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Detecting distance between surfaces of transparent materials with large area and thickness has always been a difficult problem in
the field of industry. In this paper, a method based on low-cost TOF continuous-wave modulation and deep convolutional neural
network technology is proposed. &e distance detection between transparent material surfaces is converted to the problem of
solving the intersection of the optical path and the transparent material’s front and rear surfaces. On this basis, the Gray code
encoding and decoding operations are combined to achieve distance detection between surfaces. &e problem of holes and detail
loss of depth maps generated by low-resolution TOF depth sensors have been also effectively solved. &e entire system is simple
and can achieve thickness detection on the full surface area. Besides, it can detect large transparent materials with a thickness of
over 30mm, which far exceeds the existing optical thickness detection system for transparent materials.

1. Introduction

Distance detection between surfaces of transparent materials
has always been a research hotspot in the field of industry.
&e traditional contact distance detection method between
surfaces is the simplest and lowest cost method, such as the
use of vernier calipers or micrometers. &e disadvantage is
that it can only detect the single surface point near the edge
of the surface. It needs to perform manually and cannot
automate. So, it is inefficient and gradually eliminated.

Currently, noncontact distance detection methods be-
tween surfaces are widely used, which can be roughly di-
vided into optical and nonoptical methods. &e typical
capacitance method [1–3] is a nonoptical distance detection
method between surfaces. &is method is based on the
principle that the transparent material causes the capaci-
tance change to detect the distance between surfaces of the
transparent material. &e entire system is simple, but it is
extremely susceptible to space electromagnetic interference
and changes in the distributed capacitance between lines.
&e fluorescent immersion method [4–6] is an indirect

optical detection method. &e transparent material is im-
mersed in a special liquid. &e liquid will emit fluorescence
after being irradiated by a laser. Since the transparent
material does not emit light, a sharp boundary can be ob-
tained. &e optical image is recorded by a camera. &e
distance between the surfaces of the transparent material can
be obtained after the calculation and processing. &is
method has a complicated system structure and requires the
use of fluorescent liquid to cause inconvenience to the user.

Direct optical methods include grating spectroscopy and
light triangulation. Grating spectroscopy is designed based
on the principle of grating spectroscopy [7]. &e system uses
white light illumination. &e light obtained after being re-
flected by the transparent material is decomposed by the
concave grating. &e decomposed spectrum is received by
the sensor. &e data is sent to the computer for spectral
analysis. &e distance between the surfaces of the trans-
parent material is obtained. &e drawback of this method is
that the distance detection system is very difficult to adjust
and correct. &e optical triangulation method [8–11] uses
the principle of the difference in displacement between the
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upper and lower surfaces of the transparent material. &e
system is simple, convenient, and effective. So, it is the most
used method at present. Nevertheless, this method is easily
affected by stray light. At least for now, there is a common
shortcoming of these existing methods for detecting the
distance between surfaces of the transparent material; that is,
they can only measure a very limited small area at a time
[12]. It is impossible to give an objective evaluation of the
distance change between the entire surfaces of the trans-
parent material. Besides, the thickness detected by these
methods is limited, and themaximum cannot exceed 15mm.

To develop a method that can detect the distance be-
tween the entire surfaces of the large transparent material at
a time, we also refer to a variety of transparent object surface
reconstruction methods. Murase [13] provided a new idea
for recovering shapes from pattern distortions for trans-
parent fluid materials. &e geometric information of
transparent materials is speculated from the distortion of
known or unknown calibration patterns caused by light
refraction. &is method is mainly aimed at the problem of
water surface shape reconstruction. Morris and Kutulakos
[14] considered the water surface reconstruction with time
on this basis. His method can not only obtain the refractive
index but also accurately estimate the depth and normal
vector of each pixel. It is not dependent on the surface mean
and is highly robust. Kutulakos and Steger [15] analyzed the
possibility of using triangulation to realize the three-di-
mensional reconstruction of the surface of transparent
materials. &ey proposed a light direct measurement
method. But the common feature of the above measurement
methods is that passive visual sensors are used to passively
capture light on the surface of transparent materials.

