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Abstract: The boost-flyback converter is a DC-DC step-up power converter with a wide range of
technological applications. In this paper, we analyze the boost-flyback dynamics when controlled
via a modified Zero-Average-Dynamics control technique, hereby named Zero-Average-Surface
(ZAS). While using the ZAS strategy, it is possible to calculate the duty cycle at each PWM cycle that
guarantees a desired stable period-1 solution, by forcing the system to evolve in such way that a
function that is constructed with strategical combination of the states over the PWM period has a zero
average. We show, by means of bifurcation diagrams, that the period-1 orbit coexists with a stable
period-2 orbit with a saturated duty cycle. While using linear stability analysis, we demonstrate that
the period-1 orbit is stable over a wide range of parameters and it loses stability at high gains and low
loads via a period doubling bifurcation. Finally, we show that, under the right choice of parameters,
the period-1 orbit controller with ZAS strategy satisfactorily rejects a wide range of disturbances.

Keywords: boost-flyback converter; Zero Average Dynamics control; Zero Average Surface control;
bifurcation diagram; Floquet multipliers

1. Introduction

Power converters are electronic circuits whose aim is to adjust the output voltage to
a desired fixed value (regulation task) or to a defined time-dependent function (tracking
task). Power converters can be classified into step-down or step-up, depending on the
output/input voltage ratio. The former (latter) takes an input voltage and outputs a lower
(higher) value than the input. The boost converter is one the most prominent examples of a
step-up architecture, mostly due to its simple design and high efficiency for unelevated
values of the duty cycle [1]. However, as the output/input ratio (gain) increases in the boost
converter, its efficiency drops. This issue highlights the challenges in step-up converters in
order to find highly-efficient designs with high gain capabilities. Solutions to this problem
have been previously proposed [2–5], while using complex designs. These new designs
involve an increased number of diodes, transistors, capacitors, and coils, which renders
the analysis of these systems impractical. In many cases, the only techniques that are
available for analyzing these systems are numerical simulations and averaged models.
Unfortunately, those techniques can neither determine the behavior of the system in a wide
operation range nor consider the effects of nonlinear phenomena.

The use of magnetically coupled inductors is one of the main ideas exploited so far in
the design of highly efficient step-up converters (see [6] for a list of applications). The boost-
flyback converter that was proposed by [7–9] is probably the simplest converter with
high gain and high efficiency. It integrates two different converter topologies: boost and
flyback, which operate with two magnetically coupled coils (see Figure 1 for illustration).
Despite the advantages of the boost-flyback converter, it was only analyzed in deep for the
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first time in [10], while using an average model. Thereafter, the research devoted to the
analysis and control of this power converter has increased [11].
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Figure 1. Boost-flyback converter with Zero Average Surface (ZAS) control.

For instance, the boost-flyback converter under peak current-mode control was ana-
lyzed in [12,13] while using the complete discontinuous model. The authors took advantage
of the piece-wise linear nature of the system, in order to utilize non-smooth stability assess-
ment techniques [14–16]. These works demonstrated the transition to chaos of a periodic
orbit and the importance of the slope compensation. Other control design techniques in-
clude methodologies to compute the minimum value of the compensation ramp of the peak
current-mode [17], in order to enhance the stability region [18] and control the system via
the hysteresis band [19]. These recently proposed methodologies emphasize the increasing
importance of this power converter.

In this work, we propose applying a modified version of the Zero Average Dynamics
(ZAD) control to the boost-flyback converter. The original ZAD strategy was first proposed
in [20]. The main idea behind the ZAD control is to force the error of the system and its
derivative to evolve as dynamical variables with zero average. To do this, the duty cycle is
computed in such a way that the average condition is satisfied. In [20], a piece-wise linear
approximation of the error function was proposed and successfully used in [21–24] due to the
complexity to solve the equation to find the duty cycle. Unfortunately, the ZAD controller is
much less robust than a regular sliding control. For this reason, here we propose controlling
the system while using the same idea, i.e., we build a function s that depends on the state
of the system. However, as the boost-flyback is a much more complex system, we include
several considerations. Firstly, we do not consider the derivative part of the error in order
to avoid noise amplification in practical applications. Secondly, we include an integral
control action which adds robustness to the system. Finally, we incorporate information
of the currents flowing through the coils to the function s. Other considerations that are
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related to the behavior of the surface and its slopes remain unaltered. This modified ZAD
controller is here named Zero Average Surface (ZAS) control.

The paper is organized, as follows: in Section 2, we show the mathematical model
that describes the dynamics of the boost-flyback converter. Next, in Section 3, we describe
the details of the ZAS control strategy when applied to the boost-flyback converter.
Additionally, we show a simplified way to calculate the duty cycle by making use of the typical
topological sequences that form the stable orbits in the converter. In Section 4, we analyze the
stability of the orbits that result from the application of the control strategy. We perform the
stability analysis under the variation of several parameters, using bifurcation diagrams and
Floquet multipliers. Furthermore, in Section 5, we show the controlled system’s response
to a variety of disturbances, showing that the converter performs satisfactorily, despite the
scale of the disturbances. Finally, in Section 6, we present some concluding remarks and
point out some open problems.

