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This work is focused on a rolling mill’s main drive electromechanical coupling system. Firstly, we equip electromechanical
coupling system with fractional-order time delay. Secondly, we, respectively, derive the conditions for occurrence of Hopf
bifurcation around equilibriums E0ð0, 0, 0, 0Þ and E1ðx∗1 , 0, x∗3 , 0Þ. It is found that the fractional order α and time delay τ in the
system play an important role on the system stability. Finally, numerical simulations are given to verify the analytic results.

1. Introduction

The rolling mill system, as a typical complex nonlinear
system, involves many disciplines such as rolling,
machines, motors, and automatic control. Due to the com-
plex structure of the rolling mill, the system contains a
variety of nonlinear factors, which closely affect the inten-
sity and frequency of torsional vibration during the pro-
duction process of the rolling mill. Frequent torsional
vibrations during rolling mill production have a serious
impact on the quality of rolled products. The phenomenon
of torsional vibration not only causes vibration marks on
the surface of the strip and rolls and reduces the service
life of the rolls but also deteriorates the operating environ-
ment, shortens the fatigue life of parts, and ultimately
threatens the safety of the rolling mill. Therefore, being
able to propose effective measures to suppress the tor-
sional vibration of the rolling mill [1–10] has become
the key to solving the torsional vibration of the main drive
of the rolling mill. At the same time, this issue has also
attracted scholars’ attention.

Rotating machinery systems contain various nonlinear
factors, which lead to complex dynamic behaviors such as
Hopf bifurcation and chaos of the system (see [11–13]).

The researchers [14–16] abstracted the main drive system
of the rolling mill as a two-mass or multimass relative rota-
tion system and studied the bifurcation and chaos of the tor-
sional vibration of the system. In our previous work [17], we
designed a nonlinear controller to control the Hopf bifurca-
tion in the main drive delayed system of the rolling mill.

In 2015, Liu et al. [16] deduced a nonlinear electrome-
chanical coupling system by using the dissipation Lagrange
equation, and they introduced a time delay feedback to con-
trol the dynamic behaviors of the system. The model takes
the following form:

J1€φ1 + K φ1 − φ2ð Þ + C _φ1 − _φ2ð Þ + Ce _φ1 − Keφ1 = k0 + k2φ
2
1 + k3φ

3
1

J2€φ2 − K φ1 − φ2ð Þ − C _φ1 − _φ2ð Þ = TL + gclφ2 t − τ1ð Þ + gc2φ
3
2 t − τ2ð Þ

,
(

ð1Þ

where Jiði = 1, 2Þ is the moment of inertia, φiði = 1, 2Þ and
_φiði = 1, 2Þ are the angle of rotation and rotational speed,
respectively, K is the torsional stiffness of drive shaft, C is
the shafting damping coefficient, and Ce is the electromag-
netic damping coefficient (the meaning of above parameters
can refer to Ref. [16]).
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By applying appropriate transformations, system (1) is
equivalent to system (2):

_x1 = x2,
_x2 = −ω2

1x1 − b1x2 + a1x3 + d1x4 + l1x
2
1 + l2x

3
1,

_x3 = x4,
_x4 = a2x1 + d2x2 − ω2

2x3 − b2x4 + β1x3 t − τ1ð Þ + β2x
3
3 t − τ2ð Þ,

8>>>>><
>>>>>:

ð2Þ

where ω2
1 = ðK − KeÞ/J1 b1 = ðC + CeÞ/J1, a1 = K/J1, d1 = C/

J1, l1 = k2/J1, l2 = k3/J1, ω2
2 = K/J2, b2 = C/J2, a2 = K/J2, d2 =

C/J2, β1 = gc1/J2, β2 = gc2/J2. At present, the stability and
the Hopf bifurcation for system (2) were investigated in
[16]. Ding et al. [18] focused on Hopf and Hopf-pitchfork
bifurcations for system (2) by applying the multiple time
scale method and the normal forms.

For electromechanical coupling system, the unstable
bifurcation may cause a destructive vibration. Therefore,
finding more efficient measures to control vibration is vital
to system (2). In the existing literature, the electromechani-
cal coupling systems are used ordinary differential equations
or delay differential equations to investigate through the
integer-order mathematical modeling. However, few studies
have applied fractional order to system (2). At present, in the
process of studying some real world problems, it is found
that the problems can be better described by the fractional-
order models [19–21] than the integer-order models. There-
fore, fractional-order systems may be the basis for many
future studies. In [22–25], when introducing fractional
orders to existing systems, the usual method is to directly
replace the integer order with the fractional order. Motivated
by the aforementioned works, we follow the same processing
method and try to introduce the fractional order into system
(2) and explore the effect of fractional order on the damping
term of the system (1); the new model is described by the fol-
lowing fractional-order differential equations