In recent years, active time-of-flight (TOF) depth sensors
are being widely used in the field of 3D digital modeling with
the advantages of high efficiency and wide adaptability.
&erefore, a small number of researchers also conducted some
preliminary studies on the active TOF sensor used in the
surface reconstruction of transparent materials [16]. &e
modulated light emitted by the TOF depth sensor travels in a
transparent material at a slower speed than the air, so the so-
called distortion phenomenon occurs. &is distortion phe-
nomenon carries relevant thickness information. &is pro-
vides a new idea for our distance detection method between
entire surfaces of the large transparent material. However,
these current exploratory methods have many shortcomings,
especially the hole problem in the depth map generation
process, which has a huge impact on the distance detection
between surfaces of the transparent material. It should be
noted that, in order to reflect that our method can realize the
thickness detection of the entire surface area of the object, we
use the phrase “distance between surfaces” to replace the
commonly referred term “thickness” in this article.

Here, we propose a novel method of optics. &is method
uses low-cost TOF sensors and deep convolutional neural
network technology to achieve distance detection between
the surfaces of the large transparent material. It can effec-
tively reduce the cost of the system. &e main idea is to
transform the distance detection between transparent ma-
terial surfaces into front and rear surface reconstruction

problems. We further demonstrated that surface recon-
struction of the transparent material can also be converted to
the problem of searching for the intersection of the light path
and the front and back surfaces of the transparent object and
its surface normal. Combining a series of Gray code patterns,
the entire detection system is simple and easy to implement.
Another contribution of this paper is the introduction of
deep convolutional neural networks into the field of active
vision.&ereby, the performance of the low-cost TOF sensor
is used to the limit. Our method can detect the large
transparent material with a thickness of over 30mm.

2. Methodologies

TOF depth sensors are divided into a single-photon counting
measurement method and a continuous-wave modulation
measurement method according to the form of emitted light
waves. In the continuous-wave modulation method, a sinu-
soidal signal is invoked as the signal of the optical transmitter.
Depth measurement is achieved by calculating the phase
difference between the received and emitted waves, as shown
in Figure 1. It is easy to implement at a low cost [17].&e basic
measurement equation is expressed as

Depth �
c

2
· t

�
c

2
·
Δϕ
2πf

,

(1)

where Depth represents the distance between the camera
and the object, c is the speed of light, t represents the travel
time of the round-trip light, Δϕ shows the phase difference
between the returned signal and the received signal, and f is
the natural frequency.

&e principle of distance detection between the surfaces of
the transparent material is shown in Figure 2. O is the coor-
dinates of the optical center of the sensor. A1 and A2 represent
the points on the front and rear surfaces of the transparent
material. B1 and B2 represent a set of distorted three-dimen-
sional points when the reference plate is moved back and forth
corresponding to the image pixels. &e direction of the light
emitted by the TOF depth sensor is OA1

���→
. When the reference

board is placed in the first reference position, the TOF depth
sensor is used to collect infrared images and depth data of the
surface position of the transparent material. It mainly includes
two sets of data without the transparent material and trans-
parent material. Based on these two sets of data, the distorted
three-dimensional point of the first position OB1

���→
can be ob-

tained. &e current position of the reference board is also
recorded. Bymoving the platform, the reference board ismoved
to the second position. Repeating the detection step of the
previous position, we get the distorted three-dimensional point
OB2
���→

in the second position. Similarly, the position and moving
distance of the reference board are recorded at this time. &e
difference between the distorted three-dimensional points of the
two positions can be obtained as the reference light direction
B1B2
����→

. A series of Gray code patterns are used in the reference
board [18], as shown in Figure 3. According to the sensor light
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direction OA1
���→

, the reference light direction B1B2
����→

, and the
corresponding depth data, the front and back surface points of
the transparent material can be obtained by using related al-
gorithms. Finally, the distance between the surfaces of the
transparent material is obtained. It should be noted that V1

�→
and

V2
�→

represent the sensor light direction and the reference light
direction, which need to be converted into their unit vectors to
participate in the calculation.

