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Ultrasonic vibration was employed in blending the nanosilica into epoxy resin to manufacture hemp/kevlar/nanosilica-based
epoxy composites, with an ultrasonic occurrence of 20 kHz and a 900W capacity of power. An ultrasonic probe was utilized to
ensure the consistent dispersion of the nanoparticles in the epoxy. The mechanical characteristics of hemp/kevlar fiber
reinforced with epoxy/nanosilica in a mat form have been studied. Hand layup procedures were used to create these
composites, including varying weight % of nanosilica and variable fiber stacking sequencing. The different weight % are 3, 6,
and 9, and the stacking sequences are B, C, and D. The effectiveness of ultrasonic irradiation on mechanical characteristics was
investigated and related. The inclusion of 6wt.% of SiO2 to the B type resulted in a 25% rise in tension and a 37% in bending.
The addition of 6wt.% silica to the C-type hybridization nanocomposite results in a 34% rise in tension and a 38% rise in
bending. Extreme tension behavior is attained at 6 wt.% SiO2 with epoxy with the B type piling order, and extreme bending
behavior is obtained at 6wt.% SiO2 with the C type piling order. A B-type model composite with a 6-wt.% SiO2 addition
performed better in hygroscopic than A, C, and D type model composites. An SEM is utilized to observe the microstructure of
shattered materials.

1. Introduction

In today’s hybrid environment, hybrid composites play an
essential and innovative role in various industrial applications.
A hybrid composite comprises a polymer matrix, fibers, and
fillers for reinforcement. Because of its low-cost, toughness

proportion, and excellent mechanical characteristics, a lot of
research is going on to create new hybrid composites [1].
Due to their improved mechanical properties, lower weighti-
ness, exceptional elasticity, oxidation resistance, and simplicity
of fabrication, artificial fiber-reinforced composite materials
have become increasingly popular [2]. Kevlar fiber, one of
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the most durable manufactured fibers, offers exceptional features
among artificial fibers. Kevlar fiber is employed in various indus-
tries and high-tech equipment, including rotating blades and
explosive weaponry [3]. Oil palms, cotton, flax, jute, banana
leaf, coir, wood, and lumber seem to be the most often utilized
natural fibers in the polymer fabrication of composites.

On the other hand, natural fibers provide significant eco-
nomic and productivity benefits over artificial fibers like
glass, nylon, and graphite [4]. On the other hand, natural
fibers have low mechanical qualities such as tension and
bending. Consequently, utilizing natural fiber alone in a
polymeric resin is inadequate to meet all scientific criteria
for biocomposites reinforcement [5]. As a result, our present
aim is to create novel hybrid materials. The strength of com-
posites is affected by several parameters, including the fiber
direction, the reinforcement-to-resin ratio, and the human
connection between the fiber and the matrices [6]. When
mechanical loads, such as tension and bend stresses, are
introduced to polymeric materials, they are more prone to
failure. The mechanical characteristics of epoxy-reinforced
hemp/glass fibers were investigated by Palanikumar et al.
[7]. Compared to hybrid composites, samples reinforced with
glass fibers had the highest strength. Prajapati and Gupta [8]
established the physiomechanical study of fiberglass-based
SiO2 epoxy mixture composites. He discovered that fiberglass
with a 25% content and nanosilica with a 3% content had supe-
rior mechanical properties to another weight %. Nanosilica
added to glass fiber improves its characteristics. Shakuntala
et al. [9] and colleagues investigated a polymeric matrix’s
mechanical and rheological characteristics filled with wood
apple shell particles. It was also discovered that using indige-
nous edible shells as a filler improved the machinability
features. Incorporating Nanofillers into matrices is a critical
step in producing nanocomposite; there are several methods
for doing so, including shear mixing, mechanically churning,
and ultrasonicating. When the resins and nanomaterials are
subjected to high shear forces, shear mixing necessitates using
two or four mills [3, 10]. However, that method has the disad-
vantage of having a limited resin supply in the mills. Mechan-
ical churning also aids in the formation of cavities. The
nanofillers must first be mixed with a mechanical stir before
being ultrasonic. Compared to the individual statistics, the
combined results offer good mechanical characteristics. The
most popular approach, ultrasonication, has already shown
great potential in dissolving particle groups and improving
solution consistency [11].

