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Abstract: This paper presents an algorithm applied for determining temperature distribution inside
the gas turbine blade in which the external surface is coated with a protective layer. Inside the cooling
channel, there is a porous material enabling heat to be transferred from the entire volume of the
channel. This algorithm solves the nonlinear problem of heat conduction with the known: heat
transfer coefficient on the external side of the blade surface, the temperature of gas surrounding the
blade, coefficients of heat conduction of the protective coating and of the material the blade is made
of as well as of the porous material inside the channel, the volumetric heat transfer coefficient for
the porous material and the temperature of the air flowing through the porous material. Based on
these data, the distribution of material porosity is determined in such a way that the temperature
on the boundary between the protective coating and the material the blade is made of is equal to
the assumed distribution To. This paper includes results of calculations for various thicknesses of
the protective coating and the given constant values of temperature on the boundary between the
protective coating and the material the blade is made of.

Keywords: the inverse problem of heat conduction; cooling of gas turbine blades; porous material

1. Introduction

Protection of the gas-turbine blades against overheating is an important technical
problem. Striving for improvement of the turbine effectiveness involves high temperatures
of gas flowing through the turbine, which has a negative effect on the mechanical properties
of the turbine and the blade’s life. The application of most advanced cooling systems and
protective coatings enables effective protection against the blade’s overheating. Cooling
systems and protective coatings used for this purpose are discussed in papers [1–3].

The choice of the protective coating thickness depends on the region on the surface of
the blade, which is the most thermally loaded. Such regions are most often located close
to the trailing edges from which the heat transfer through the cooling channels placed
inside the blade is hindered. Application of coatings with variable coating thickness brings
other problems; therefore, it is advisable to use protective coatings of fixed and as small
as possible thickness. Moreover, different values of the heat conduction coefficient for the
material the blade is made of, for the material the protective coating is made of and related
to the differences in thermal expansion of these materials can be the reason for thermal
stresses arising from the temperature gradient and resulting in thermal shield tear-off.

One of the possible solutions protecting the blade against undesirable temperature
increases is to apply the protective coating and to use the convection cooling system.
Recently, some researchers have considered the problem of cooling blades with the use of
a porous material placed inside the cooling channel in the blade. The concept of such a
cooling method is an object of a few application patents [4,5]. The application of porous
material enables heat removal from the blade’s interior from the entire volume of the
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cooling channel. Heat flows to the interior of the cooling channel by convection through
the porous material, and next, it is transferred by air flowing through the porous material.

The constant temperature should be kept on the boundary between the protective
coating and the material the blade is made of. In this case, the temperature gradient occurs
in the direction being perpendicular to the contact area.

A study on the effectiveness of such type cooling is the subject of paper [6]. In this
paper, the algorithm which allows determining such distribution of porosity that the
temperature on the external surface is constant was discussed. From numerical simulations,
it results that it is possible to achieve the constant temperature on the surface of the blade
using such a cooling system. Only in the region close to the trailing edge, where the heat
transfer is hindered, the temperature of the blade’s surface is higher. This paper is aimed
at checking if applying the protective coating on the blade’s surface together with the
convective cooling by the porous material placed inside the blade’s channel allows for
effective heat removal from the external surface of the blade.

2. Formulation of the Problem

Considered is the multiply-connected domain Ω ∪ Ωc, Figure 1, divided into the
region of the protective coating and the region of the blade by the boundary Γc. The
problem of optimization of cooling the gas-turbine blade with a cooling channel filled with
the porous material of an unknown distribution of porosity ε (0 < ε < 1), can be formulated
as follows: given is the heat conduction equation in the domain Ωc ∪ Ω ∪ Ωp:

∇k∇T = f , (1)

where

k(T, ε) =


kc(T) x ∈ Ωc
km(T) x ∈ Ω

kp(T, ε) x ∈ Ωp

, (2)

kc(T) is the conduction coefficient of the protective coating (ceramic), km(T) is the conduction
coefficient of the material the blade is made of, kp(T,ε) is the heat conduction coefficient of
the porous material, f (T, ε) is the nonzero source function in the domain Ωp

f (T, ε) =

{
0 x ∈ Ω ∪Ωc

fp(T, ε) x ∈ Ωp
. (3)

On the external boundary Γ of the domain Ωc known is the boundary condition of the third
type:

Γ : −k ∂T
∂n = h

(
T − Tgas

)
, (4)

where h is the heat transfer coefficient, and Tgas is the temperature of gas surrounding the
area Ωc from the outside.