2. Dynamics of the Boost-Flyback Converter

Figure 1 illustrates the diagram of the boost-flyback converter together with the ZAS
control module. A boost-flyback converter is composed by two capacitors C1 and C2, two
magnetically coupled coils LP (primary) and LS (secondary) with their respective internal
resistances rp and rs. Additionally, the system has a MOSFET (S) acting as a switch with
an internal resistance rM and two diodes (D1 and D2). The input is provided by vin and
the output vout is the sum of the voltages across capacitors (vout = v1 + v2). The state of the
system is then given by the voltages across the capacitors v1 and v2, the currents flowing
through the coils iP and iL, and the integral of the output error e. The error is, in turn,
defined as the difference between the real output and the desired one, i.e., e = v1 + v2 − vre f .
Altogether, the state space x ∈ R5 is formed by the variables x := [ iP iS v1 v2 x5]

T with
x5 =

∫
e(t)dt.

The state of the diodes and the switch can only take values in the discrete set {0, 1},
i.e., each one of them can only be in an open position (no current flowing) or closed position
(current is allowed to flow). Additionally, the transition between open and closed states
is assumed to be instantaneous. The presence of nonlinear elements (diodes and switch)
transforms the system into a non-smooth system that can be described through a set of
differential equations that changes as the positions of the switch and diodes change.

Combining the different states of the diodes and the switch, there are eight topologies.
However, only six of these are physically viable, which are reported in Table 1. The primary
coil (LP) and secondary one (LS) interact with each other through the mutual inductance
M = k

√
LPLS, with k ∈ [0, 1] being the coupling coefficient. Additionally, we assume a

small internal resistance rM for the switch, when it is active. When the diodes are closed,
the current flow is positive and their terminal voltage is zero (ideal diodes). Conversely,
when diodes are open, the terminal voltage is either negative or zero, which means that the
current flow is null. In addition to the differential equations for each topology, the dynamics
of the system are completed with a set of algebraic restrictions of the state variables x.
For more details of the boost-flyback converter, we refer the reader to [10,12,13]. Finally,
Table 1 summarizes the equations that describe the converter at each admissible topologies.

In Table 1, M̂ = LPLS −M2. In short hand notation, the system can be expressed as:

ẋ(t) = fi(x(t)) (1)

where the subscript i{1, 2, 3, 4, 5, 6} runs through the different vector fields that are specified
in Table 1 and variables are assigned as x1 = ip, x2 = is, x3 = v1, x4 = v2 and x5 =

∫
edt.

Notice that the states E1, E2, E3, and E4 can only be present when the MOSFET is inactive
(OFF), and states E5 and E6 when the MOSFET is active (ON).
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Table 1. Differential equations describing the six admissible topologies denoted as Ei with i = {1, 2, 3, 4, 5, 6}.

S = 0, D1 = 0 and D2 = 0 S = 0, D1 = 1 and D2 = 0

E1 :=


i̇P = 0
i̇S = 0
v̇1 = −(v1 + v2)/(RC1)
v̇2 = −(v1 + v2)/(RC2)
ẋ5 = v1 + v2 − vre f

E2 :=


i̇P = −(rPiP + v1 − vin)/LP
i̇S = 0
v̇1 = (RiP − v1 − v2)/(RC1)
v̇2 = −(v1 + v2)/(RC2)
ẋ5 = v1 + v2 − vre f

S = 0, D1 = 0 and D2 = 1 S = 0, D1 = 1 and D2 = 1

E3 :=


i̇P = 0
i̇S = −(rSiS + v2)/LS
v̇1 = −(v1 + v2)/(RC1)
v̇2 = (RiS − v1 − v2)/(RC2)
ẋ5 = v1 + v2 − vre f

E4 :=


i̇P = (MrSiS − rPLSiP + LS(vin − v1) + Mv2)/M̂
i̇S = (MrPiP − rSLPiS + M(v1 − vin)− LPv2)/M̂
v̇1 = (RiP − v1 − v2)/(RC1)
v̇2 = (RiS − v1 − v2)/(RC2)
ẋ5 = v1 + v2 − vre f

S = 1, D1 = 0 and D2 = 0 S = 1, D1 = 1 and D2 = 1

E5 :=


i̇P = (vin − (rP + rM)iP)/LP
i̇S = 0
v̇1 = −(v1 + v2)/(RC1)
v̇2 = −(v1 + v2)/(RC2)
ẋ5 = v1 + v2 − vre f

E6 :=


i̇P = (MrSiS − (rP + rM)LSiP + Mv2 + LSvin)/M̂
i̇S = (M(rP + rM)iP − rSLPiS − LPv2 −Mvin)/M̂
v̇1 = −(v1 + v2)/(RC1)
v̇2 = (RiS − v1 − v2)/(RC2)
ẋ5 = v1 + v2 − vre f

3. Zero Average Surface Control Technique

Pulse Width Modulation (PWM) is a widely used methodology for controlling the
output voltage in a power converter [25]. In a PWM, the MOSFET commutes between
the OFF position (u = 0) and the ON position (u = 1) in order to regulate the system’s
output. For the boost-flyback converter, the more time the discrete signal remains in the
ON position, the higher output voltage. In order to obtain the desired output voltage
value, it is necessary to compute the duty cycle (d), i.e., the ratio between the time that
the signal u = 1 and period T of the MOSFET, namely d = t|u=1

T . In summary, the duty
cyle is the key quantity that one needs to control in a PWM based power converter. In this
section, we present a simple methodology to calculate d at each switching cycle, called Zero
Average Surface control.