The behavior of resolutions transformed from non-
Newtonian to Newtonian in ultrasonic irradiation duration
is one of the sonicator’s most important features [12]. Ultra-
sonic processing is utilized for various purposes, including
nanoparticle dispersion in base fluids, particulate deagglo-
meration, particulate reduction in size, particulate mix and
precipitate, and surface functionality, among others. Because
the high rate of ultrasonic surfs travels over slighter packages,
ultrasonic radiation is used to disperse fillers in the polymeric
matrices. As the sonication duration increases, such small
packages of nanofillers gradually exfoliate into smoothly
decreased bundles and then develop completely as single
nanobased fillers in the polymers [13, 14].

Therefore, it is clear from the literature that little
research has been done on hybrid composites, certain stack-
ing sequences, and nanosilica as a filler. As a result, the
major goal of this research is to build a novel mixture that
is a combination of organic and artificial fibers with a chan-
ged piling order of hemp and kevlar mat fiber incorporated
with nano-SiO2-based epoxy composites for manufacturing
the cheapest materials. Table 1 shows some mechanical pos-
sessions of hemp and kevlar fibers.

2. Investigational Resources

2.1. Materials. In the fabrication of nanocomposite, hemp
and Kevlar fiber are used as reinforcement materials, nano-
silica is used as a particle material, and unsaturated epoxy
is used as a matrix. Both reinforcements and matrix mate-
rials were procured from Jayanthi Fiber Industry in Chennai.
Naga chemicals limited in Chennai, Tamil Nadu, India, sup-
plied the nanosilica particles.

Figures 1(a) and 1(b) demonstrate the photographic
image of hemp and kevlar fiber mate. Figures 2(a) and 2(b)
show the photographic image of nanosilica powder and its
chemical structure.

2.2. NaOH Processing. To eliminate any unwanted contami-
nation, the raw hemp fibers will be cleaned separately at 60
to 75°C for 1 hour with 1 to 2% detergent solutions, then
rinsed with purified water, and cured in an oven at 75°C
for 2 hours. The cleaned fibers were then submerged in 5%
solutions of NaOH for 4 hours at 30°C. Alkali-treated fibers
were completely cleaned with purified water and dehydrated
by ambient conditions.

2.3. Composite Sample Fabrication. The nanosilica and epoxy
were combined in the first phase using a mechanical churning
procedure for 15min to combine matrices and fillers. Using
ultrasonic vibrations, the ultrasonicator is then used to dis-
perse the filler into the matrix. Various weight proportions
of nanosilica filler loading, like 3, 6, and 9wt.% were employed
to create a nanocomposite. The SiO2 and epoxy combination
were positioned in a glass pipette, stirred mechanically, and
maintained in an elevated ultrasonic bath for 45 minutes on
pulse mode.

Table 1: Mechanical properties of reinforcements and matrix.

Sl.
No.

Properties Hemp fiber Kevlar fiber Epoxy resin

1 Hemi cellulose (%) 18.6-23.2 — —

2 Cellulose (%) 71.4-75.2 — —

3 Lignin (%) 3.7-5.7 — —

4 Density (g/cm3) 1.47 1.5-2.25 1.16

5
Tensile strength

(MPa)
690-850 62000 8-19

6
Young’s modulus

(GPa)
68-70 70-72 0.58

7 Elongation (%) 2-4.1 2.8-3.3 1.6
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Once the process was completed, the hand layup approach
was used to prepare epoxy/nanosilica/hemp/kevlar composites.
Four levels of fiber were created, with the layering sequences of
kevlar-hemp-kevlar, kevlar-hemp-kevlar, kevlar-hemp-kevlar,
kevlar-hemp-kevlar, kevlar-hemp-kevlar, hemp-kevlar-hemp,
and hemp-kevlar-hemp shifting. Inside the mould, hemp and
kevlar fiber layers are inserted. After that, the previously pre-
pared epoxy/nanosilica combination was put into the mould.
The preliminary surfaces were bonded till the entire adhesive
was engrossed. Then, next filmwas coated till wet with different
epoxy/nanosilica mix. After that, a roller was used to forcefully
crush the specimen to a thickness of about 3mm. The same
processes were sustained till entire folds were enclosed. Com-
posite specimens were cured at atmospheric conditions for
one day beforehand being sliced into appropriate sizes for ten-
sion and bending strength testing, according to the ASTM.
Table 2 lists the specimen numbers based on the stacking
sequence. Figures 3(a)–3(c) show the fabrication of bio-based
nanocomposites by using the hand layup method.