Energies 2021, 14, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. Domain Ω surrounded by the external layer of the protective coating Ωc, filled inside 
with the porous material Ωp. 

In the problem under consideration, To is the constant temperature on the contact 
area between the material the blade is made of and the protective coating. Achieving the 
constant value of this temperature on the boundary Γc is possible due to filling the cooling 
channels properly with the porous material of the variable porosity ε. 

Such posed heat conduction problem belongs to inverse problems being ill-posed in 
the Hadamard sense [7]. Hadamard’s definition concerns the well-posed problem, which 
must exist, be unique and depend continuously on the given initial conditions. If at least 
one of these conditions is not satisfied, the problem is ill-posed. 

In direct problems being described by linear differential equations, satisfied are con-
ditions of solution existence and uniqueness if the following conditions are satisfied: 
• known is the mathematic model (differential equation describing the investigated 

phenomenon); 
• known is the region where the investigated phenomenon occurs; 
• known are physical properties in the form of coefficients resulting from the phenom-

enon description; such as thermal conductivity in the heat equation; 
• known are forces such as heat sources; 
• known are boundary and initial conditions for transient problems. 

If one or more of these conditions is unknown, then the problem is an inverse one. 
In such a case, additional information concerning the investigated phenomenon 

should be known, and the solution is sought in the least-squares sense. More details on 
this subject can be found in papers [8–10]. 

According to the classification given in the reference paper [11], the inverse problem 
considered in this paper belongs to problems related to the reproduction of the source 
function. Inverse problems of that type do not have an unequivocal solution [12]. 

Problems being solved in papers [13–19] concern inverse heat conduction problems 
related to determining unknown source function. The paper [14] has a character of the 
review and presents some publications relative to solving inverse problems. In papers 
[13,16,17], variation methods for solving inverse heat conduction problems were used, 
likewise in this paper. In papers [20–24], among others, minimization of the least-squares 
functional from the temperature on the surface of the region, where the boundary condi-
tion was unknown, was used to solve inverse problems. 

3. Algorithm for Determining the Porosity Distribution inside the Cooling Channel of 
the Blade 

The solution of such posed inverse problem is replaced by solving a series of direct 
problems for the heat Equation (1) with the third type boundary condition (4), in which 
the distribution of porosity ε is changing iteratively in such a way that the functional (6) 
achieves its minimum. An iterative algorithm is developed using variational methods. 

Figure 1. Domain Ω surrounded by the external layer of the protective coating Ωc, filled inside with
the porous material Ωp.



Energies 2021, 14, 50 3 of 14

The distribution of porosity ε in the domain Ωp should be determined in such a way
that the following condition is satisfied on the internal boundary Γc

Γc : T = To , (5)

where To is the given temperature. The unknown value of the porosity ε distribution is
determined from the minimum of the functional:

J[ε] =
1
2

∫
Γc
(T − To)

2ds. (6)

In the problem under consideration, To is the constant temperature on the contact
area between the material the blade is made of and the protective coating. Achieving the
constant value of this temperature on the boundary Γc is possible due to filling the cooling
channels properly with the porous material of the variable porosity ε.

Such posed heat conduction problem belongs to inverse problems being ill-posed in
the Hadamard sense [7]. Hadamard’s definition concerns the well-posed problem, which
must exist, be unique and depend continuously on the given initial conditions. If at least
one of these conditions is not satisfied, the problem is ill-posed.