Dαx1 = x2,
Dαx2 = −ω2

1x1 − b1x2 + a1x3 + d1x4 + l1x
2
1 + l2x

3
1,

Dαx3 = x4,
Dαx4 = a2x1 + d2x2 − ω2

2x3 − b2x4 + β1x3 t − τ1ð Þ + β2x
3
3 t − τ2ð Þ,

8>>>>><
>>>>>:

ð3Þ

where Dα represents the Caputo fractional derivative and α
is the fractional and derivative order of damping, which
may represent the nonlocal displacement effects of dissipa-
tion of energy (internal friction). τ1 and τ2 are time delays.
The main contributions of this paper are as follows:

(1) A fractional-order nonlinear electromechanical
coupling system with delay is proposed

(2) The conditions of Hopf bifurcation of system (3)
around equilibrium are given

(3) Some simulations are implemented to corroborate
the obtained conclusions

The layout of this work is organized as follows: In Sec-
tion 2, the basic definition and the required theorem are
introduced. In Section 3, stability analysis of fractional-
order nonlinear electromechanical coupling system with
delay is obtained. In Section 4, some simulations are carried
out to verify the theoretical results. Conclusions are given in
Section 5.

2. Preliminaries

Before starting the analysis and establishing the results, we
firstly introduce the basic definition and the required
theorem.

Definition 1 [26]. The Caputo fractional derivative operator
of order αðα > 0Þ is defined as

Dα
0 fð Þ xð Þ =

dnf xð Þ
dxn

, α = n ∈N+,

1
Γ n − αð Þ

ðx
0
x − tð Þn−α−1 f nð Þ tð Þdt, 0 < n − 1 ≤ α ≤ n,

8>><
>>:

ð4Þ

where n is an integer, x > 0.

Theorem 2 [19, 27] (the conditions of stability). Consider
the following fractional-order system:

Dα
0x tð Þ = f tð Þ, x 0ð Þ = x0, ð5Þ

where 0 < α < 1. The equilibrium points of the above system
are the solutions of f ðxÞ = 0. An equilibrium point is locally
asymptotically stable if all eigenvalues λi of the Jacobian
matrix J = ∂f /∂x evaluated at the equilibrium point satisfy j
arg ðλiÞj > απ/2. Further, if jarg ðλiÞj = απ/2, then the system
undergoes a Hopf bifurcation.

Theorem 3 [28, 29]. Consider the following n-dimensional
fractional-order system with delay:

Dα
0xj tð Þ = f j x1 tð Þ, x2 tð Þ,⋯,xn tð Þ, τð Þ, j = 1, 2,⋯,nð Þ, ð6Þ

where 0 < α < 1 and time delay τ ≥ 0. System (6) undergoes a
Hopf bifurcation at the equilibrium point x∗ = ðx∗1 , x∗2 ,⋯,x∗nÞ
when τ = τ0 if the following conditions are satisfied:

(i) All the eigenvalues λjðj = 1, 2,⋯,nÞ of the coefficient
matrix A of the linearized system of (7) with τ = 0
satisfy jarg ðλiÞj > απ/2

(ii) The characteristic equation of the linearized system
of (7) has a pair of purely imaginary roots ±ω0 when
τ = τ0

(iii) Re ½dsðτÞ/dτ�jω=ω0 ,τ=τ0 ≠ 0
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3. Stability and Hopf Bifurcation

Herein, the conditions of Hopf bifurcation of system (3)
around feasible equilibrium points are mainly investigated.
Noticing that system (3) has a zero equilibrium point E0ð0
, 0, 0, 0Þ and a nonzero equilibrium point E1ðx∗1 , 0, x∗3 , 0Þ.
The zero equilibrium point E1ðx∗1 , 0, x∗3 , 0Þ satisfies the
following equations:

x2 = 0,
−ω2

1x1 + a1x3 + l1x
2
1 + l2x

3
1 = 0,

x4 = 0,
a2x1 − ω2

2x3 + β1x3 + β2x
3
3 = 0:

8>>>>><
>>>>>:

ð7Þ

Then, by a direct computation, we can derive that x1 sat-
isfies the following equation:

m1x
8
1 +m2x

7
1 +m3x

6
1 +m4x

5
1 +m5x

4
1 +m6x

3
1 +m7x

2
1 +m8x1 +m9 = 0:

ð8Þ

The detailed expression of parameters (mi, i = 1⋯ 9) in
Equation (8) can be found in Appendix A.

In order to meet the actual problem, we suppose that
Equation (8) has a positive root x∗1 > 0. Noticing the fact that
x3 = ð1/a1Þω2

1x1 − l1x
2
1 − l2x

3
1, we can calculate x∗3 . Further-

more, if we suppose x∗3 > 0, then system (3) has a nonzero
equilibrium point E1ðx∗1 , 0, x∗3 , 0Þ.

