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Abstract 
In this paper, we deduce Wiener number of some connected subgraphs in 
tilings (4, 4, 4, 4) and (4, 6, 12), which are in Archimedean tilings. And com-
pute their average distance. 
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1. Introduction 

One of the molecular-graph-based quantity W, introduced by Harold Wiener in 
1947 [1], is nowadays known as the name Wiener index or Wiener number. For 
a connected graph G, let V(G) denote the set of vertices and E(G) the set of 
edges. Then the Wiener number of G, denoted by W(G), is defined by: 

( )
( )

( )
,

, |
u v V G

W G d u v G
⊆

= ∑  

where ( ), |d u v G  is the distance between vertices of u and v, and the summation 
goes over all vertices in ( )V G . 

It is found that many physical and chemical properties that depend primarily 
on the compactness and the extent of branching are usually well correlated with 
W. And Wiener number has a lot of applications in different fields [2] [3] [4] 
[5]. 

From the definition of Wiener number, it is easy to find that the calculation of 
Wiener number in a lot of graphs is rather complicated. As a result, people 
research on the method of computing the Wiener number of graphs: such as the 
Wiener number of the hexagonal system; extremal tree on Wiener number and 
so on [6] [7] [8]. In 1947, Wiener already gave a much more convenient formula 
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to compute the Wiener number of trees: we denote a tree by T, ( )1n e  and 
( )2n e  are the number of vertices of T lying on the two sides of the edge e, then: 

( ) ( ) ( )1 2
e

W T n e n e= ∑  

where the summation goes over all edges of T. 
For a connected graph G, the average distance of G is another index, which 

depends on the Wiener number. The average distance of G is denoted by W(G), 
and is defined by:  

( ) ( )
2 ,
n

W G
W G

C
=                        (1) 

where n is the number of vertices of G. 
A plane tiling { }1 2, ,T T T= 

 is a countable family of closed sets which 
covers the plane without gaps and overlaps, where 1 2, ,T T   are known as tiles 
of T [9]. 

In a tiling, a vertex is of type 1 2 rn n n  if it is surrounded in cyclic order by 
regular n-gons of order 1 2, ,n n   and rn . 

There exist precise 11 distinct types of edge-to-edge tilings by regular polygons 
such that all vertices of the tiling are of the same type. These 11 types of tilings 
are usually called Archimedean tilings [9]. 

They are: (3, 3, 3, 3, 3, 3), (4, 4, 4, 4), (6, 6, 6), (4, 4, 3, 3, 3), (4, 8, 8), (4, 3, 4, 3, 
3), (6, 3, 6, 3), (6, 3, 3, 3, 3), (4, 6, 12), (12, 3, 12), (6, 4, 3, 4) (Figure 1). 

In this paper, we shall restrict attention to Archimedean tilings. And the subgra- 
phs in Archimedean tilings are simply-connected graphs. 
 

 
Figure 1. Some archimedean tilings. 
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Σ  be a finite a alphabet and let 1w  and 2w  be words of equal length over 
Σ . ( )1 2,H w w , the Hamming distance between 1w  and 2w , is the number of 
positions in which 1w  and 2w  differ. For the graph G, if each vertex ( )v V G∈  
can be labeled by a word ( )l v  of fixed length, such that ( ) ( )( ) ( ), ,H l u l v d u v=  
for all ( ),u v V G∈ , we call it Hamming graph. In particular, if { }0,1Σ = , we 
call G a binary Hamming graph. 

G is a subgraph of one of tilings (4, 4, 4, 4), (6, 6, 6), (4, 8, 8), (4, 6, 12). An 
elementary cut segment C is a straight line segment drawn orthogonal to some 
edges; starting from the perimeter and ending at the perimeter; and touching the 
perimeter only twice; deleting the edges which orthogonal to C, there are exactly 
two connected components (Figure 2). 

About fifty years later, Sandi Klavzar, Ivan Gutman, Bojan Mohar found a 
similarly convenient way to calculate the Wiener number of binary Hamming 
graphs [10]. Later, they proved that all connected subgraphs of tiling (6, 6, 6) are 
binary Hamming graphs, and they computed the Wiener number of some benze- 
noid hydrocarbons [11]. Furthermore, only four tilings in Archimedean tilings, 
which are (4, 4, 4, 4), (6, 6, 6), (4, 8, 8) and (4, 6, 12) tilings, all their connected 
subgraphs are binary Hamming graphs that are proved. And follow the way men- 
tioned in [10], a convenient way to compute the Wiener number of the subgraphs 
of tilings (4, 4, 4, 4), (6, 6, 6), (4, 8, 8) and (4, 6, 12) are proved [12], which is 
called the elementary cut method. Let G be a binary Hamming graph on n vertices 
and with k elementary cut segments. For 1, ,i k=  , let in  be the number of 
vertices of G in one of the components of the graph obtained from G by removing 
the ith elementary cut. 