In direct problems being described by linear differential equations, satisfied are condi-
tions of solution existence and uniqueness if the following conditions are satisfied:

• known is the mathematic model (differential equation describing the investigated
phenomenon);

• known is the region where the investigated phenomenon occurs;
• known are physical properties in the form of coefficients resulting from the phe-

nomenon description; such as thermal conductivity in the heat equation;
• known are forces such as heat sources;
• known are boundary and initial conditions for transient problems.

If one or more of these conditions is unknown, then the problem is an inverse one.
In such a case, additional information concerning the investigated phenomenon

should be known, and the solution is sought in the least-squares sense. More details on
this subject can be found in papers [8–10].

According to the classification given in the reference paper [11], the inverse problem
considered in this paper belongs to problems related to the reproduction of the source
function. Inverse problems of that type do not have an unequivocal solution [12].

Problems being solved in papers [13–19] concern inverse heat conduction problems
related to determining unknown source function. The paper [14] has a character of the
review and presents some publications relative to solving inverse problems. In papers
[13,16,17], variation methods for solving inverse heat conduction problems were used,
likewise in this paper. In papers [20–24], among others, minimization of the least-squares
functional from the temperature on the surface of the region, where the boundary condition
was unknown, was used to solve inverse problems.

3. Algorithm for Determining the Porosity Distribution inside the Cooling Channel of
the Blade

The solution of such posed inverse problem is replaced by solving a series of direct
problems for the heat Equation (1) with the third type boundary condition (4), in which
the distribution of porosity ε is changing iteratively in such a way that the functional (6)
achieves its minimum. An iterative algorithm is developed using variational methods.
Variations of the functional and of the function are determined from the definition of the
directional derivative.

The quantity ε varies inside the porous material and signifies the contribution of air to
the elementary volume of the porous material [25].
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Variations of Equation (1), the source function f, heat conduction coefficient k, the third
type boundary condition (4) and of the functional (6) are as follows, respectively:

∇(k∇δT + δk∇T) = δ f , (7)

δ f (T, ε) =
∂ f
∂T

δT +
∂ f
∂ε

δε, (8)

δk(T, ε) =
∂k
∂T

δT +
∂k
∂ε

δε, (9)

Γ : −
(

∂k
∂T

∂T
∂n δT + k ∂δT

∂n

)
= hδT , (10)

δJ[ε] =
∫

Γc
(T − To)δTds. (11)

The variation of the functional (11) should be expressed explicitly by the variation of
the variable ε. To do so, the function p conjugated to δT in the domain Ω′ = Ωc ∪ Ω ∪ Ωp is
defined. From the Gauss theorem, the following identity results.∫

Ω′
f pdω =

∫
Ω′
∇(k∇T)pdω =

∫
Γ

k
∂T
∂n

pds−
∫

Ω′
k∇T∇pdω. (12)

Based on (3) and (4), identity (12) takes the following form∫
Ωp

f pdω = −
∫

Γ
h
(
T − Tgas

)
pds−

∫
Ω′

k∇T∇pdω. (13)

The variation of Equation (13) is as follows∫
Ωp

pδ f dω = −
∫

Γ
hpδTds−

∫
Ω′

δk∇T∇pdω−
∫

Ω′
k∇δT∇pdω (14)

and after the Gauss theorem is applied again and the discontinuity of the normal derivative
of the function p on the boundary Γc is included∫

Ω′ k∇δT∇pdω =
∫

Ωc
k∇δT∇pdω +

∫
Ω∪Ωp

k∇δT∇pdω∫
Ωc

k∇δT∇pdω =
∫

Γ k ∂p
∂n δTds +

∫
Γc

k ∂p
∂np

δTds−
∫

Ωc
∇(k∇p)δTdω∫

Ω∪Ωp
k∇δT∇pdω =

∫
Γc

k ∂p
∂n δTds−

∫
Ω∪Ωp

∇(k∇p)δTdω

,

hence,∫
Ω′ k∇δT∇pdω =

∫
Γ k ∂p

∂n δTds +
∫

Γc
k
(

∂p
∂n + ∂p

∂np

)
δTds−

∫
Ω′ ∇(k∇p)δTdω

and the identity (14) takes the following form∫
Ωp

p ∂ f
∂ε δεdω +

∫
Ωp

p ∂ f
∂T δTdω =

−
∫

Γ hpδTds−
∫

Γ k ∂p
∂n δTds−

∫
Γc

k
(

∂p
∂n + ∂p

∂np

)
δTds−

−
∫

Ω′

(
∂k
∂ε δε + ∂k

∂T δT
)
∇T∇pdω +

∫
Ω′ ∇(k∇p)δTdω =

=
∫

Ω′
(
∇(k∇p)− ∂k

∂T∇T∇p
)