Next, we, respectively, investigate the stability of system
(3) around equilibrium points E0ð0, 0, 0, 0Þ and E1ðx∗1 , 0, x∗3
, 0Þ. In what follows, we divide the problem into two cases:

Case 1. Stability of E0 = ð0, 0, 0, 0Þ with τ1 ≥ 0, τ2 = 0.
The characteristic equation of linear system of system

(3) is

s4α + e1s
3α + e2s

2α + e3s
α + e4 + f1s

2α + f2s
α + f3

� �
e−τ1s = 0,

ð9Þ

where e1 = b1 + b2, e2 = b1b2 + ω2
1 + ω2

2 − d1d2, e3 = b2ω
2
1 +

b1ω
2
2 − d1a2 − d2a1, e4 = ω2

1ω
2
2 − a1a2, f1 = −β1, f2 = −b1β1,

and f3 = −β1ω
2
1.

For simplicity, Equation (9) is equivalent to

P sð Þ + e−τ1sQ sð Þ = 0, ð10Þ

where PðsÞ = s4α + e1s
3α + e2s

2α + e3s
α + e4 and QðsÞ = f1s

2α

+ f2s
α + f3.

When τ1 = 0, the characteristic Equation (10) at E0 =
ð0, 0, 0, 0Þ becomes

F λð Þ = λ4 + h1λ
3 + h2λ

2 + h3λ + h4, ð11Þ

where λ = sα, h1 = e1, h2 = e2 + f1, h3 = e3 + f2, and h4 = e4
+ f3. Applying Routh-Hurwitz criterion for fractional-
order differential equations [30], one can deduce that

fractional-order system (11) is asymptotically stable when
τ1 = 0 if and only if

H1ð Þ: hi > 0 i = 1, 2, 3, 4ð Þ, h1h2 − h3 > 0, h1h2h3 − h4h
2
1 − h23 = 0:

ð12Þ

When τ1 ≠ 0, multiplying esτ1 on both sides of Equa-
tion (10), then one has

P sð Þeτ1s +Q sð Þ = 0: ð13Þ

By replacing s = iω = ðcos ðπ/2Þ + i sin ðπ/2ÞÞω into
Equation (13) and separating into its real and imaginary
parts, we can obtain

p1 ωð Þ cos ωτ1ð Þ − p2 ωð Þ sin ωτ1ð Þ + q1 ωð Þ = 0,
p2 ωð Þ cos ωτ1ð Þ + p1 ωð Þ sin ωτ1ð Þ + q2 ωð Þ = 0,

(
ð14Þ

where PðiωÞ = p1ðωÞ + ip2ðωÞ and QðiωÞ = q1ðωÞ + iq2ðωÞ.
Then, by solving Equation (14), we can get the following

cos ωτ1ð Þ = −p1 ωð Þq1 ωð Þ − p2 ωð Þq2 ωð Þ
p21 ωð Þ + p22 ωð Þ ≐H1 ωð Þ,

sin ωτ1ð Þ = −p1 ωð Þq2 ωð Þ + p2 ωð Þq1 ωð Þ
p21 ωð Þ + p22 ωð Þ ≐H2 ωð Þ,

8>>><
>>>:

ð15Þ

where p1ðωÞ = ω4α cos ð2παÞ + e1 cos ð3πα/2Þω3α + e2ω
2α

cos ðπαÞ + e3 cos ðπα/2Þωα + e4, p2ðωÞ = ω4α sin ð2παÞ + e1
sin ð3πα/2Þω3α + e2ω

2α sin ðπαÞ + e3 sin ðπα/2Þωα, q1ðωÞ =
f1ω

2α cos ðπαÞ + f2 cos ðπα/2Þωα + f3, and q2ðωÞ = f1ω
2α

sin ðπαÞ + f2 sin ðπα/2Þωα.
By cos2ðθÞ + sin2ðθÞ = 1, then one has

H1 ωð Þ2 +H2 ωð Þ2 = 1: ð16Þ

Without loss of generality, we further suppose that
Equation (16) has at least a positive root. By following from
Equation (15), we can obtain

τ1k =
1
ω

arccos −p1 ωð Þq1 ωð Þ − p2 ωð Þq2 ωð Þ
p21 ωð Þ + p22 ωð Þ + 2π

� �
, k = 0, 1, 2,⋯:

ð17Þ

For the convenience of further analysis, we define the
bifurcation point

τ01 = min τ1k
� �

, k = 0, 1, 2⋯ ,ð Þ: ð18Þ

By differentiating Equation (10) with respect to τ, we
have
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P′ sð Þ ds
dτ

+Q′ sð Þ ds
dτ

e−sτ +Q sð Þ −τ
ds
dτ

− s
� �

e−sτ = 0,

ds
dτ

= sQ sð Þe−sτ
P′ sð Þ + Q′ sð Þ − τQ sð Þ

� 	
e−sτ

= A sð Þ
B sð Þ ,

ð19Þ

and it implies

Re ds
dτ


 �����
ω=ω0,τ=τ01

= A1B1 + A2B2
B2
1 + B2

2
: ð20Þ

The detailed calculations can be found in Appendix A.