2.1. Estimation of Transparent Material Surface Points.
Figure 4 shows Snell’s normal law in refracted light. At a
point i on the rear surface, Snell’s norm is defined as
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(2)

where SNi

���→
is the Snell normal vector at point i on the rear

surface, A1A2
�����→

represents the space vector at the intersection
of the refracted light path and the front and rear surfaces of
the transparent material, and n is the refractive index of the
transparent material.

&e surface normal at the point is expressed as
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(3)

where Ni

�→
is the surface normal at the point i, |A2B1

����→
| is the

distance from the point on the back surface of the trans-
parent material to the corresponding point on the first
position reference plate, u, v are the image horizontal axis
and vertical axis, and z is partial differential calculation.

From equations (2) and (3), the two normals should
coincide; that is, the summation term has a minimum value
in the following equation:
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2.2. Measurement Model Based on TOF Continuous-Wave
Modulation. &ere are multiple variables in expressions of
SNi

���→
and Ni

�→
. Combined with the inherent model of the TOF

continuous-wave modulation principle, we get

D � OA1
���→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + n A1A2
�����→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + A2B1
����→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (5)

where D represents the actual distance between the sensor
lens and the reference plate, which are directly read by the
depth sensor. |OA1

���→
|, |A1A2

�����→
|,|A2B1

����→
| are three unknowns in

equation (5). According to the calculation rule of the vector,
the relationship between the three unknowns can be
obtained:
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Substituting equation (6) into equation (5), we can get
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&erefore, after putting equations (6) and (7) in equation
(5), there is only one unknown |A2B1

����→
|. According to

equation (4), the back surface depth data corresponding to

each pixel of the rear surface can be estimated. Combined
with equation (6), the surface points of the front and back of
the transparent material can be estimated:
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Figure 1: &e continuous-wave modulation measurement method
of TOF.
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Figure 2: Detecting distance principle between surfaces of the
transparent material.
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So, the normal map can be resolved by equation (2) or
equation (3).&e depth data used in equation (4) only comes
from the depth value directly read by the depth sensor. In
practice, as the depth sensor usage time becomes longer
during the experiment, the noise also increases [19]. We
propose using a regularization method to reduce noise in-
terference. A regularization term is introduced for each
pixel. di is the estimated noise-free TOF optical length and
di′ is the actual depth value reads. &e noise suppression
optimization equation is given by
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(9)

&e above equation can be interpreted as an estimate of
the shape of the rear surface because |A2B1

����→
| corresponds to

the depth data of the rear surface. To avoid calculating the
second derivative with high computational complexity, the
L-BFGS method [20] is utilized here. It only uses approx-
imate Hessian matrices instead of calculating them
specifically.

2.3. Patching Holes in Low-Resolution Depth Maps. In the
above measurement model, the integrity of the transparent
material depth data acquisition is critical. &e low-cost TOF
depth sensor has a lower resolution. Besides, the depth map
obtained is usually affected by complex factors so that holes
often appear at the edges and occlusions of the object. It
seriously affects subsequent processing and information

extraction [21]. Figure 5 is an example of holes in a depth
map, where too bright (Gray value of 255) and too dark
(Gray value of 0) are the positions of holes. Generally, the
area where the transparent material is located is prone to
holes, including small and large areas. &e depth value
represented by the hole position is not valid. In other words,
the lack of depth data occurs. Patching the holes in the depth
map is an important part of using low-cost TOF depth
sensors to detect the distance between the surfaces of the
transparent material.

A hole patching method based on a convolutional neural
network is proposed. First, the depth map is generated and
the hole position is detected to generate a hole mask map.
&en, the hole maskmap and original depthmap are fed into
the deep convolutional neural network to achieve unsu-
pervised hole patching.

Untrained deep convolutional neural networks are used,
in which the weights are randomly initialized. In the au-
tonomous unsupervised learning process, the network
weight parameters needed for depth map patching are
generated. &at is, based on the given damaged depth map
and task-dependent observation model, a randomly ini-
tialized convolutional neural network is given. &e model
parameters are provided by iterations to make it close to the
maximum likelihood value. In this paper, the depth map
patching task is represented as a problem of energy mini-
mization, given by

x
∗

� min
x

E x; x0( 􏼁 + R(x), (10)

where x, x0 are the depth map generated by the neural
network and the original depth map with holes. E(x; x0)

depends on the specific application scenario, which mainly
compares the difference between the generated data and the
original data. In equation (10), it is necessary to find the
value of x that minimizes E(x; x0) and as the output x∗ of

Figure 3: Gray code sequence.