3.1. Defining the Surface s(x(t))

Briefly speaking, we calculate the duty cycle based on the idea that a certain state-
dependent function s(x(t)) has a zero average in a PWM cycle. The function should include
the most information regarding the system’s state. This idea is inspired by a previously
reported technique, named the Zero Average Dynamics (ZAD) strategy, which was orig-
inally applied to the buck power converter [20,26]. In these works, the function s(x(t))
was defined as a linear combination between the output error and its derivative. However,
the absence of an integral control rendered the robustness of the system unsatisfactory.
In this work, we define the function s(x(t)) via a strategically selected combination be-
tween the five states of the boost-flyback: The voltages across the capacitors are linked
through the desired output voltage. Additionally, the currents through the coils are linked
via the magnetization current. Finally, an integral control action is also added, such that
the function reads

s(x(t)) = kp

(
x3 + x4 − vre f

)
+ kix5 dt + kim

(
x1 +

Ns
Np

x2

)
(2)

Because vout = x3 + x4 supplies the desired output voltage vre f (see Figure 1), then
kp(x3 + x4 − vre f ) is a proportional control action. Furthermore, the integral control is ki x5,
where x5(t) =

∫
(x3 + x4 − vre f )dt. These two terms define a PI controller that reduces
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the steady state output error and handles the transient state when the system is subject
to disturbances and/or changes in the system’s parameters. The current values x1 and
x2, enter into the expression via the magnetization current x1 + Ns/Npx2 [27], where Np
(Ns) is the number of turns in the primary (secondary) coil. This last ingredient of the
expression acts as an additional proportional control and its role is regulated with kim.

3.2. Piece-Wise Linear Approximation of the Function

The control signal u in a centered PWM (see upper part of Figure 2) can be defined as:

u =


1 if kT ≤ t ≤ kT + T d

2
0 if kT + T d

2 < t < (k + 1)T − T d
2

1 if (k + 1)T − T d
2 ≤ t ≤ (k + 1)T

(3)

where T = 50 µs is the sampling period and d ∈ [0, 1] is the duty cycle. As previously
mentioned, the aim of the controller is to compute the duty cycle d in order to achieve,
in every T-cycle, a zero average of the function that is defined by (2), i.e.,〈

s(x(t))
〉

T
=
〈

kp

(
x3 + x4 − vre f

)
+ kix5 dt + kim

(
x1 +

Ns
Np

x2

)〉
T
= 0 (4)

In this work, a centered PWM is used to compute the duty cycle in every T-cycle,
such that Equation (4) meets the zero average criterion. Equation (4) can be written as:

∫ (k+1)T

kT
s(x(t))dt = 0 (5)

Solving this equation implies computing the zeros of a complicated transcendental
equation, which is highly inefficient from a practical point of view. In order to overcome this
problem, we assume that the surface s(x(t)) can be approximated via a piece-wise linear
function in time s(x(t))PW−L, forming a triangle-like wave (see lower part of Figure 2).
Secondly, we will assume that the derivatives of the first and third segments of s(x(t))PW−L
are equal, and, thirdly, we suppose that we can calculate the slopes of the piece-wise
linearly approximated function at the beginning of the cycle (denoted as kT). In summary,
s(x(t))PW−L can be expressed as:

s(x(t))PW−L =


ṡ1(x(kT))t + s1(x(kT)) if kT ≤ t ≤ kT + T d

2
ṡ2(x(kT))t + s2(x(kT)) if kT + T d

2 < t < (k + 1)T − T d
2

ṡ1(x(kT))t + s3(x(kT)) if (k + 1)T − T d
2 ≤ t < (k + 1)T

(6)

Here, s1(x(kT)), s2(x(kT)) and s3(x(kT)) are the offset values of the three segments
(see Figure 2). Similarly, ṡ1(x(kT)) and ṡ2(x(kT)) are the slopes that are computed from the
expression of ṡ(x(t)) while using the state values at the beginning of the cycle. These deriva-
tives can be written in the following form:

ṡ1(x(kT)) =
∂s
∂x

fi (7)

ṡ2(x(kT)) =
∂s
∂x

f j (8)

where the subscript i can take the values i = {5, 6}, when considering that E5 and E6 are
the two admissible topologies with MOSFET in active mode. Similarly, the subscript j can
take the values j = {1, 2, 3, 4}, which is consistent with the fact that the admissible states
with the MOSFET in inactive mode are E1, E2, E3, and E4. In the following section, we will
describe the topologies that are to be used to compute ṡ1(x(kT) and ṡ2(x(kT).
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Figure 2. Schematic diagram of the approximated Zero Average Dynamics (ZAD) function. Upper
panel shows the two positions of the MOSFET (ON and OFF) with the the corresponding piece-wise
linear approximation of the function s(x(t))PW−L. When the MOSFET position is ON, topologies E5

and E6 are physically feasible. Similarly, with MOSFET position OFF, only E1, E2, E3 and E4 are the
admissible topologies.

