
Applied Mathematics, 2021, 12, 1210-1215
https://www.scirp.org/journal/am

ISSN Online: 2152-7393
ISSN Print: 2152-7385

DOI: 10.4236/am.2021.1212077 Dec. 23, 2021 1210 Applied Mathematics

Counting and Randomly Generating k-Ary
Trees

James F. Korsh

Computer and Information Science Department, Temple University, Philadelphia, USA

Abstract
k-ary trees are one of the most basic data structures in Computer Science. A
new method is presented to determine how many there are with n nodes.
This method gives additional insight into their structure and provides a new
algorithm to efficiently generate such a tree randomly.

Keywords
Combinatorial Problems, k-Ary Trees, Random Generation

1. Introduction

The number, ,bn k , of k-ary trees with n nodes is well known and given in [1]
as () ()(), 1 1C kn n k n− + where (),C n k denotes the number of ways to choose
k places from n places, which is ()! ! !n k n k− . This paper generalizes the results
from [2] on binary trees with n nodes to k-ary trees with n nodes by providing a
simple direct approach to finding ,bn k and a new method to generate a ran-
dom k-ary tree with n nodes efficiently. The direct approach here to finding

,bn k relies on the detailed structure of the trees developed here rather than the
standard recursive description of the tree and solving the resultant recurrence
relations. Another approach for the random generation is given in [3]. The nu-
meration of k-ary trees is done in [4]. The generation of binary and k-ary trees
has been and continues to be of interest [5] [6] [7] [8].

2. Representation of k-Ary Trees with n Nodes

For any n > 0, a k-ary tree with n nodes can be uniquely represented by a se-
quence of n k-tuples of 0’s and 1’s, one k-tuple for each node. In a node’s k-tuple,
the ith entry specifies whether the node’s ith child is non-null or null: 1 for non-
null and 0 for null. The k-tuples appear in the order in which the nodes are ac-

How to cite this paper: Korsh, J.F. (2021)
Counting and Randomly Generating k-Ary
Trees. Applied Mathematics, 12, 1210-1215.
https://doi.org/10.4236/am.2021.1212077

Received: October 29, 2021
Accepted: December 20, 2021
Published: December 23, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2021.1212077
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2021.1212077
http://creativecommons.org/licenses/by/4.0/

J. F. Korsh

DOI: 10.4236/am.2021.1212077 1211 Applied Mathematics

cessed in a preorder traversal of the tree. The sequence for the 3-ary tree

Define node i of a k-ary tree as the ith node accessed in a preorder traversal of
the tree. The ith tuple corresponds to node i of the tree. The numbers are shown
to indicate the node corresponding to each tuple, but only the sequence of n
tuples is used to represent the tree. The tuples are written vertically rather than
horizontally.

3. Construction Procedure

The unique k-ary tree that generated this sequence of tuples can easily be con-
structed by processing the tuples from left to right, effectively building the tree
as it is being preorder traversed. This procedure builds the tree as shown below:

We will call these spines 1 to 7 of the tree, where spine i contains nodes 1 to i
and its branches. The number of unused branches in spine i is the number of
branches—(i − 1).

4. Valid Sequences

Each node of an n node k-ary tree, except for the root, has a unique branch
coming into it. Since each branch corresponds to a unique 1 in the tree’s n node
k-ary sequence there must be 1n − 1’s in the sequence. Each of the tree’s null
subtrees corresponds to a unique one of the ()1 1k n− + 0’s in the sequence.
There are (), 1C kn n − of these sequences of n k-tuples, one for each way the

1n − 1’s can be assigned to the kn places. Not all of these allow our procedure to
construct an n node k-ary tree. Those that do we call valid sequences and the
others invalid.

5. A Look Ahead

The approach here is to confirm two facts. First, that our construction procedure
to generate a tree from a valid sequence establishes a 1-1 correspondence be-

https://doi.org/10.4236/am.2021.1212077

J. F. Korsh

DOI: 10.4236/am.2021.1212077 1212 Applied Mathematics

tween n node k-ary trees and valid sequences.
Secondly, every invalid sequence is one of the distinct n − 1 rotations gener-

ated from a unique valid sequence, and each is also distinct from the valid se-
quence. Thus, each invalid sequence can be associated with a unique tree. It
must then be the case that

() (), 1 , , 1bn k n bn k C kn n+ − = − ,

since the number of valid plus the number of invalid sequences equals the total
number of sequences. Solving for ,bn k we obtain

() () ()(), , 1 , 1 1bn k C kn n n C kn n k n= − = − + .