2.4. Testing. The fabricated composite specimens were cut to
the ASTM standard of D 638-03 replicas with a dimension
of 150 × 15 × 3mm for tensile testing and ASTM D-790
(width 10mm, length 125mm, and thickness 3mm) for flex-
ural testing. Figure 4 reveals the photographic images of ten-
sile and flexural specimens.

3. Outcomes of Composites

3.1. Mechanical Performance of Filler-Free Mixtures. The ten-
sile behavior and modulus of blank hemp/kevlar hybrid com-
posites and plain epoxy are shown in Figures 5(a) and 5(b). As

per the observations, the tensile behavior of the composite
mixture was considered to be the most effective in specimen
B than in plain epoxy (A) as well as in other hybridization
laminate materials (C and D). The mechanical properties of
composites using kevlar in the external layer were discovered
superior to those of other biocomposites. Compared to kevlar
fibers, hemp fibers become less robust, stronger, and have less
interfacial shear resistance. When compared to hemp fiber, it
has a better load-bearing capacity. As a result, when loaded,
it does not easily break. The tensile strength of hemp and
kevlar-infused epoxy has grown to 41.5% in specimen 3,
38% in specimen 4, and 48% in specimen B compared with
pure epoxy (A). The analysis also reveals that the outer layer
contains hemp fiber, which is weaker than kevlar. This might
be owing to the larger content of lignin and hemicellulose con-
centration of hemp fiber, which does not create a strong bond
with the matrix. Consequently, it cannot bear the stress and
breaks easily when exposed to it. As an outcome of a filament
breaking and debonding, the composite’s tensile value has
dropped [15].

Figures 6(a) and 6(b) compare the bending behavior and
modulus of hemp/kevlar mixtures with pure epoxy. The results

(a) (b)

Figure 1: (a) Photographic image of hemp. (b) Kevlar fiber mate.

(a)

Si

o

(b)

Figure 2: (a) Photographic image of nanosilica powder. (b) Chemical structure of silica.

Table 2: Stacking sequence arrangement of nanocomposites.

Sl. No. Specimen symbol Stacking sequence

1 A Plain epoxy resin

2 B Kevlar-hemp-hemp-kevlar

3 C Kevlar- hemp-kevlar-hemp

4 D Hemp-kevlar-kevlar-hemp
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(a) (b)

(c)

Figure 3: Fabrication of bio-based nanocomposites by using the hand layup method: (a) applying wax, (b) placing the woven mat, and (c)
closing the mould.

(a) (b)

Figure 4: Photographic images of (a) tensile and (b) flexural specimens.
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demonstrate that the flexural properties of the hybrid composite
are better in specimen C than in plain epoxy (A) and other
hybrid laminated composites (B and D). Specimens B and C
are nearly equal in terms of strength. Compared to pure epoxy
(A), specimen C has an 82% strength, specimen D has a 73%
strength, and specimen B has a 79.2% strength. Specimen B is
stronger than specimen C, that may be due to the mostly intact
contact between polymers and the fibers and to flexing load
transfer from the matrix to the kevlar fiber, which could pick
up the slack during load conditions. The improvement in
toughness is mostly due to fiber hybridization, but at the same

time, it depends on piling order; in 3 unique stacking orders,
kevlar as the outer layer yields relatively good mechanical
behavior. Salman et al. [16] discovered that hybrid composites
with kevlar as the exterior surface and kenaf as the inner layer
had higher hardness, better energy absorption, and a higher
total pile with their research.