Theorem 4. Supposing ððA1B1 + A2B2Þ/ðB2
1 + B2

2ÞÞ ≠ 0. For
system (3), the following results can be obtained.

(i) If (H1), then the equilibrium Eð0, 0, 0, 0Þ is locally
asymptotically stable when τ ∈ ½0, τ01Þ

(ii) System (3) undergoes a Hopf bifurcation at Eð0, 0, 0
, 0Þ when τ = τ01

Case 2. Stability of E1ðx∗1 , 0, x∗3 , 0Þ with τ1 = τ2 = τ.
Let X1 = x1 − x∗1 , X2 = x2, X3 = x3 − x∗3 , and X4 = x4, then

we can obtain linearized system:

DαX1 = X2,
DαX2 = n1X1 − b1X2 + a1X3 + d1X4,
DαX3 = X4,
DαX4 = a2X1 + d2X2 − ω2

2X3 − b2X4 + n2X3 t − τð Þ,

8>>>>><
>>>>>:

ð21Þ

where n1 = −ω2
1 + 2l1x∗1 + 3l2ðx∗1 Þ2 and n2 = β1 + 3ðx∗3 Þ2β2.

The characteristic system (21) becomes

s4α + ε1s
3α + ε2s

2α + ε3s
α + ε4 + ζ1s

2α + ζ2s
α + ζ3

� �
e−τs = 0,

ð22Þ

where ε1 = b1 + b2, ε2 = b1b2 − n1 + ω2
2 − d1d2, ε3 = −b2

n1 + b1ω
2
2 − d1a2 − d2a1, ε4 = −n1ω2

2 − a1a2, ζ1 = −n2, ζ2 = −
b1n2, and ζ3 = n2n1.

Remark 5. Since Case 2 is quite similar to those for Case 1,
we put the detailed mathematical derivation in Appendix
B. Here, we only give the corresponding conclusions.

Theorem 6. Supposing ððC1D1 + C2D2Þ/ðD2
1 +D2

2ÞÞ ≠ 0. For
system (3), the following results can be obtained.

(i) The equilibrium point E1ðx∗1 , 0, x∗3 , 0Þ is locally
asymptotically stable when τ ∈ ð0, τ0Þ

(ii) System (3) undergoes a Hopf bifurcation at E1ðx∗1 ,
0, x∗3 , 0Þ when τ = τ0

4. Numerical Simulation

In this section, we use the Adama-Bashforth-Moulton
predictor-corrector method [31, 32] and show some
numerical simulations to illustrate the analysis results in
the previous sections. By choosing τ1 or τ2 as bifurcation
parameters, we mainly analyse the Hopf bifurcation of
system (3).

Case 1. To facilitate numerical simulations, the parameters
take the values based on Ref. [16], as follows:

a1 = 6, a2 = 4:5, b1 = 2, b2 = 0:5, d1 = 1, d2 = 0:5, ω2
1 = 7,

ω2
2 = 5, l1 = 0:5, l2 = −0:1, β1 = 0:8 and β2 = 0:4.
By performing some calculations based on previous

analysis, we can obtain τ01 = 5:1257. Figure 1 shows that
bifurcation diagrams of system (3) for the parameters a2 ∈
ð2,4:5Þ with α = 0:95, τ1 = 0, and h = 2−6. The above
parameters satisfy the conditions of Theorem 4; then, it
demonstrates that E0ð0, 0, 0, 0Þ is locally asymptotically
stable when τ1 = 4:8 < τ01 and fractional-order α = 0:95, as
shown in Figures 2 and 3. Besides, as τ1 increases, the
Hopf bifurcation will occur at the expense of system’s
(3) stability. Figures 4 and 5 show that the solution of sys-
tem (3) is unstable when τ1 = 5:13 > τ01. The phase dia-
gram depicts that the system undergoes a stable limit cycle
around zero equilibrium point E0ð0, 0, 0, 0Þ, as shown in
Figure 5.

When τ1 = 1, although the system (3) is asymptotically
stable with different values of the fractional order, the time
required for the system to reach the stable state becomes
long as the fractional-order value decreases, as shown in
Figure 6 (can be found in Appendix C). It demonstrates that
not only the time delay has an impact on the stability of the
system, but the fractional order also plays an important role
on the system stability.