δTdω−
∫

Ω′
∂k
∂ε∇T∇pδεdω−

−
∫

Γ

(
k ∂p

∂n + hp
)

δTds−
∫

Γc
k
(

∂p
∂n + ∂p

∂np

)
δTds

. (15)

Based on (15), it can be assumed that the function p in the domain Ω′ satisfies the
differential equation:

∇(k∇p) =
∂k
∂T
∇T∇p +

∂ f
∂T

p (16)
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with the boundary condition:
Γ : k ∂p

∂n + hp = 0 (17)

and the discontinuity condition:

Γc : k ∂p
∂n + k ∂p

∂np
= −(T − To) . (18)

Considering the above, identity (15) takes the following form:∫
Γc
(T − To)δTds =

∫
Ωp

(
∂k
∂ε
∇T∇p +

∂ f
∂ε

p
)

δεdω (19)

and the variation of the functional (11) is equal to:

δJ[ε] =
∫

Ωp

(
∂k
∂ε
∇T∇p +

∂ f
∂ε

p
)

δεdω (20)

and depends only on the variation of the independent variable ε.
From all possible variations of the functional (20), only those are chosen which reduce

the value of the functional (6); therefore, the variation of the variable ε can be written in the
form of

δε = ην = −η

(
∂k
∂ε
∇T∇p +

∂ f
∂ε

p
)

, (21)

hence, the variation of the functional (20):

δJ[ε] = −η
∫

Ωp

(
∂k
∂ε
∇T∇p +

∂ f
∂ε

p
)2

dω. (22)

The above consideration will be next used to develop the iterative algorithm. Suppose
that variables T, ε change iteratively according to the following formulae:

Ω′ : T = Told − ηu
Ωp : ε = εold − ην

. (23)

Knowing distributions of temperature Told and porosity εold in the previous step of the
iteration, we can determine

• function u—satisfying Equation (7) in the domain Ω′ (δT = −ηu, δε = −ηv)

∇(k∇u) +∇
(

∂k
∂T
∇Tu

)
− ∂ f

∂T
u =

∂ f
∂ε

ν−∇
(

∂k
∂ε
∇Tν

)
, (24)

with the boundary condition obtained as a result of the formula (10) transformation:

Γ : −k ∂u
∂n =

(
h + ∂k

∂n

)
u , (25)

and conditions of continuity on the internal boundary Γc (temperature and the heat flux
must be continuous functions on Γc):

Γc :
u+ = u−

k ∂u+

∂n + k ∂u−
∂np

= 0 . (26)

• Function p—satisfying Equation (16) with the boundary condition (17) and the discon-
tinuity condition on the surface Γc (18).
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Parameter η is determined from the condition that the value of the functional (6)
decreases in the subsequent step of the iteration:

δJ[ε] < δJ[εold], (27)

hence

δJ[ε]− δJ[εold] = 1
2

∫
Γc

[
(T − To)

2 − (Told − To)
2
]
ds

= −η
∫

Γc
(Told − To)uds + η2

2

∫
Γc

u2ds = aη2 + bη < 0
.