3.2. Tensile Behavior of SiO2-Based Mixtures. Figure 7 dem-
onstrates the tensile behavior of hybrid composites for vari-
ous piling patterns and varying weight percent of nanosilica.
Because of the greater nanosilica distribution that leads to
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Figure 5: Kevlar and hemp-based hybrid composites: (a) tension behavior and (b) tension modulus.
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Figure 6: Kevlar and hemp-based hybrid composites: (a) flexural strength and (b) flexural modulus.
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good interfacial contact with the matrices, the SiO2 through
the dual-mixing procedure increased the tension behavior of
the epoxy/hemp/kevlar materials. The tensile strength varies
depending on the stacking order. Also, when the proportions
of SiO2 in the material increase, the tensile strength increases

and then drops as the amount of nanosilica in the secular
declines. A significant correlation was made by Ary Subagia
et al. [17]. The tension behavior of SiO2-based hybrid compos-
ites increases with the weight % of SiO2 from 0 to 6wt.% and
decreases with a further rise in SiO2 proportions, i.e., 9wt.%.
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Figure 8: Flexural strength of nanocomposites based on the wt.% of nanosilica.
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This is because aggregation, caused by inadequate nanomate-
rial dispersion, may lead to inhomogeneity and, eventually,
uncured epoxy regions while supplying energy to the blending
process. In their research, Singh and Aggarwal et al. [18] found
that adding a small quantity of nanosilica to a polymer
improved its tensile capabilities. Higher nanosilica concentra-
tions, on the other hand, may exacerbate these tensile qualities.
The maximum tensile strength is attained at 6wt.%, nanosi-
lica/B type stacking sequences would be raised by 25%, and
the tensile strength is reduced when the silica content is
increased further. This is due to the viscidness of the polymers
growing as the weightiness of silica is raised [19]. Any of the
stacking sequences will show this outcome. The inclusion of
6wt.% SiO2 reduced absorbencies, and the lowered absor-
bency greatly boosted the resistivity of the nanocomposites.
The increased levels of nanosilica induced aggregation and
poor distribution, indicating an increase in permeability.

3.3. Flexural Behavior of SiO2-BasedMixtures. Figure 8 depicts
the bending behavior for various piling orders and nano-SiO2
weight percent. The maximum flexural strength was achieved
at 6% of the SiO2/C type piling order. There is an increase in
elastic modulus of up to 4% and an additional rise in nanosi-
lica proportion; nevertheless, this is a drop-in bending behav-
ior. Merah and Mohamed [20] found the same tendency in

bending behavior for filler content. When 6wt.% nanosilica
is added to C-type composites, the flexural strength increases
by 9%, compared to 38% for 3wt.% and 6wt.% and 21% for
9wt.%. From 0wt.% to 6wt.%, the bending strength of the
C-type stacking sequence has increased by 38%. The aggrega-
tion of SiO2 in the epoxy, which acts as a stress concentration
and reduces bending behavior, may cause the loss in flexural
behavior of more than 6wt.% SiO2.

3.4.Microstructural Analysis. Figure 9 shows 20μmand 50μm
magnification SEM images of the B-type stacking process with
0wt.%, 3wt.%, 6wt.%, and 9wt.% nanosilica. The presence of
voids in the composites can be observed in the image, indicat-
ing no interfacial connection IN between the reinforcements
and matrices. Figure 9(a) indicates the dispersion of silica par-
ticles in the plain epoxy resin. SEM images of confirmed bend-
ing samples of epoxy/C type stacking sequence hybrid
composite and epoxy/C type stacking specimen/nanosilica
composite with 6wt.% nanosilica are shown in Figures 9(b)
and 9(c). There is a clear difference between the specimens
with and without nanosilica. In all the considered samples,
fiber withdrawal can be noticeable. The flimsiness of the hemp
fiber may be perceived now. The effects of adding fillers to
hybrid composites are shown in Figure 9(c).
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Figure 9: (a)–(d) Microstructural images of bio-based nanocomposites.
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Due to flexural load, the fracture development before break-
ing is seen to be lower than in Figure 9(b). This demonstrates
that the fillers improve the strength of the composite which
shows that the composites have no void and that the presence
of nanosilica has resulted in a strong interfacial connection
between the reinforcement and resin. It depicts the composite’s
homogeneous particle dispersion. Due to the ultrasonic mixture
of nano-SiO2, less absorbency could be seen in the pictures,
which are comparable to those of Madhukar et al. [21]. The
kind of fiber, matrix, matrices and their reinforcement connec-
tion, fibers transmission area of breakage, and other factors
influences composite failure mode [22]. Furthermore, adding
the silica weight % resulted in a negative outcome, indicating
a reduction in mechanical strength [23]. This indicates the poor
boundary adherence of fiber andmatrix [24], resulting in aggre-
gation due to poor adhesion and inferior composite strength
qualities [25]. It is demonstrated in SEM image Figure 9(d).