Case 2. Fixed α = 0:98, a1 = 6, a2 = 5, b1 = 2, b2 = 0:5, d1 = 1,
d2 = 0:5, ω2

1 = 7, ω2
2 = 5, l1 = 0:5, l2 = −0:1, β1 = 1 and β2 = −

0:04. By some calculations, we can obtain x∗1 = 3:6196, x∗3
= 3:9215, and τ0 = 1:0750. Furthermore, we can get nonzero
equilibrium E1ð3:6196,0, 3:9215,0Þ of the system (3). The
above parameters satisfy the conditions of Theorem 6; then,
it demonstrate that E1ð3:6196,0, 3:9215,0Þ is locally asymp-
totically stable when τ = 1 < τ0 and fractional-order α =
0:98, as shown in Figures 7 and 8. Besides, as τ increases,
the Hopf bifurcation will occur at the expense of system’s
(3) stability. Figures 9 and 10 show that the solution of sys-
tem (3) is unstable when τ = 1:2 > τ0. The phase diagram
depicts that the system undergoes a stable limit cycle around
nonzero equilibrium point E1ð3:6196,0, 3:9215,0Þ, as shown
in Figure 10.

When the time delay is small (τ = 1), the stability of the
system can remain stable as the value of the fractional order
gradually increases. However, when the time delay becomes
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big (τ = 4), the nonzero equilibrium point of the system (3)
changes from stable to unstable as the value of fractional
order increases; finally, a periodic solution is generated, as
shown in Figure 11 (can be found in Appendix C). It shows
that the fractional order also plays an important role on the
stability of the system.

5. Discussions

In Refs. [22–25], when introducing fractional orders to exist-
ing systems, the usual method is to directly replace the inte-
ger order with the fractional order. Accordingly, we follow
the same processing method to introduce the fractional
order into system (2). However, such an approach may
ignore the relevant mechanics [33] of the actual system.
The coupled systems [33] and damping models [34–36]
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Figure 1: Bifurcation diagrams of system (3) for the parameters a2 ∈ ð2,4:5Þ with α = 0:95 and h = 2−6.
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Figure 2: The system (3) at E0ð0, 0, 0, 0Þ is locally asymptotically
stable, with α = 0:95, τ1 = 4:8 < τ01, h = 0:05, and ðx01, x02, x03, x04Þ =
ð0:15,0:15,0:2,0:2Þ.
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Figure 3: Phase portraits of system (3) at E0ð0, 0, 0, 0Þ with α = 0:95,
τ1 = 4:8 < τ01, h = 0:05, and ðx01, x02, x03, x04Þ = ð0:15,0:15,0:2,0:2Þ.
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using fractional derivatives had been successfully applied to
many dynamic systems in mechanical engineering. Inspired
by the above literatures, we introduce fractional order in the
coupling term Cð _φ1 − _φ2Þ and the damping term Ce _φ1 in
system (2); then, we have

J1€φ1 + K φ1 − φ2ð Þ + CDαφ1 − C′Dβφ2 + CeD
αφ1 − Keφ1 = k0 + k2φ

2
1 + k3φ

3
1,

J2€φ2 − K φ1 − φ2ð Þ − CDαφ1 + C′Dβφ2 = TL + gclφ2 t − τ1ð Þ + gc2φ
3
2 t − τ2ð Þ,

(

ð23Þ

where α, β ∈ ð0, 1�, α ≠ β, Dα, and Dβ denote the Grünwald-
Letnikov fractional derivative.

Based on the additivity of the fractional-order derivative
operator, we reduce the dimensionality of Equation (23),
and Equation (23) then becomes

Dαφ1 = φ3,

D2−αφ3 = €φ1 =
1
J1

−K φ1 − φ2ð Þ − Cφ3 + C′φ4 − Ceφ3 + Keφ1 + k0 + k2φ
2
1 + k3φ

3
1

� 	
,

Dβφ2 = φ4,

D2−βφ4 = €φ2 =
1
J2

K φ1 − φ2ð Þ + Cφ3 − C′φ4 + TL + gc1φ2 t − τ1ð Þ + gc2φ
3
2 t − τ2ð Þ

� 	
:

8>>>>>>>>><
>>>>>>>>>:

ð24Þ
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Figure 4: The system (3) at E0ð0, 0, 0, 0Þ is unstable, with α = 0:95,
τ1 = 5:13 > τ01, h = 0:05, and ðx01, x02, x03, x04Þ = ð0:15,0:15,0:2,0:2Þ.
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Figure 5: Phase portraits of system (3) at E0ð0, 0, 0, 0Þ with α = 0:95,
τ1 = 5:13 > τ01, h = 0:05, and ðx01, x02, x03, x04Þ = ð0:15,0:15,0:2,0:2Þ.
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Figure 6: Waveform diagrams of system (3) at E0ð0, 0, 0, 0Þ with
τ = 1, h = 0:05, and ðx01, x02, x03, x04Þ = ð0:15,0:15,0:2,0:2Þ.
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Figure 7: The system (3) at E1ð3:6196,0, 3:9215,0Þ is locally
asymptotically stable, with α = 0:98, τ = 1 < τ0, h = 0:05, and ðx01,
x02, x03, x04Þ = ð0:15,0:15,0:2,0:2Þ.
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Figure 8: Phase portraits of system (3) at E1ð3:6196,0, 3:9215,0Þ
with α = 0:98, τ = 1 < τ0, h = 0:05, and ðx01, x02, x03, x04Þ = ð
0:15,0:15,0:2,0:2Þ.
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Figure 9: The system (3) at E1ð3:6196,0, 3:9215,0Þ has a stable
periodic solution, with α = 0:98, τ = 1:2 > τ0, h = 0:05, and ðx01, x02,
x03, x04Þ = ð0:15,0:15,0:2,0:2Þ.
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Let α1 = α, α2 = 2 − α, α3 = β, α4 = 2 − β, φ1 = x1, φ3 = x2,
φ2 = x3, φ4 = x4, ω2