Optimum value η is determined from the condition of the functional value maximum
drop (minimum aη2 + bη):

ηopt = −
b

2a
=

∫
Γc
(Told − To)uds∫

Γc
u2ds

. (28)

Finally, the algorithm is as follows (see Algorithm 1)

Algorithm 1.

step 1:
Determining the distribution of temperature T
while (1)
{

Ω′ : ∇(kold∇T) = fold
Γ : −kold

∂T
∂n = h

(
T − Tgas

)
Γc :

T+ = T−(
kold

∂T
∂n

)+
+
(

kold
∂T
∂np

)−
= 0

If abs(T − Told) > εT then Told = T; else break;
}
step 2:
Determining the distribution of the conjugate function p

Ω′ : ∇(k∇p) = ∂k
∂T∇T∇p +

∂ f
∂T p

Γ : k ∂p
∂n + hp = 0

Γc :
p+ = p−(

k ∂p
∂n

)+
+
(

k ∂p
∂np

)−
= −(T − To)

step 3:
ν = ∂k

∂ε∇T∇p +
∂ f
∂ε p

step 4:
Determining the distribution of the auxiliary function u

Ω′ : ∇(k∇u) +∇
(

∂k
∂T∇Tu

)
− ∂ f

∂T u =
∂ f
∂ε ν−∇

(
∂k
∂ε∇Tν

)
Γ : −k ∂u

∂n =
(

h + ∂k
∂n

)
u

Γc :
u+ = u−(

k ∂u
∂n

)+
+
(

k ∂u
∂np

)−
= 0

step 5:

η =

∫
Γc
(T−To)uds∫

Γc
u2ds

ε = εold − ην

step 6:
If abs(ε − εold) > ε then { Told = T; εold = ε; goto step 1:; }

The algorithm is developed in such a way that in each step of the iteration, the value
of the functional (6) decreases (it results from the inequality (27)). This means that the
temperature on the boundary Γc approaches To, and the parameter η being determined in
the fifth step of the algorithm also approaches zero. On this basis, we may assume that
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the condition of completing the algorithm operates in the sixth step of the algorithm is
obtained with the given accuracy ε.

However, it does not mean that, as the result of the algorithm operation, the temper-
ature To is achieved on the boundary Γc. It depends on the possibility of removing heat
from the external boundary of the blade to the porous material. The greatest problems
related to this occur in the vicinity of the blade’s trailing edge. The reference paper [6]
presented some results of calculations for the algorithm developed on a basis similar to
that one discussed in this paper. Inability to remove heat from this part of the blade caused
the increase of temperature on the external boundary of the blade in the vicinity of the
trailing edge to reduce the heat flux flowing through this region of the blade.

The algorithm considered in this paper is an expansion of the algorithm from the
paper [6]. On the blade’s surface, a protective layer of a low value of the thermal conduc-
tivity coefficient was added. The desired constant value of temperature was assumed on
the inner boundary, which separates the material of the blade from the protective layer.
The material the blade is made of does not have contact with the external environment;
therefore, the minimization functional (6) is defined on the inner boundary and not on the
external boundary of the blade-like it is in the paper [6]. Application of an additional pro-
tective layer on the external boundary of the blade results in solving different differential
equations in each step of the iteration than it is in the case of the algorithm discussed in
paper [6].

4. Determining the Distribution of Porosity in Cooling Channels of the Gas Turbine
Blades Coated with a Protective Layer

The blade-shaped, as shown in Figure 2 (right), with one cooling channel filled with a
porous material, was chosen for numerical calculations. The external surface of the blade
was coated with the protective layer being thick, as summarized in Table 1. The source
function is related to the porous material and is given by the following formula [25]:

f (ε, T) = hV(T − Tair) (29)

where Tair denotes the temperature of the air flowing through the porous material, and hV
is the volumetric heat transfer coefficient determined from the formula:

hV = CUx(1− ε)y/dz
p (30)Energies 2021, 14, x FOR PEER REVIEW 8 of 14 
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Table 1. Thickness of the protective layer (µm).

g 30 40 50 60 80 100 200 400 800

In the formula (30), U denotes the velocity of air flowing through the porous material
[m/s], dp—the pore diameter [mm], C, x, y, z are nondimensional coefficients determined
based on experimental research [25], summarized in Table 2.

Table 2. Numerical values for the coefficients in Equation (30), [25].