3.3. Computing the Duty Cycle

A lot of analytical and numerical results [10,12,13,17–19] have shown that there are
three topological sequences that form different period-1 orbits, depending on the system’s
parameters: (i) E5 → E4 → E3 → E6, (ii) E5 → E4 → E3 → E1, and (iii) E5 → E4 → E6.
Figure 3 shows the three basic possible period-1 orbits and their topologies. According to
these orbits, we can draw the following conclusions: (1) out of the topologies appearing
with the MOSFET in active mode (E5 and E6), E5 is always present. Similarly, for topologies
with the MOSFET in the inactive state (E4, E3, and E1) E4 is always present. (2) The power
converter always switches the MOSFET position between states E5 and E4. These two facts
lead us to conclude that the main part of the sequence that describes any periodic orbit is
E5 → E4. Subsequently, to apply the approximation (6), and taking into account Equation (7),
we can describe any sequence as E5, followed by E4. This implies that ṡ1 is computed with
topology E5 and ṡ2 is computed with topology E4. Under this consideration, the orbits
that the system can exhibit are E5 → E4 → E3 → E6 (5436 for short, see Figure 3A),
E5 → E4 → E3 → E1 (5431, see Figure 3B), and E5 → E4 → E6 (546, see Figure 3C).

Particularly, in every cycle, we will assume that E5 is present for a time t ∈ [kT, kT +
Td/2], and, at t = kT + Td/2, the system commutes to E4. Moreover, when the MOSFET is
inactive, i.e during the interval t ∈ [kT + Td/2, (k + 1)T− Td/2], the system may undergo
one or two secondary transitions: (i) the first one will appear when iP = 0, and, in this case
topology, E3 guides the system and (ii) the second one will appear when iS = 0 and E1
guide the dynamics. Finally, for the interval t ∈ [(k + 1)T − Td/2, (k + 1)T], the system
will switch its dynamics to E6 in the cases in which iS 6= 0 and it will rapidly evolve iS
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towards 0, where the E5 topology leads the dynamics of the system. Conversely, when the
previous topology in inactive state was in E1, it will immediately switch its behavior to E5.

time

c
u

rr
e

n
ts

A

time

c
u

rr
e

n
ts

B

time

c
u

rr
e

n
ts

C

Figure 3. Three possible periodic orbits in the boost-flyback converter. (A) Orbit following the topologies 5436. (B) Orbit 5431
and (C) Orbit 546. In all panels, the primary (secondary) current iP (iS) is depicted in blue (black).

According to the previous considerations, ṡ1(x(kT)) must be evaluated with E5 and
ṡ2(x(kT)) must be evaluated with E4. Additionally, the offset of each one of the segments
can be computed as:

s2(x(kT)) = s1(x(kT)) +
dT
2

ṡ1(x(kT))

and
s3(x(kT)) = s1(x(kT)) +

dT
2

ṡ1(x(kT)) + (T − dT)ṡ2(x(kT))

where s1(x(kT)) is the value of the s(x(t)) at the beginning of the cycle. With these
assumptions, Equation (5) is simplified in such a way that an algebraic equation is solved
instead of a transcendental one. The simplified equation now reads as:

(k+1)T∫
kT

s(x(t))PW−Ldt = 0 (9)

After some straightforward algebra, the duty cycle d can be solved as:

d =
2s1(x(kT)) + Tṡ2(x(kT))
T(ṡ2(x(kT))− ṡ1(x(kT)))

(10)



Energies 2021, 14, 57 8 of 18

Finally, because the duty cycle dk to apply at the kT-cycle must be bounded within
the range [0, 1], we complement the duty cycle calculation with the following saturating
conditions:

dk :=


0 if d < 0
d if 0 ≤ d ≤ 1
1 if d > 1

(11)

Altogether, the design of the proposed controller can be summarized, as follows:

1. Define a sampling time T of the MOSFET according to design requirements.
2. Define the surface s(x(t)), including the information of: (i) the states of the system

and (ii) the integral of error to correct steady state error (Equation (2)).
3. Apply the piece-wise linear approximation s(x(t))PW−L of the surface (Equation (6)).
4. Sense the output voltage error, magnetization current, and integral of error at the

beginning of every cycle.
5. Compute, at the beginning of every cycle, the duty cycle that ensures

∫ T
0 s(x(t))PW−Ldt = 0

(Equation (9)).
6. Apply the computed duty cycle (Equations (10) and (11)).