1 = ðK − KeÞ/J1b1 = ðC + CeÞ/J1, a1 = K/
J1, d1′ = C′/J1, l1 = k2/J1, l2 =k3/J1, ω2

2 = K/J2, b2′ = C′/J2, a2 =
K/J2, d2 = C/J2, β1 =gc1/J2, β2 = gc2/J2, then Equation (13)
can be rewritten as

Dα1x1 = x2,
Dα2x2 = −ω2

1x1 − b1x2 + a1x3 + d1′x4 + l1x
2
1 + l2x

3
1,

Dα3x3 = x4,
Dα4x4 = a2x1 + d2x2 − ω2

2x3 − b2′x4 + β1x3 t − τ1ð Þ + β2x
3
3 t − τ2ð Þ,

8>>>>><
>>>>>:

ð25Þ

where αiði = 1, 3Þ ∈ ð0, 1�, αiði = 2, 4Þ ∈ ½1, 2Þ, and Dαiði = 1,
2, 3, 4Þ denotes the Grünwald-Letnikov fractional derivative.
It is clear to find that system (25) can be seen as a more gen-
eral form of system (3), which better fits the actual model.
Therefore, further analysis of the dynamics of system (25)
will be our future work.

6. Conclusions

Bifurcation analysis can answer how do the behavior of the
system change as the parameters change. In this work, we
propose a fractional-order nonlinear electromechanical cou-
pling system with delay. By choosing time delay τ as a bifur-
cation parameter, we, respectively, derive the conditions for
occurrence of Hopf bifurcation around zero equilibrium E0
ð0, 0, 0, 0Þ and nonzero equilibrium E1ðx∗1 , 0, x∗3 , 0Þ. It is
demonstrated that fractional-order α and time delay τ have
an important influence on electromechanical coupling system.
By applying Adams-Bashforth-Moulton method, we imple-
ment some simulations to corroborate our analysis results.

For electromechanical coupling system, the unstable
bifurcation may cause a destructive vibration. Our analysis
results demonstrate that a combination of fractional order
α and time delay τ in the system have an important effect
on the dynamic properties of the system. From the results
of the numerical simulation, selecting the fractional order
α and a2 and the feedback parameters can realize the switch-
ing of the dynamic properties of the system from a zero
equilibrium point to a nonzero equilibrium point. Here, a2
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Figure 10: Phase portraits of system (3) at E1ð3:6196,0, 3:9215,0Þ with α = 0:98, τ = 1:2 > τ0, h = 0:05, and ðx01, x02, x03, x04Þ = ð
0:15,0:15,0:2,0:2Þ.
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Figure 11: Waveform diagrams of system (3) at E1ð3:6196,0, 3:9215,0Þ with h = 0:05 and ðx01, x02, x03, x04Þ = ð0:15,0:15,0:2,0:2Þ. (a) τ = 1;
(b) τ = 4.
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represents the ratio of the torsional stiffness of drive shaft K
to the moment of inertia J2 (see [16]). Thus, our obtained
results may have some implications for reducing the vibra-
tion of electromechanical coupled rolling mill systems.

Besides, it was found that the fractal derivative is the
mathematical approximation of the fractional derivative in
engineering applications, and the fractal derivative can
describe the randomness of nonlinear systems (see [37–41]).
Therefore, fractional-order systems may be the basis for many
future studies. It will be our future work to study the random-
ness of rolling mill vibration by using fractional-order (or frac-
tal derivative) mathematical modeling.