Snell normal

Surface normal
A1

Snell normal

Refracted light path
Surface normal

(a)

Snell normal

Surface normal
A2

Snell normal

Refracted light path
Surface normal

(b)

Figure 4: Normal diagram of a surface point of the transparent material. (a) Normal distribution at a point on the front surface. (b) Normal
distribution at a point on the rear surface.
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the final network. R(x) is a priori knowledge of the depth
map, which is often captured by training a convolutional
neural network with a large sample. But here, the implicit
prior information captured by the convolutional neural
network is used to replace R(x). &e convolutional neural
network learns from the input randomly coded image to the
mapping of the original depth map with holes. x∗ is
reconstructed from the optimal solution θ∗ obtained by
learning. So, equation (10) becomes

x
∗

� fθ∗(z),

θ∗ � argmin
θ

E fθ(z); x0( 􏼁,

⎧⎪⎨

⎪⎩
(11)

where θ is the network parameters and θ∗ is the optimal
solution of the parameters obtained by Adam gradient
descent algorithm training based on the random initiali-
zation network.&e random vector z is the input code of the
network. Once the optimal parameters are obtained, the
input z can be calculated to obtain the optimal x. &erefore,
the idea of the algorithm is essentially the process of
searching for the optimal θ in the feasible space. Use the
gradient descent [22] method to randomly initialize the
parameters to obtain the (local) minimizer θ.

Figure 6 is the network structure of the depthmap patching
algorithm.&e overall structure is an Encode-Decode network
structure. Input random code z, original depth maps con-
taining holes, and hole mask maps and then let the con-
volutional neural network autonomously learn the mapping
from original pixel values of the input randomly coded z to the
original depth map containing the holes according to the areas
without holes in the hole mask map. &e model network is
formed by the cascade of encoding compression (encoder) and
decoding reconstruction (decoder). &e sampling unit of each
layer includes a convolution layer (convolution), a batch
normalization layer (BN, batch normalization) [23], and the
nonlinear activation function layer (LReLU, Leaky ReLU) [24].
As shown in Figure 6, the downsampling unit uses a convo-
lution layer and the upsampling unit uses nearest-neighbor
interpolation convolution.We use the “Meshgrid” image as the
input code. Subsequent experiments show that this type of
input will increase the smoothness. It is useful for hole
patching.

&e number of filters in the downsampling unit and the
upsampling unit is 16, 32, 64, 128, 128, and 128. &e kernel
size is 3 and 5. &ese are all fixed values. After each con-
volutional layer, there is a BN layer to normalize the data to
improve the details of image restoration. In the convolu-
tional neural network, it is necessary to utilize the activation
function as a nonlinear transformation. Complex mapping
relationships can be learned. In the algorithm, there is a
Leaky ReLU activation function after each BN layer, given by

Leaky ReLU xi( 􏼁 �
xi, xi ≥ 0,

axi, xi < 0.
􏼨 (12)

3. Experiment Verification

To verify the effectiveness of our method, this paper builds
an experimental setup as shown in Figure 7. &e large
transparent material is thick glass with a flat and smooth
surface. A low-cost TOF depth sensor based on the con-
tinuous-wave modulation measurement method is Micro-
soft’s Kinect V2, which costs less than $150.

3.1. Patching Algorithm Experiment and Result Analysis.
To verify the performance of the algorithm, the built ex-
perimental device was used to collect the depth map of the
transparent glass cylinder, as shown in Figure 5. &e image
resolution is 512× 424 pixels. Figure 8 indicates the iterative
patching process of depth maps based on convolutional
neural networks.

As can be seen from Figure 9, not only is it effective for
small and larger holes in the transparent materials we care
about but also it is possible to patch larger holes at the
loading platform. Another advantage of our method is to
obtain a good patching effect without affecting the clarity of
the original image.