3.4. Stability Analysis of the Period-1 Orbits

With the aim of assessing the stability of the period-1 orbits, we proceed to calculate the
associated Floquet multipliers λ. Floquet multipliers are the eigenvalues of the monodromy
matrixM, which describes the evolution of an infinitesimal perturbation δx around the
target periodic orbit from one period to another, namely

δx((k + 1)T) =Mδx(kT) (12)

In the case of smooth systems, computingM can be done straightforwardly via the
linearization of the vector field. Conversely, the formal calculation of monodromy matrices
in non-smooth systems requires appropriate corrections that are induced by the transitions
between topologies, which are described by saltation matrices [28,29]. Here, we will make
use of a much simpler numerical approach to the calculation ofM, which only requires
the evolution of a reasonable number of perturbed orbits between two periods. Because
our system is non-autonomous, the periodic orbit is stable if all eigenvalues lie within the
unit circle [30]. The algorithm can be summarized as (see [31] for details):

1. Find the periodic orbit x∗ and the associated duty cycle d, which guarantees that
x∗(kT) = x∗((k + 1)T) and identify the topological sequence that fulfils the condition.

2. Create N randomly perturbed orbits xp(kT) = x∗(kT) + ε with ||ε|| ≈ O(10−4).
3. Evolve the perturbed orbits over a period T, such that yp = xp((k + 1)T).
4. Store the differences of every state between the perturbed and the unperturbed orbits

at the beginning of the period (∆x) and at the end of it (∆y).
5. Approximate the monodromy matrix as:

M = [(∆xT∆x)−1∆xT∆y] (13)

6. Compute the Floquet multipliers via the eigenvalues λi ofM.

4. Numerical Results

We proceed to set the values of the constants kp, ki, and kim in order to guarantee the
stability of the orbit. It can be seen that the controller includes two loops: the first one is
external and it corresponds to the voltage control loop, which is formed by the control action
that is based on the error and its integral. This loop guarantees that the output voltage follows
the reference value. For this reason, ki should be high in order to obtain a fast dynamic
response. Conversely, as the proportional action controlled by kp is more sensitive to errors,
it should not be high in order to avoid instabilities. The second loop, corresponding to
the proportional control of the magnetization current, is an inner loop, and it provides
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stability to the system, and, following the same guidelines as before, it should not have a
high value. For simulations, we set the constant values kp and ki close to the values that
were reported in [12,13]. In turn, kim has been set, such that a stable period-1 orbit with
topological sequence 5436 is obtained, which we have selected as the target periodic orbit.

In what follows, we investigate the stability of the period-1 orbit that was described
by the sequence 5436 using bifurcation diagrams and Floquet multipliers. Several works
have demonstrated that this orbit is very stable [12,17–19]. In this section, only the variation
of the parameters R, vin, and vre f are analyzed, such that ki, kim, and kp remain fixed.
In Table 2, all of the parameter values are presented. The nominal values of R, vin, and vre f
are identified with the subscript N and the range of variation used in the stability analysis
is shown in front.

Table 2. The parameter values used in simulation. vre f , vin, and R are used for bifurcation diagrams
and simulating disturbances. Unless otherwise stated, the nominal values vin,N , vre f ,N , and RN

are used.

Parameter Values

vin,N = 18 V vin ∈ [6, 18] V

vre f ,N = 100 V vre f ∈ [80, 280] V

RN = 200 Ω R ∈ [28, 800] Ω

LP = 240. 3 µH LS = 816. 2 µH

C1 = 220 µF C2 = 220 µF
Ns
Np

=
√

Ls/Lp k = 0.96

rP = 0. 02 Ω rS = 0. 3 Ω

rM = 0. 044 kp = 1. 5 V−1

ki = 350 [V · · · ]−1 kim = 3 A−1

Let us start by analyzing the behavior of the system under variations in the input
voltage vin. In Figure 4, two different protocols are presented. The red continuous curve
corresponds to increasing variations of the parameter, while the blue empty symbols
refer to decreasing variations of the parameter. On the one hand, Figure 4A shows that,
by increasing vin, a period-2 orbit shows up as signaled by the presence of two values of
the duty cycle. This 2-periodic orbit is characterized by one saturated cycle, which remains
stable for almost the whole range of the parameter variation until it suddenly transforms
into a period-1 solution at vin ≈ 17.8 V. Interestingly, the same analysis performed starting
with a high value of vin reveals the co-existence of a stable period-1 orbit with the saturated
solution that was described before. The period-1 solution remains stable until vin ≈ 6.9,
where it bifurcates to an unsaturated period-2 orbit, which eventually merges at vin ≈ 6.4
with the saturated period-2 orbit found for increasing vin. The period-1 orbit corresponds
to the topological sequence 5436 and Figure 4B depicts the norm of largest eigenvalue
λmax of the monodromy matrix that is associated with this orbit (filled black symbols).
By looking at λmax, one can see that the stability is lost (|λmax| > 1) at vin ≈ 6.9, i.e, at the
bifurcation point. It shall be noticed that, at smaller values of vin, there indeed exists a
period-1 orbit that is nonetheless unstable (empty symbols). It is worth noticing that the
region in which stability of the desired orbit is lost (small vin) corresponds to high gains
of the converter. In this scenario, the current requirements are high in the primary coil.
This observation helps to understand the mechanism of the bifurcation: as the duty cycle
increases, the current flowing through the primary coil increases. Therefore, when the
switch is turned OFF and topology E4 kicks in, iP cannot evolve towards 0 before turning
the switch ON again. The consequence is that topology E3 is never reached and the orbit
evolves as 546 during one cycle (upper branch of the unsaturated period-2 orbit). In the
next cycle, the 5436 is recovered, because the initial condition of the primary current is now
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at a much lower value, allowing for iP to reach zero value when the MOSFET is OFF. Finally,
the upper branch eventually saturates to d = 1, which indicates that, during one whole
period, the system remains in topology E5. Meanwhile, in the next cycle, the sequence 5436
is recovered.