4. Effect of Nanofiller on Moisture
Preoccupation Characteristics

Hygroscopic characteristics of composites with different layer-
ing sequences are shown in Figure 10. Figures 10(a)–10(d)
demonstrate the hygroscopic behavior of nanocomposites in
the addition of 0wt.%, 3wt.%, 6wt.%, and 9wt.% of silica
powder. At the beginning, the rate of water updating for all
composite materials was high [26], but this level has become
almost consistent and reduced in the end phase [27]. Accord-
ing to the findings, all the composite materials exhibit a high
moisture uptake rate with the increased time durations [28].
After the first day, moisture content ranged from 7 to 14%,
climbing to 17–33% for various composites [29]. It has been
shown that the proportion of filler particle concentration con-
siderably influences the parameters of the composite’s water
uptake [30]. According to Subsection 4, an A model sample
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Figure 10: Hygroscopic behavior: (a) 0 wt.% of silica, (b) 3 wt.% pf silica; (c) 6 wt.% of silica, and (d) 9 wt.% of Silica.
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exhibits the biggest water retention. The wetness acquisition
may be affected by increasing the concentration of nanofillers
(3, 6, and 9wt.%), as illustrated in Figure 10 [31]. When the
filler level is higher by up to 6%, the water retention drops
and the hygroscopic rises [32]. The result of excessive nano-
particles in the matrices is a mixture that raises the mixture’s
stickiness [33] and causes poor insemination of a combination
(matrix-filler) into the fibers [34]. There is poor moisture
between the fiber matrix and the laminate with voids from
insufficient insemination [35], which will absorb more water
[36]. For the majority of composites, the rates of water uptake
are greater at 0% filler loading (steeper gradient of water
uptake proportion and immersed duration chart) [37]. As a
result, compared to those other filler substances [38], they
can achieve saturation water content with a shorter soaking
time [39]. In comparison to a composite without filler, the
use of filler lowers the composite’s water retention rate and
increases its stability in sticky situations [40].

5. Conclusion

The mechanical characteristics of the hemp/kevlar/nanosilica-
reinforced epoxy-based hybrid nanocomposites were evalu-
ated according to ASTM standards using the hand layup pro-
cedure. The following are some observations:

(i) Due to the ultrasonic swirling procedure in the pro-
duction of composites that aids in the appropriate
dispersal of nano-SiO2 in hybrid mixtures, mechan-
ical characteristics are dramatically improved with
nanosilica inclusion

(ii) The composites, type B specimen, 6 wt. percent
nanosilica and type C specimen/6 wt. percent nano-
silica composites, had the maximum tensile and
flexural strength. It promotes strong bonds between
nanofillers and the matrix. Due to incorrect soaking
of the fillers and difficulties in fiber/filler interaction,
the mechanical characteristics of hybrid composites
are diminished after 6wt.% filler addition

(iii) Hybrid composites (type C) have a 38% increase in
flexural strength and a 25% increase in tensile
strength due to using 6wt.% fillers and a two-step
swirling procedure in the production of composites

(iv) According to SEM measurements, the ultrasonic
stirring procedure results in the appropriate dis-
persal of fibers in the hybrid mixtures. The results
show that nanosilica particles have high adhesive
strength and chemical compatibility with epoxy,
hemp, and kevlar biocomposites

(v) Compared to A, C, and D type model composites, B
type model composites with a 6wt.% addition of
nanosilica exhibit better hygroscopic behavior. Fur-
thermore, adding the silica weight percent also
resulted in a negative outcome. This indicates the
poor boundary adherence of fiber and matrix,
resulting in aggregation due to poor adhesion and
inferior composite strength qualities
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