&e comparison experiment of the patching effect is
adopted to compare the traditional median filtering method,
Gaussian filtering method, bilateral filtering method, joint
bilateral filtering method, and the method in this paper.
Some key parameters of these algorithms in the experiment
are set as follows: the filtering window in the median filtering
method is 4× 4. &e filtering window in the Gaussian fil-
tering method is 10×10. &e standard deviation of the filter
is 1 pixel.&e filtering radius of the bilateral filtering method
is 5. &e filtering variance is 5, and the local variance is 0.5.
&e processing effect is illustrated in Figure 10.

Figure 11 further shows the hole patching effect of the
transparent glass cylinder and the corresponding error
distribution diagram. A comprehensive comparison of the
hole patching effects of traditional algorithms shows that the
proposed algorithm has obvious advantages. &e median
filtering method can better fill the small holes. But it is not
appropriate for the large area of the hole because the pixel
value of this part will be replaced by the median value of the
neighboring pixels. &is will lead to a larger depth error,
thereby losing the original depth information of the object.
Although the Gaussian filtering method patches some of the
holes, it leads to the edge information of the measured object

Figure 5: Examples of holes in the depth map.&e object in the red
box is transparent materials.
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in the image be too blurred. It will bring greater calculation
errors. Bilateral filtering can reduce the loss of depth in-
formation at the edges. However, a large area of the hole
cannot be patched. &e joint bilateral filtering method can
patch some small and a part of the larger holes. However,
holes on the edges of transparent objects cannot be patched.
Even if the parameters are manually adjusted for patching,
the transparent objects in the depth map after patching will
be blurred to a certain extent.

3.2. Experimental Evaluation of the Measurement Model.
For the calibrated Kinect depth sensor, a set of Gray code
images was collected at two different distances. &e two
distances selected in the experiment are 60mm and 75mm
away from the Kinect depth sensor. Figure 12 shows a set of
Gray code images at a distance of 75mm from the trans-
parent material and the Kinect depth sensor.

&e Gray code image sequence taken in this experiment is
illustrated in Figure 12. &e vertical Gray code image sequence
encodes the horizontal coordinate position of the image. &e

horizontal Gray code image sequence encodes the vertical co-
ordinate position of the image. Due to the near-infrared camera
resolution limitations of the low-cost Kinect depth sensor, only 7
different Gray code images were selected in the experiment.

Figure 13 shows a single image in the Gray code image
sequence. For the decoding of Gray code images, we take
vertical Gray code fringe images as an example. We observe
the pixels in the blue and red circles in Figure 13(a). As-
suming that there is only one pixel in the circle. A pixel in the
blue circle is located in the white area and the corresponding
Gray code value is 0. A pixel in the red circle is in the black
area and the corresponding Gray code value is 1. After the
sequence changes according to this rule, the code in the blue
circle is 1000010 and the code in the red circle is 0101101.&e
two codes are translated into decimals of 66 and 45, re-
spectively. &ese are the horizontal coordinate values cor-
responding to the two pixels at their respective positions.
Use the same method to find the vertical coordinate values,
and traverse each pixel in the image to get the corresponding
decimal coordinates. &e decimal coordinates of each pixel
in the image without transparent objects are also achieved in
the same way. Finally, the two decimal coordinates of each
pixel are correspondingly subtracted to obtain the three-
dimensional distortion point of the position.

&e three-dimensional distortion point at a distance of
60mm from the depth sensor is acquired using the same
process. &e difference between the three-dimensional dis-
tortion points at two different distances is the reference light
direction. Depending on the theoretical analysis in Chapter 2,
point cloud images of the front and back surfaces of the
transparent material can be obtained. Figure 14 shows a point
cloud image that is issued by the Gray code image sequence.

For the transparent object with flat surfaces, the distance
between surfaces is detected by the corrected corresponding
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Figure 6: &e network structure of the depth map patching algorithm.
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Figure 8: Depth map generated during the convolutional neural network patching process.

Figure 9: Convolutional neural network patching effect.