C (-) U (m/s) dp (mm) x (-) y (-) z (-)

356,300 5 2 0.954 0.51 0.46

Heat conduction coefficients for the material of the blade’s protective layer and for the
porous material are given by the formula

k(T, ε) =


5 + 0.001T protective layer

30 blade material
0.03ε + 30(1− ε) porous material

. (31)

The heat transfer coefficient on the external boundary of the blade was adopted from
the research results included in the reference paper [26], and its distribution is shown
in Figure 3. The temperature of gas surrounding the blade Tgas equals 800 K, and the
temperature of the air cooling the Tair equals 300 K. Calculations were performed for
temperature To on the boundary Γc of 550, 600, 650 K, respectively.
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Differential equations in subsequent steps of the algorithm from Section 2 were solved
using the finite element method included in the FreeFem++ software [27]. For numerical
calculations, a mesh of finite elements consisting of 26,338 triangle elements was used.
Calculations were performed by approximating the solution in the mesh element with the
use of Lagrangian finite elements P1 and P2, and they gave identical solutions. Equations
from subsequent steps of the algorithm were of the following form:

• Step 1:

∫
Ω′
(−∇(kold∇T) + fold)wdω = 0,

after the Green–Ostrogradsky–Gauss theorem had been applied, finally:

∫
Ω′
(kold∇T∇w + foldw)dω +

∫
Γ

h
(
T − Tgas

)
wdγ = 0.
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• Step 2:

∫
Ω′

(
−∇(kold∇p) +

∂kold
∂T
∇Told∇p +

∂ fold
∂T

p
)

wdω = 0,

after the Green–Ostrogradsky–Gauss theorem had been applied, finally:∫
Ω′

(
kold∇p∇w +

(
∂kold
∂T
∇Told∇p +

∂ fold
∂T

p
)

w
)

dω +
∫
Γc

(T − T0)wdγ +
∫
Γ

hpwdγ = 0.

• Step 3:

∫
Ω′

(
−∇

(
k∇u +

∂k
∂T
∇Tu +

∂k
∂ε
∇Tν

)
+

∂ f
∂T

u +
∂ f
∂ε

ν

)
wdω = 0,

after the Green–Ostrogradsky–Gauss theorem had been applied, finally:

∫
Ω′

(
k∇u∇w +

(
∂k
∂T
∇T∇w +

∂ f
∂T

w
)

u +

(
∂k
∂ε
∇T∇w +

∂ f
∂ε

w
)

ν

)
dω +

∫
Γ

huwdγ +
∫
Γ

u
1
k

∂k
∂T

h
(

T − Tf

)
wdγ = 0

Calculations were performed for thicknesses of the protective coating given in Table 1.
Thickness was diversified maximally to show its impact on the efficiency of heat removal
through the porous material placed inside the blade’s cooling channel.

To evaluate the deviation of the temperature distribution on the boundary between
the protective layer and the material the blade is made of the following norm was used:

N(g) =

√
1

lΓc

∫
Γc
(T − To)

2dγ, (32)

where lΓc is the length of the boundary Γc.
Results of calculations performed for the protective coating of a thickness of g = 30 µm

are presented in Figures 4–7.
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Figure 4. Distributions of temperature on the boundary between the protective layer and the material
the blade is made of for the protective coating thickness of 30 µm.

Figure 4 presents the distribution of temperature on the boundary between the protective
coating and the blade’s surface for the protective coating being 30 µm-thick. This distribution
was approximated in the iteration process to the temperature To given on the contact area
between the protective coating and the material the blade is made of. When compared with
the assumed value of temperature To, the greatest differences occur in the vicinity of the
trailing edge, both, on the suction side and on the pressure side of the blade. The region where
these differences occur widens while the value of temperature To decreases.
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The accuracy of the algorithm operation for the protective coating thickness of 30 µm
is presented in Figure 5 (left). It is noticeable that in subsequent steps of iteration, the
value of the functional (6) decreases. The same figure (right) shows the course of the
distribution of the maximum value of the porosity difference |ε − εold|max in subsequent
steps of iteration. The algorithm completes its operation when the value of this difference
drops below 0.002.