Figure 4C depicts the output error that is produced by the coexisting orbits previously
described. Here, one can see that the output error in the two sampled points of the period-2
orbits are quite similar, producing the thick lower line. Similarly, the error that is associated
to the period 1 orbit, while it has a larger absolute value, remains within the reasonable
range <0.25%.
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Figure 4. Bifurcations with vin as a control parameter. (A). Duty cycle solution (11) in steady state with two protocols:
Red (blue) line corresponds to increasing (decreasing) variations of the parameter. (B). Maximum Floquet multiplier of the
period-1 orbits found in the studied interval. Solid (empty) symbols refer to stable (unstable) orbits. (C). Output error of the
attractors of panel (A), with the same color code. Parameters of this simulation, as in Table 2.

Next, we focused our attention on the bifurcations that arise by varying the reference
voltage vre f with the same protocols described before. In Figure 5A, we show the values
of the solution of the duty cycle by increasing (red) and decreasing (blue) the reference
voltage vre f . Following the increasing bifurcation curve, it is possible to see that the period-
1 orbit 5436 is stable over a large range of vre f ∈ [80, 252]. After this point, the orbit
bifurcates to the unsaturated period-2 orbit until it finally reaches the saturated period-2
orbit. As described in vin variation, the bifurcation mechanism is the same: the bifurcation
is produced by the high iP requirements, which leads to increasing values of the duty
cycle. Figure 5B supports these findings, i.e, the norm of the largest Floquet exponent of
the period-1 orbit is |λmax| < 1 over the same range of stability that is reported above.
Once again, after the bifurcation point, a period-1 orbit still exists with unstable nature.

Following the decreasing parameter protocol, one starts with the saturated 2-period cycle,
which persists until vre f ≈ 120 V, indicating a bistable behavior in that interval. Below this
value, the saturated period-2 orbit disappears and the only attractor is the period-1 cycle.

Additionally, Figure 5C displays the output error using the increasing and decreasing
protocols, where it can be noticed that the period-1 orbit presents an almost negligible error
(<0.02%) that rapidly increases after the bifurcation. Nevertheless, even the period-2 orbits
(saturated and unsaturated) are associated with reasonably small values of the error (<0.2%).
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Figure 5. Bifurcations with vre f as a control parameter. (A). The duty cycle solution (11) in steady state with two protocols:
Red (blue) line corresponds to increasing (decreasing) variations of the parameter. (B). Maximum Floquet multiplier of the
period-1 orbits found in the studied interval. Solid (empty) symbols refer to stable (unstable) orbits. (C). Output error of the
attractors of panel A, with the same color code. The parameters of this simulation, as in Table 2.

Finally we will focus our attention on the bifurcations with varying load (R), as dis-
played in Figure 6. It is useful to start with the decreasing protocol, where a period-1
solution is present in the interval R ∈ [658, 800] Ω. This periodic solution corresponds to
the topological sequence 5431. This orbit is different from the orbit 5436 that we have stud-
ied so far. This sequence appears when the duty cycle is small and, therefore, the MOSFET
remains in the OFF position for a long time. During this OFF time, the current through
the secondary coil iS has enough time to reach a zero value. This means that topology
E1 guides the dynamics for the rest of the OFF interval. Once the switch is active again,
topology E5 immediately kicks in without the intermediate topology E6. The stability of
the 5431 orbit is corroborated with the values of |λmax| < 1 in the same interval (solid circles
in Figure 6B). At R < 658 Ω, the usual 5436 orbit is recovered as the duty cycle increases.
The orbit remains stable until a rapid bifurcation to the period-2 solution at R ≈ 35 Ω and the
subsequent saturation. This can be also observed by the stable interval that is characterized
by |λmax| < 1 of the 5436 orbit (solid squares) in Figure 6B. As expected, it changes stability
(|λmax| > 1) at the bifurcation point (empty circles).

Similarly, by increasing R, one starts with the saturated period-2 orbit. It remains
stable until R ≈ 150 Ω, where a chaotic attractor emerges in a small window. This attractor
disappears and gives rise to the stable period-1 sequence 5436 at R > 185 Ω. As in the
previous cases, the associated errors of the period 1 orbit are small, as illustrated in
Figure 6C, and it only starts increasing at the bifurcations. Despite this, the period-2 orbits
also display small values of the error.
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Figure 6. Bifurcations with R as a control parameter. (A). Duty cycle solution (11) in steady state with two protocols:
Red (blue) line corresponds to increasing (decreasing) variations of the parameter. (B). Maximum Floquet multiplier of the
period-1 orbits found in the studied interval. Solid (empty) symbols refer to stable (unstable) orbits. (C). Output error of the
attractors of panel A, with the same color code. The parameters of this simulation, as in Table 2.