(a) (b)

Figure 10: Continued.
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(c) (d)

(e) (f )

Figure 10: Comparison of various algorithms for hole patching. (a) Original depth map. (b) Median filtering method. (c) Gaussian filtering
method. (d) Bilateral filtering method. (e) Joint bilateral filtering method. (f ) Convolutional neural network method.
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Figure 11: Continued.

8 Advances in Materials Science and Engineering



points on the front and back surfaces. Table 1 is part of the
distance data between surfaces (unit: mm). &e true
thickness is 30.000mm.

To verify the performance of our method, two transparent
objects with large flat surfaces differing only in thickness were
used for the detection.&is experiment evaluates themethod by

obtaining the root mean square error (RMSE) between the
surface spacing and the true thickness as follows:

RMSE �

����������������

1
m∗ n

􏽘

m∗n

i

yi − 􏽢yi( 􏼁
2

􏽶
􏽴

, (13)

01.bmp 02.bmp 03.bmp 04.bmp 05.bmp 06.bmp 07.bmp

08.bmp 09.bmp 10.bmp 11.bmp 12.bmp 13.bmp 14.bmp

(a)

15.bmp 16.bmp 17.bmp 18.bmp 19.bmp 20.bmp 21.bmp

22.bmp 23.bmp 24.bmp 25.bmp 26.bmp 27.bmp 28.bmp

(b)

Figure 12: A set of Gray code original images. (a) A set of Gray code images with transparent objects. (b) A set of Gray code images without
transparent objects.
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Figure 11: &e corresponding error distribution map of hole patching. (a) Original depth map. (b) Median filtering method. (c) Gaussian
filtering method. (d) Bilateral filtering method. (e) Joint bilateral filtering method. (f ) Convolutional neural network method.
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where m∗ n represents the image size, i is ith pixel in the
image, yi is the true thickness of a transparent object, 􏽢yi

represents the actual distance between surfaces, and yi − 􏽢yi

represents the error value between the two data.
Figure 15 shows the RMSE distribution curve of transparent

objects of 30mm and 25mm thicknesses. It shows the error
range of the detection results. In our method, RMSE of the
30mm and 25mm transparent objects are 0.2586mm and
0.3417mm, respectively. Relative minimum errors can reach
0.86% and 1.3668%, respectively. &e reason for different de-
tection accuracy is primarily the optical path length of the
refracted light inside the transparentmaterial becomes longer as
the thickness of the transparent material increases. Because the

degree of deformation of the Gray code will be more obvious,
low-resolution cameras can record better. So, the detection
result is more accurate. &e experimental data are given in
Table 2.

Experimental results show that the proposed image
quality is comparable to [17]. &e denoising method pro-
posed in this paper can effectively avoid the adverse effects of
noise on reconstruction results. It is worth noting that the
reconstruction accuracy is higher than that of [9, 10] mainly
because the length of the refracted light path inside the
transparent object becomes longer with the increase of the
thickness of the transparent object, and the deformation
degree of the Gray code becomes more obvious.
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Figure 14: Point clouds of transparent material.

(a) (b)

Figure 13: A Gray code image. (a) A single Gray code image with transparent objects. (b) A single Gray code image without transparent
objects.

Table 1: Part of the distance data between surfaces (mm).

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 Point 10
Distance value 29.772 29.927 30.362 29.896 30.172 30.019 30.229 29.965 30.136 30.121
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4. Conclusions

Faced with the problem of detecting distance between surfaces
of the transparent material with large area and thickness, we
propose a method based on low-cost TOF continuous-wave
modulation and depth map patching. We start with the optical
expressions inherent in TOF depth sensors. Based on the
analysis of the imaging principle of the depth sensor, the
encoding and decoding operations combined with the Gray
code are used to effectively achieve the distance detection be-
tween surfaces of the transparent material. At the same time,
given the problem that the depthmap generated by the low-cost
TOF depth sensor contains many holes that have a huge impact
on the detection, a repair method of the deep convolutional
neural network is proposed. It effectively improves the per-
formance of the entire detection system.

In addition, although we achieve better detection re-
sults, the method in this paper is not appropriate for the
case where the refractive index of the transparent material
changes. In the future, the relevant theoretical model will
be improved and the experimental device will be adjusted
to make it suitable for internal uneven transparent
material.
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