Rotation i of a valid sequence is obtained by shifting its first i tuples from the
front to the rear of the sequence. For our example, rotation 3 is:

Applying our construction algorithm to rotation 3 produces:

Notice that the last, and incomplete tree is spine 3 of the original tree. If the
first subtree is added to the first available branch of the spine and the second to
the second available branch the original tree is obtained. We will see that our
construction applied to rotation i of a tree will always produce r subtrees fol-
lowed by spine i and adding subtree j to the jth available branch for 1 ≤ j ≤ r
produces the original tree.

6. Excess Sequences and Valid Sequences Are the Same

Let Ni be the number of 1’s in the first i k tuples of any n node k-tuple sequence.
If ()1Ni i> − for all i < n and ()1Nn n= − we say the sequence is an excess
sequence. In general, spine i + 1 is produced from spine i when node i + 1 is
processed and added to spine i. When node i + 1 is processed it becomes the
child of the first available branch encountered in the preorder traversal starting
from node i. This branch must be available since the first i nodes used the first i
− 1 available branches encountered and Ni was greater than (i − 1). Since this is
true for each 1i n< − the first n − 1 spines can be built. Since 1 2Nn n− > − a
branch is available for node n to be added to spine n − 1. However, since

1Nn n= − all the branches will then have been used and a tree has been con-
structed. This shows that an excess sequence is a valid sequence.

https://doi.org/10.4236/am.2021.1212077

J. F. Korsh

DOI: 10.4236/am.2021.1212077 1213 Applied Mathematics

A valid sequence must have an unused branch to add node i+1 to in the con-
struction procedure. The first i nodes used i − 1 of the branches. So Ni must
have been greater than (i − 1) for each i < n. When i is n, 1Nn n= − so after the
nth node is added all the n − 1 branches have been used. Consequently, a valid
sequence is an excess sequence.

7. Every Invalid Sequence Is One of the n − 1 Rotations of a
Valid Sequence

If a sequence, s, is not an excess sequence it must be an invalid sequence. All n
node k-ary sequences satisfy ()1Nn n= − so for s to fail to be an excess sequence
there must be a smallest n1 < n such that ()1 1 1Nn n= − with 1Ni i> − for i <
n1. Thus, the first n1 tuples of s must be an excess sequence and so represent an
n1 node k-ary tree. In fact, the sequence must look like:

just r consecutive excess sequences of lengths 1, 2, ,n n nr with a last sequence
of length ()1 2n n n nr− + + + .

Each of the first r sequences then has ni − 1 1’s, i ≤ i ≤ r, and represents an ni
node tree and the last sequence must have

() ()1 1 1 2 1 1 1 2 1n n n nr n n n nr r− − − + − + + − = − + + + − +  1’s and has no
head which is an excess sequence. Its length, N, is then ()1 2n n n nr− + + +
and we will refer to its nodes as node 1 to N. Now 1 2n n nr+ + + cannot be n
since, if it were, r must be 1 and n1 would contain all the nodes and be an excess
sequence and would be the original invalid sequence. Also, r cannot be n, other-
wise each ni, 1 ≤ i ≤ r, must be 1 so 1 2n n nr+ + + would be n, which we
know cannot happen.

Lemma. The construction procedure applied to a last sequence L produces
spine N of a tree with r unused branches.

Proof. Number the nodes of N from 1 to N and let ti be the number of 1’s in
tuple i, 1 ≤ i ≤ N. After processing the first i nodes of L, the construction proce-
dure creates spine i of a tree with ()1 2 1t t ti i+ + + − − unused branches with

1 2Mi t t ti= + + + the number of 1’s in spine i. As long as each Mi is greater
than (i − 1) node i can be added to the spine. If any Mi becomes equal to (i − 1)
then nodes 1 to i are a head of L consisting of its first i tuples. Since L cannot
have such a head, this cannot happen. So, spine N is produced and has

()1 2 1t t tN N r+ + + − − = , unused branches.
Each of the nj sequences represent a subtree, 1 < j < r, and the first node of the

jth subtree can be made the node to which the jth unused branch in spine N
comes into. This effectively “hangs” the jth subtree from the jth unused branch,
in preorder order. This means that the original invalid sequence was rotation r
of the tree just created. Hence, every invalid sequence is one of the n − 1 rota-
tions of a valid sequence.

https://doi.org/10.4236/am.2021.1212077

J. F. Korsh

DOI: 10.4236/am.2021.1212077 1214 Applied Mathematics

8. There Is a One-to-One Correspondence between n Node
k-Ary Trees and Valid Sequences

Spine i is generated by rotation i for 1 < i < n and these spines are all distinct.
Consequently, the rotations that generated them must be distinct. Since each of
the n − 1 spines is distinct, the n − 1 rotations that generated them must be dis-
tinct. A valid sequence generates spine n, which is the tree itself so each tree’s
spine n must be distinct. This establishes a one-to-one correspondence between
n node k-ary trees and valid sequences.