5. Disturbances Rejection

So far we have shown the co-existence of the desired period-1 orbit with a period-2 so-
lution over a large interval of the studied parameters. In this section, we test the robustness
of the orbit 5436 when different disturbances are present in the system. The disturbances
that are simulated in this part correspond to abrupt changes in the parameter values,
which were used as bifurcation parameters.

Firstly, in Figure 7A, we show the convergence of the system’s output from an initial
value of 80 V to a desired value of vre f = 100 V. It can be seen that the system rapidly
establishes to the steady state value in around t ≈ 10 ms. After this, a sudden change
in the desired output from vre f = 100 V to vre f = 80 V is performed at t = 30 ms and
the system is able to reach the new desired value at around t ≈ 50 ms. In Figure 7B,
we show the evolution of the output error to the disturbances that were described before,
together with the evolution of the duty cycle and a sample trace of the function s(x(t)) in
a small time interval. In the case of the desired period 1 orbit, the duty cycle transiently
saturates, but it eventually reaches the asymptotic d-value corresponding to the stable
orbit (see insets). Moreover, one can also notice that the piece-wise linear assumption of
s(x(t)) in Equation (6) is adequate, as testified by the virtually piece-wise linear nature of
the function that is defined in Equation (2).
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Figure 7. (A). Output voltage as a function of time with a disturbance in the reference voltage presented at t = 0.03 s. Insets:
primary (secondary) currents are depicted in blue (red) before and after the change in vout. (B). Output error as a function of
time for the evolution of vout in panel (A). Lower inset: dynamics of the duty cycle. Upper inset: function s(x(t)) defined in
Equation (2). In this figure, the parameters have been chosen, as in Table 2, with a reference variation from vre f = 100 V to
vre f = 80 V.

Now, we analyze the behavior of the system when the disturbance is applied to the
load. At t = 30 ms, the resistance R changes from 200 Ω to 350 Ω and it is forced to
change again at t = 60 ms to 80 Ω. The results of this numerical experiment are depicted
in Figure 8. As before, the system is able to handle the disturbances and it reaches the
desired value of the output voltage in t ≈ 10 ms, depending on the size of the disturbance.
A close look to the function s(x(t)) in the upper inset of Figure 8B reveals the effect of
the secondary transitions within the same position of the MOSFET in the shape of s(x(t)).
Here, one can see the appearance of a further linear segment, which, nevertheless, does not
substantially affect the three-segment piece-wise linear approximation used here. This can
be testified by the small errors that are reported in the main panel shown in Figure 8B.
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Figure 8. (A). Output voltage as a function of time with a disturbance in the resistance presented at t = 0.03 s and t = 0.06
s. Insets: primary (secondary) currents depicted in blue (red) before and after the change in vout. (B). Output error as a
function of time for the evolution of vout in panel (A). Lower inset: dynamics of the duty cycle. Upper inset: function s(x(t))
defined in Equation (2). In this figure, the parameters have been chosen as in Table 2, with load variation from R = 200 Ω to
R = 350 Ω to R = 80 Ω.
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Finally, the last disturbance involves, simultaneously, changes in the reference value,
load resistances as well as in the input voltage. Firstly, at t = 30 ms, vre f changes to 120 V,
R changes to 350 Ω and vin = 8 V. Secondly, at t = 60 ms, the reference voltage changes to
vre f = 80 V, the input voltage changes to vin = 25 V, and the load changes to R = 80 Ω.
Figure 9 shows the results of this experiment. In this figure, it is possible to see that,
despite the sudden transitions in a large proportion of the system’s parameters, it evolves
satisfactorily to the desired orbit. For the sake of visualization, we have included the
whole time series of the function s(x(t)) in order to show that it has indeed a zero-average
behavior in steady state, as hypothesized by the ZAS strategy.
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Figure 9. (A). Main panel: output voltage as function of time with disturbances performed at the
reference voltage, the input voltage and the load simultaneously. The disturbances are applied at
t = 30 ms and t = 60 ms according to the description in the main text. Insets: Primary (secondary)
currents depicted in blue (red) during the steady operation after the transitions. (B). Main panel:
output error for the disturbances in (A). Insets: duty cycle evolution (left) and time series over the
whole interval of the function s(x(t)) (right). The parameters, as in Table 2.

From the numerical experiments of this section, we can assert that the basin of attrac-
tion of the period-2 solution is small when compared with the basin of the period-1 orbit.
This can be inferred, because, according to the bifurcation diagrams described in Section 4,
the period-2 solution should be present in the different disturbances applied here; however,
the solution always evolved towards the desired period-1 solution.