Figure 6 presents the distribution of temperature in the entire area of the blade without
the protective coating. The increase of the blade’s temperature in the vicinity of the trailing
edge is clearly noticeable.

Distribution of the porous material, determined with the use of the algorithm dis-
cussed in Section 2, for the protective coating being 30 µm-thick, is shown in Figure 7.
Value 1 denotes only air, and value 0 denotes only material the blade is made of. The
volumetric heat transfer coefficient hV (30) increases while the porosity decreases. This is
obvious, since with the increase of the air quantity in the porous material volume unit, its
involvement in conducting heat through the porous material to the internal part of the
channel decreases.

The formula (30) cannot, however, be extrapolated for ε = 0, since this is the borderline
case when the porous material becomes the material of a continuous structure. According
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to the formula (30), this coefficient has the highest value, although it does not remove
the accumulated heat. It is similar to the borderline case ε = 1 when the volumetric heat
transfer coefficient should approach the surface heat transfer coefficient. As properties of
the porous material do not behave on the boundary in such a way, minimum and maximum
values of porosity of 0.05 and 0.95, respectively, were assumed for calculations.

Results of calculations for the protective layer being 200 µm thick are presented in
Figures 8–10. Due to a great similarity between distributions of temperature and of porosity
for this thickness to distributions shown in Figures 4, 6 and 7, these figures present the
difference between distributions of temperature and of porosity for the thicker layer and
distributions for the protective layer being 30 µm thick.
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The distribution of the temperature difference on the contact surface between the
protective layer and the blade is the greatest in the vicinity of the trailing edge, and it
coincides with the region where the greatest difference of the temperature calculated by
the algorithm relative to the temperature To occurs.

This difference is more visible in Figure 9 for the temperature distribution and in
Figure 10 for the porosity distribution in the entire blade.

The increase of the protective layer thickness did not significantly improve conditions
of heat exchange in the vicinity of the blade’s trailing edge. This can be interpreted as
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follows: the protective layer allows for limiting the heat flow into the blade’s interior to
enable removing heat by convection and by conduction through the porous material placed
inside the cooling channel. Due to the thickness of the same blade in the region close to the
trailing edge, it is impossible to transfer such an amount of heat to the porous material to
achieve a temperature approximately equal to. Only for To = 650 K this was possible.

The synthetic presentation of selected quantities in the function of the protective layer
thickness given in Table 1 is shown in Figure 11.
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For various thicknesses of the protective layer, similar distributions of temperature
in the blade were obtained. The maximum temperature difference did not exceed 14 K,
Figure 11 (top, left). Significant differences, reaching 25% of maximum porosity value, were
observed for the porosity distribution, Figure 11 (top, right). The region of the blade where
the highest differences occurred was at the place where the blade’s throat begun towards
the trailing edge, Figure 10. The number of iterations needed to perform calculations is
shown in Figure 11 (bottom, left). An increase of the coating layer thickness does not impact
significantly on the temperature distribution on the contact area between the protective
surface and the blade, Figure 11 (bottom, right).

5. Conclusions

The performed calculations indicate that it is possible to effectively remove heat from
the interior of the blade due to the application of the protective layer on the blade’s surface.
Calculations were performed with the use of the algorithm allowing for such determining
the porosity distribution that the given temperature To is achieved at the contact area
between the external surface of the blade and the protective layer. Results of calculations
and their interpretation are presented in the previous section.

Research tests prove that the efficiency of the blade’s protection against high-temperature
impact and the satisfaction of the optimization criterion demand synchronization of both
protection methods, that is, the application of a protective layer with cooling the blade using
the porous material. However, even this is not enough to achieve a rather stable value of
temperature on the contact surface between the protective layer and the material the blade
is made of. This is caused by the difficulty of removing heat from the region close to the
trailing edge.

Performed calculations also indicate that the increase of the blade’s protective layer
thickness does not improve the conditions of heat exchange.
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Calculations were made for a chosen blade profile. However, the algorithm presented
in this paper is not limited to such a choice and can be used for calculations performed in
three dimensions.
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