm(k)_l) <E.
Again, by following the lines of the proof of Theorem (3.1), we derive that
limy S 100 d(Xn (i) Xm)) = E- (21)
and limy, -, 1, d(Xn(y+ 1 Xm@oy+1) = E- (22)
now, combining (16), (21) and (22), we get

d (X1 Xmao+1) < @Oy Txna)) @ (i) TXma) ) A Congiey+ 1> Xmiy+1)
= a(Xng T¥n00) 2 (Xmaicy TXmi) ) ATy, TXm (i)
< BM (Xngiys Ximiey )M (en oy Xmaie))- (23)

Where M (X, Xma) = max {d(Xnw Xnii+1), (Fmey Xmoo +1) 4 (Xngey Xmao )}
Now, equation (23) implies

dXn@+1 Xm@+1)
< B M(Xnm)y Xmao ) ) < 1.
M(Xn(k)'xm(k)) ( ( n(k), 4m( )))

Taking — <, we get

limy _, o B(d (X @iy Xmry) = 1.
= limy, o d(Xn), Xma) = 0 < €, which is a contradiction.
So, {x,,} is a Cauchy sequence. Since X is complete, so {x,} — x.
First suppose that T is continuous. So,

Tx = lim Tx, = lim X ;4 =X

n- oo n- oo

= x is fixed point.

Now suppose that (3.6) holds, then a(x, Tx) = I and using (16), we have

d(TX, Xp41) < d(Tx, Txp)a(x, TX)a(xy, TX,)
< B(M(x,x,))M(x, Xp) (24)

Where M (x, x,,) = max {d(x, x,,),d(x, Tx), d(x,, Tx,,)}
and d(Tx,x) < d(Tx,xp4;) + d(Xpgp, X)
Using (24), we get

d(Tx,x) < B(M(x,x,) )M(%, %) + d(Xp41,%)
Takingasn — oo, we get

d(Tx,x) = 0 = Tx =x.
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Theorem 3.4: Assume that all the hypothesis of theorem (3.1), (3.2) and (3.3) hold. Adding the following
condition:

(3.7) If x = Tx, then a(x,Tx) = 1.
We obtain the uniqueness of fixed point.

Proof: Let z and z* be two distinct fixed point of T in the setting of Theorem (3.1) and condition (3.7) holds,
then

a(z,Tz) = 1 and a(z*,Tz*) = 1.
So,d(Tz,Tz*) + | < (d(Tz Tz*) + )*@TDaE"12)
< ﬁ(M(z,z*))M(z,Z*) + L (25)

Where M(z,z*) = max {d(z,z"),d(Tz,z),d(Tz", z)}
=d(z,z").

So, equation (25) implies
d(z,z*) = d(Tz,Tz*) < B(d(z,z*))d(z,z*)
= B(d(z,z*)) =1
=2d(z,z)=0 =2z= z"
Similarly, one can prove for theorem (3.2) and (3.3).
Example 3.5: Let X = {0, 1,2} and d(x,y) = |x — y|. Clearly, (X, d) is a complete metric space.

Define T(0) = 0,T(I) = 0and T(2) = 2.

All possible pairs of (x,y) are as follows:

(x,y) d(Tx,Ty) d(x,Tx) d(y,Ty) d(x,y) M(x,y)
(0,0) 0 0 0 0 0
(0,1) 0 0 1 1 1
(0,2) 2 0 0 2 2
(1,1) 0 1 1 0 1
(1,2) 2 1 0 1 1
(2,2) 0 0 0 0 0

Leta=7andf = -
Putting these values in equation (1), we get

When (x,y) = (0,0), (0+ 1) < 2(0)+l 1<l
When (x,) = (0,1),(0+ D) < (D +1 =1 < 1+1.
When (x,y) = (0,2, 2+ D) < Q) +1 =2+ <1 +L.

When (x,y) = (1, D), (0+ D < (D +1 =1 < 5+
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When (x,y) = (1,2, @+ D) < (D) +1 = 2+1 < S+1.

When (x,) = (2,2, (0+ 1) < 5(0) +1 =1 <L
Hence, theorem (3.1) is verified.

4 Consequences

Some existing results of literature can be deduced from our main results as follows:
Corollary 4.1.(Farhan et al. [1]) Let (X,d) be a complete metric space and f: X — X be an o« —admissible
mapping. Assume that there exists a function B:[0,0) — [0, I] such that, for any bounded sequence {¢t,} of
positive reals, B(t,) — I impliest, — 0and

(d(fx, fy) + D&M < B(d(x,y))d(xy) +1

forall x,y € X wherel > . Suppose that either

(a) f iscontinuous, or
(b) if {x,}is asequence in X such that x,, — x, a(x,, x,4;) = I for all n, then (a, fx) > 1.

If there exists x, € X such that a(x,, fx,) = I, then f has a fixed point.

Proof: Taking M (x,y) = d(x,y) in Theorem 1, one can get the proof.

Corollary 4.2. (Farhan et al. [1]) Let (X,d) be a complete metric space and f:X — X be an @ —admissible
mapping. Assume that there exists a function g:[0,) — [0, 1] such that, for any bounded sequence {¢t,} of
positive reals, 8(t,) — I impliest, — 0and

for all x,y € X. Suppose that either

(@) f is continuous, or
(b) If {x,}is asequence in X such that x,, — x, a(x,, x,,;) = I forall n, then a(x, fx) = 1.

If there exists x, € X such that a(x,, fx,) = 1, then f has a fixed point.
Proof: Taking M (x,y) = d(x,y) in Theorem 2.
Corollary 4.3. (Farhan et al. [1]) Let (X,d) be a complete metric space and f: X — X be an a —admissible

mapping. Assume that there exists a function B: [0, o) — [0, 1] such that, for any bounded sequence {¢t,} of
positive reals, 8(t,) — I impliest, — 0and

ax faly, f)d(fx fy) < B(dx y))dxy)
for all x,y € X. Suppose that either

() f iscontinuous, or
(b) If {x,}is asequence in X such that x,, — x, a(x,, x,,;) = I forall n, then a(x, fx) = 1.

If there exists x, € X such that a(x,, fx,) = 1, then f has a fixed point.

Proof: Taking M (x,y) = d(x,y) in Theorem 3, one can get the proof easily.
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Corollary 4.4. (Farhan et al. [1]) Assume that all the hypotheses of theorem (1), (2) and (3) hold. Adding the
following condition:

(c) Ifx = fx,then a(x, fx) =1,
we obtain the uniqueness of the fixed point of f.

Proof: Taking M (x,y) = d(x,y) in Theorem 4.
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