6. Conclusions and Future Work

In this work, we have successfully applied the Zero Average Surface (ZAS) controller
for output regulation in a boost-flyback converter. The strategy consisted of the definition
of a state-dependent function—s(x(t))—with the most information of the system’s state.
The ZAD control technique (precursor of the ZAS strategy presented here) was originally
used to force a function that depends on the error and its derivative to have a zero-average
in a PWM cycle [20,21]. Here, we have shown that adding an integral control action and
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imposing in every cycle a zero-average of a strategically chosen combination of the states,
renders the system quite robust over a wide interval of input voltage, reference voltage,
and load. Moreover, the original ZAD has been used to control bilinear systems [21–24,32],
where the system is only represented by two topologies. Nevertheless, when the converter
has a more complex topology, as in the case of the boost-flyback converter, the computation
of the duty cycle gets more difficult. In contrast, with the ZAS technique, we have been able
to obtain a simple algebraic expression of the duty cycle while using few approximations of
the converter’s dynamics and the state of the system at the beginning of the cycle. The duty
cycle expression can be easily implemented on an embedded hardware system in order to
generate a PWM signal, where the state variables are only sensed at the beginning of the
switching period.

One of the main advantages of the ZAS controller is that it is designed to operate
at a fixed frequency (the inverse of the sampling period T). Other controllers that make
use of a variable frequency introduce undesired frequency-dependent harmonics to the
signal. Eliminating such harmonics require the addition of different filters that add to
the complexity of the overall system. Moreover, variable frequency techniques require
semiconductor devices that fit within the ranges of commutation frequencies in order to
guarantee a correct operation. For these reasons, the ZAS controller is a desirable strategy
when the harmonics of the output signal are undesired.

Despite the fact that the function s(x(t)) provides information of all five states of the
system, it only relies on the tuning of three parameters (two for the proportional terms
and one for the integral term). These can be further reduced to two parameters by means
of a properly selected normalization of the parameters. Nonetheless, we have chosen,
during the development of this work, to write all of the parameters down explicitly to keep
track of the individual contributions of the terms in the function s(x(t)).

Even though the boost-flyback exhibits three different stable period-1 orbits,
we have seen that the orbit 5436 was consistently the most robust across the experi-
ments. Additionally, we reported that the stability of the orbit was lost by means of a
period doubling and a subsequent saturation of the duty cycle at high values of the con-
verter’s gain. In our numerical experiments with varying vin and vre f , the value of the gain
at which the bifurcation occurred was quite similar, namely≈ 14. This seems to suggest that
the boost-flyback converter controlled via the ZAS strategy is adequate for intermediate
output voltage gains, and different controllers should be used for higher gains.

We showed that the robustness of the 5436 orbit is related with the larger region of
attraction in the state space (basin of attraction) when compared with other coexisting
attractors. This is consistent with previously reported results (see [12,13,17,19]). The cal-
culation of the precise size of the basin of attraction is not an easy task, and it usually
involves the application of the so-called Lyapunov direct methods, which are hard to
apply, especially in non-smooth systems. In the case in which a single attractor is found,
it is also non-trivial to determine whether this attractor is either globally or locally stable.
Recent techniques that are based on contraction theory [33] allow for assessing global
stability, even in non-smooth systems [34,35], including power converters [36]. Similar
approaches could be applied to the boost-flyback converter in future research.

In the bifurcation diagrams varying the load, we suggested the presence of a chaotic
attractor in a small window of the diagram. This result, together with other preliminary
experiments—not shown here—performed at very low values of the parameters bring to
light the need of a more complete characterization of the system. Such characterization must
be performed, not only in terms of Floquet multipliers, but also Lyapunov Exponents as a
preliminary step before an experimental implementation. This is part of an ongoing work
that presents some challenges itself: For instance, the (formal) calculation of the Floquet
multipliers and Lyapunov exponents require the use of the saltation matrix formalism for
the correction of the linearised evolution of the system (perturbation’s dynamics), due to
the discontinuities in the vector fields [28,29]. While this problem is relatively easy to solve
in the cases in which the switching from one vector field to another is defined by a precise
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value of the state at the time of the discontinuity, we are here approximating the time of
the discontinuity as a function of the states in the previous cycle. This calls for the need of
a different approach to assess linear stability, for example, via the direct linearisation of
the event driven map, which has been successfully used in applications involving pulse
coupled oscillators [37,38].

In summary, the ZAS technique is ideal for applications that require: (i) intermediate
gains, (ii) large operation region, and (iii) disturbance rejection. Examples of devices that
required these specifications include hybrid electric vehicles [39,40], voltage balancing [41],
photovoltaic panels [42], LED technologies [43], and correction of the power factor [44]. Finally,
with the aim of contextualizing the contribution of this work, we present, in Table 3, a sum-
mary of the advantages and disadvantages of different controllers that have been applied
to the boost-flyback, and how they compare with the ZAS technique that was used here.

Table 3. Advantages and disadvantages of different control techniques used for the boost-flyback
converter in the literature.

Control Techniques for the
Boost-Flyback Advantages Disadvantages

Current Control and Voltage
Control (small signal model) [45]

Fixed Switching
Frequency, perturbation
rejected

Only small scale
instabilities are
considered

Sliding Control [46] Robustness, disturbance
rejection

Unfixed switching
frequency

Peak current-mode control [17]
Fixed switching
Frequency, disturbance
rejection

Slope compensation is
required and
operation zone is
bounded

Hysteresis band control [19] Robustness, disturbance
rejection

Unfixed switching
frequency

ZAS control

Robustness, disturbance
rejection, simple
implementation
(straightforward duty
cycle expression), known
fixed frequency

Operation zone is
bounded
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