9. Conclusions

This confirms the two facts referred to earlier. The procedure described in the
lemma allows us to construct the n node k-ary tree corresponding to any n node
k-ary sequence and to do it in O(nk) time.

To generate an n node k-ary tree at random, merely modify the algorithm in
[9] so n − 1 integers are selected in step 1, let them determine where the n − 1 1’s
are placed in the n k-tuples to give an n node k-ary sequence, and use our con-
struction specified in the lemma to find the unique tree it produces. Since all the
sequences are equally likely to be produced in step 2 and each tree will be pro-
duced by an equal number of sequences, this modification generates an n node
k-ary tree at random. It takes O(nk) time and uses integers no larger than kn.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Knuth, D.E. (1998) The Art of Computer Programming. 3rd Edition, Addison-Wesley,

Reading, Boston.

[2] Korsh, J.F. (1993) Counting and Randomly Generating Binary Trees. Information
Processing Letters, 45, 291-294. https://doi.org/10.1016/0020-0190(93)90039-C

[3] Barcucci, E., Del Lungo, A. and Pergola, E. (1999) Random Generation of Trees and
Other Combinatorial Objects. Theoretical Computer Science, 218, 219-232.
https://doi.org/10.1016/S0304-3975(98)00322-3

[4] Korsh, J.F. (2011) Fast Generation of t-Ary Trees. The Computer Journal, 54, 776-785.
https://doi.org/10.1093/comjnl/bxq025

[5] Drmota, M. (2009) Random Trees. Springer, Wien, New York.
https://doi.org/10.1007/978-3-211-75357-6

[6] Knuth, D.E. (2006) The Art of Computer Programming, Volume 4, Fascicle 4: Ge-
nerating All Trees—History of Combinatorial Generation. Addison-Wesley, Read-
ing, Boston.

[7] Wu, R.-Y., Chang, J.-M., Chan, H.-C. and Pa, K.-J. (2014) A Loopless Algorithm for
Generating Multiple Binary Tree Sequences Simultaneously. Theoretical Computer
Science, 556, 25-33. https://doi.org/10.1016/j.tcs.2014.07.030

[8] Pai, K.-J., Chang, M.C., Wu, R.-Y. and Chang, S.-C. (2019) Amortized Efficiency of

https://doi.org/10.4236/am.2021.1212077
https://doi.org/10.1016/0020-0190(93)90039-C
https://doi.org/10.1016/S0304-3975(98)00322-3
https://doi.org/10.1093/comjnl/bxq025
https://doi.org/10.1007/978-3-211-75357-6
https://doi.org/10.1016/j.tcs.2014.07.030

J. F. Korsh

DOI: 10.4236/am.2021.1212077 1215 Applied Mathematics

Generation, Ranking and Unranking Left-Child Sequences in Lexicographic Order.
Discrete Applied Mathematics, 268, 223-236.
https://doi.org/10.1016/j.dam.2018.09.035

[9] Atkinson, M.D. and Sack, J.R. (1992) Generating Binary Trees at Random. Informa-
tion Processing Letters, 41, 21-23. https://doi.org/10.1016/0020-0190(92)90075-7

https://doi.org/10.4236/am.2021.1212077
https://doi.org/10.1016/j.dam.2018.09.035
https://doi.org/10.1016/0020-0190(92)90075-7

	Counting and Randomly Generating k-Ary Trees
	Abstract
	Keywords
	1. Introduction
	2. Representation of k-Ary Trees with n Nodes
	3. Construction Procedure
	4. Valid Sequences
	5. A Look Ahead
	6. Excess Sequences and Valid Sequences Are the Same
	7. Every Invalid Sequence Is One of the n − 1 Rotations of a Valid Sequence
	8. There Is a One-to-One Correspondence between n Node k-Ary Trees and Valid Sequences
	9. Conclusions
	Conflicts of Interest
	References