Appendix

A. The Expression of Parameters in Equation
(8) and Equation (20)

m1 = −
l32β2
a31

,m2 = −
3l1l22β2
a31

,m3

= β2
a31

l22ω
2
1 − 2l21l2 + 2l22ω2

1 − 2l21l2
� �

,m4

= β2
a31

2l1l2ω2
1 − 2l31 + 4l1l2ω2

1
� �

,m5

= β2
a31

2l1ω2
1 − ω2

1 2l2ω2
1 − l21

� �
− l2ω

4
1

� ��
,m6

= −
l1ω

4
1β2
a31

,m7 =
ω6
1β2
a31

+ l2 ω2
2 − β1

� �
a1

,m8

= l1 ω2
2 − β1

� �
a1

,m9 = −
ω2
1 ω2

2 − β1
� �
a1

+ a2:

A1 = ω0 f1ω
2α cos απð Þ + f2ω

α cos απ

2
� 	

+ f3
� 	

sin ω0τ
0
1

� �h
− f1ω

2α sin απð Þ + f2ω
α sin απ

2
� 	� 	

cos ω0τ
0
1

� �i
,

A2 = ω0 f1ω
2α cos απð Þ + f2ω

α cos απ

2
� 	

+ f3
� 	

cos ω0τ
0
1

� �h
+ f1ω

2α sin απð Þ + f2ω
α sin απ

2
� 	� 	

sin ω0τ
0
1

� �i
,

B1 = 4αω4α−1 cos 4α − 1ð Þπ
2

� �
+ 3αe1ω3α−1 cos 3α − 1ð Þπ

2

� �

+ 2αe2ω2α−1 cos 2α − 1ð Þπ
2

� �
+ αe3ω

α−1 cos α − 1ð Þπ
2

� �

+ cos ω0τ
0
1

� �
2αf1ω2α−1 cos 2α − 1ð Þπ

2

� ��

+ αf2ω
α−1 cos α − 1ð Þπ

2

� �
− τ01 f1ω

2α cos 2απ
2

� �

− τ01 f2ω
α cos απ

2
� 	

− τ01 f3

�
− sin ω0τ

0
1

� �
� 2αf1ω2α−1 sin 2α − 1ð Þπ

2

� ��
+ αf2ω

α−1 sin α − 1ð Þπ
2

� �

− τ01 f1ω
2α sin 2απ

2

� �
− τ01 f2ω

α sin απ

2
� 	

,

B2 = 4αω4α−1 sin 4α − 1ð Þπ
2

� �
+ 3αe1ω3α−1 sin 3α − 1ð Þπ

2

� �

+ 2αe2ω2α−1 sin 2α − 1ð Þπ
2

� �
+ αe3ω

α−1 sin α − 1ð Þπ
2

� �

+ sin ω0τ
0
1 2αf1ω2α−1 cos 2α − 1ð Þπ

2

�

− αf2ω
α−1 cos α − 1ð Þπ

2

� �
− τ01 f1ω

2α cos 2απ
2

� �

− τ01 f2ω
α cos απ

2
� 	

− τ0 f3

�
+ cos ω0τ

0
1

� �
� 2αf1ω2α−1 sin 2α − 1ð Þπ

2

� �
+ αf2ω

α−1 sin α − 1ð Þπ
2

� ��

− τ01 f1ω
2α sin 2απ

2

� �
− τ01 f2ω

α sin απ

2
� 	

:

ðA:1Þ

B. Theoretical Derivation of Stability and Hopf
Bifurcation of System (21)

For the convenience of further analysis, we denote ΦðsÞ =
s4α + ε1s

3α + ε2s
2α + ε3s

α + ε4 and ΨðsÞ = ζ1s
2α + ζ2s

α + ζ3.
Then, Equation (22) is equivalent to

Φ sð Þ + e−τsΨ sð Þ = 0: ðB:1Þ

Multiplying esτ on both sides of Equation (B.1), then we
get

Φ sð Þeτs +Ψ sð Þ = 0: ðB:2Þ

By replacing s = iω = ðcos ðπ/2Þ + i sin ðπ/2ÞÞω into
Equation (B.2) and separating into its real and imaginary
parts, we can obtain

ϕ1 ωð Þ + iϕ2 ωð Þð Þ cos ωτð Þ + i sin ωτð Þð Þ + ψ1 ωð Þ + iψ2 ωð Þ = 0,
ϕ1 ωð Þ cos ωτð Þ − ϕ2 ωð Þ sin ωτð Þ + ψ1 ωð Þ = 0,
ϕ2 ωð Þ cos ωτð Þ + ϕ1 ωð Þ sin ωτð Þ + ψ2 ωð Þ = 0,

(

ðB:3Þ

where ΦðiωÞ = ϕ1ðωÞ + iϕ2ðωÞ and ΨðiωÞ = ψ1ðωÞ + iψ2ðωÞ.
Then, by solving Equation (B.3), one obtains

cos ωτð Þ = −ϕ1 ωð Þψ1 ωð Þ − ϕ2 ωð Þψ2 ωð Þ
ϕ21 ωð Þ + ϕ22 ωð Þ ≐Y1 ωð Þ,

sin ωτð Þ = −ϕ1 ωð Þψ2 ωð Þ + ϕ2 ωð Þψ1 ωð Þ
ϕ21 ωð Þ + ϕ22 ωð Þ ≐Y2 ωð Þ,

8>>><
>>>:

ðB:4Þ

where ϕ1ðωÞ = ω4α cos ð2παÞ + ε1 cos ð3πα/2Þω3α + ε2ω
2α

cos ðπαÞ + ε3 cos ðπα/2Þωα + ε4, ϕ2ðωÞ = ω4α sin ð2παÞ + ε1
sin ð3πα/2Þω3α + ε2ω

2α sin ðπαÞ + ε3 sin ððπα/2ÞωαÞ, ψ1ðωÞ
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= ζ1ω
2α cos ðπαÞ + ζ2 cos ðπα/2Þωα + ζ3, and ψ2ðωÞ = ζ1ω

2α

sin ðπαÞ + ζ2 sin ðπα/2Þωα.
From cos2ðθÞ + sin2ðθÞ = 1, then

Y1 ωð Þ2 + Y2 ωð Þ2 = 1: ðB:5Þ

Without loss of generality, we further suppose that
Equation (B.5) has at least a positive root. By following from
Equation (B.4), we can obtain

τk =
1
ω

arccos −ϕ1 ωð Þψ1 ωð Þ − ϕ2 ωð Þψ2 ωð Þ
ϕ21 ωð Þ + ψ2

2 ωð Þ + 2π
� �

, k = 0, 1, 2,⋯:

ðB:6Þ

Furthermore, we define the bifurcation point τ0 = min
fτkg, k = 0, 1, 2⋯ ,.

By differentiating Equation (B.1) with respect to τ, we
have

Φ′ sð Þ ds
dτ

+Ψ′ sð Þ ds
dτ

e−sτ +Ψ sð Þ −τ
ds
dτ

− s
� �

e−sτ = 0,

ds
dτ

= sΨ sð Þe−sτ
Φ′ sð Þ + Ψ′ sð Þ − τΨ sð Þ

� 	
e−sτ

= C sð Þ
D sð Þ :

ðB:7Þ

Then, it implies

Re ds
dτ


 �����
ω=ω0,τ=τ0

= C1C1 + C2D2
D2

1 +D2
2

, ðB:8Þ

where

C1 = ω0 ζ1ω
2α cos απð Þ + ζ2ω

α cos απ

2
� 	

+ ζ3
� 	

sin ω0τ
0� �h

− ζ1ω
2α sin απð Þ + ζ2ω

α sin απ

2
� 	� 	

cos ω0τ
0� �i

,

C2 = ω0 ζ1ω
2α cos απð Þ + ζ2ω

α cos απ

2
� 	

+ ζ3
� 	

cos ω0τ
0� �h

+ ζ1ω
2α sin απð Þ + ζ2ω

α sin απ

2
� 	� 	

sin ω0τ
0� �i

,

D1 = 4αω4α−1 cos 4α − 1ð Þπ
2

� �
+ 3αε1ω3α−1 cos 3α − 1ð Þπ

2

� �

+ 2αε2ω2α−1 cos 2α − 1ð Þπ
2

� �
+ αε3ω

α−1 cos α − 1ð Þπ
2

� �

+ cos ω0τ
0� �

2αζ1ω2α−1 cos 2α − 1ð Þπ
2

� ��

+ αζ2ω
α−1 cos α − 1ð Þπ

2

� �
− τ0ζ1ω

2α cos 2απ
2

� �

− τ0ζ2ω
α cos απ

2
� 	

− τ0ζ3

�
− sin ω0τ

0� �
� 2αζ1ω2α−1 sin 2α − 1ð Þπ

2

� �
+ αζ2ω

α−1 sin α − 1ð Þπ
2

� ��

− τ0ζ1ω
2α sin 2απ

2

� �
− τ0ζ2ω

α sin απ

2
� 	�

,

D2 = 4αω4α−1 sin 4α − 1ð Þπ
2

� �
+ 3αε1ω3α−1 sin 3α − 1ð Þπ

2

� �

+ 2αε2ω2α−1 sin 2α − 1ð Þπ
2

� �
+ αε3ω

α−1 sin α − 1ð Þπ
2

� �

+ sin ω0τ
0� �

2αζ1ω2α−1 cos 2α − 1ð Þπ
2

� ��

− αζ2ω
α−1 cos α − 1ð Þπ

2

� �
− τ0ζ1ω

2α cos 2απ
2

� �

− τ0ζ2ω
α cos απ

2
� 	

− τ0ζ3

�
+ cos ω0τ

0� �
� 2αζ1ω2α−1 sin 2α − 1ð Þπ

2

� �
+ αζ2ω

α−1 sin α − 1ð Þπ
2

� ��

− τ0ζ1ω
2α sin 2απ

2

� �
− τ0ζ2ω

α sin απ

2
� 	�

:

ðB:9Þ

C. Waveform Diagrams of System (3) at E0ð0,
0, 0, 0Þ and E1ð3:6196,0, 3:9215,0Þ
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