Then: 

( ) ( )
1

,
k

i i
i

W G n n n
=

= −∑                        (2) 

The elementary cut method is similar to the formula to compute the Wiener 
number of trees. 

In this paper, we deduce the Wiener number of some interesting subgraphs in 
tilings (4, 4, 4, 4) and (4, 6, 12), and compute their average distance. 
 

 

Figure 2. Elementary cut segment. 
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2. The Wiener Number of Some Subgraphs in Tiling 
(4, 4, 4, 4) and (4, 6, 12) 

1) Aztec diamond graph. A Aztec Diamond of order n, denoted by Hn, is a 
plane graph consisted by squares of length 1 (Figure 3 and Figure 4). Many 
work has been done about Aztec Diamond graph, such as the problem of perfect 
matching and independent set of it [10] [11]. Now we consider the Wiener number 
of Aztec Diamond. 

In Figure 4, we give the horizontal elementary cut segments of Hn. There exist 
one additional groups of symmetry-equivalent elementary cut segments, obtained 
by rotating the former group by +90˚. Therefore, if one applies Equation (2) to 
only the horizontal elementary cut segments, the result will be just one second of 
the Wiener number of Hn. 
 

 

Figure 3. Aztec diamond graph H1, H2, H3, H4. 
 

 

Figure 4. Aztec diamond graph Hn. 
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First, we calculate the number of Hn. It is easy to get: 

( ) ( )
( ) ( )
( ) ( )

( ) ( )

1

1

1 2

2 1

4 4,

4( 1) 4,

4( 2) 4,

4 4,

n n

n n

n n

n H n H n

n H n H n

n H n H n

n H n H

+

−

− −

− = +

− = − +

− = − +

− = +



 

To sum up the equations above, we get: 

( ) ( ) ( ) 2
1 1 4 1 2 3 4 2 6 ,nn H n H n n n n+ − = + + + + + = +  

That is: ( ) 22 2nn H n n= + . 
For arbitrary horizontal elementary cut segment ( )1,2, ,iC i n= 

,  

( ) ( )0 2 4 2 1
iCn G i i i= + + + = + . 

Denote ( )1, , 2 1iC i n= −
 contribute to the Wiener number of G is 1W , 

then we have:  

( ) ( ) ( ) ( ) ( )
1 20 1 2 2

1
1

2 1 2 2 1 1 ,
i i

i

n

C C
C i

W n G n G i i n n i i n n
−

=

 = = + + − + + + ∑ ∑  

Simplify the equation above:  

( ) ( )( )5 4 3 2
12 2 15 14 35 20 5 4 .nW H W n n n n n= = + + − −  

Furthermore, we get ( )( )
( )( )

2

5 4 3 2

2
2 2

2 15 14 35 20 5 4

n n

n n n n n
W H n

C
+

+ + − −
= . Wh- 

en n gets large enough, ( )( )W H n  approximates to ( )14 15 n . 

2) Zig-zag polyomino chain 
As illustrate in Figure 5, it is a zig-zag chain G which contains n squares. Notice 

that n is even, suppose that 2n m= . It is easy to get ( ) 2 2n G n= + . 
In Figure 5 are indicated two groups of elementary cut segments: one group is 

horizontal elementary cut segments ( )1, ,iC i m= 
 (labeling from up to down), 

another group is ( )1, , 1jA j m= +
 (labeling from left to right). 

Denote ( )1, ,iC i m= 
 contribute to the Wiener number of G is 1W , 

( )1, , 1jA j m= +
 contribute to the Wiener number of G is 2W . 

 

 

Figure 5. Zig-zag polyomino chain. 
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( ) ( ) ( ) ( )( )
2

0 1
1

1
6 2 1 3 4 2 2 3 4 ,

i i
i

m

C C
C k

W n G n G n k n k
−

=

= = − + + + − −∑ ∑  

( ) ( ) ( ) ( )( )
3

0 1
2

1
8 10 2 3 5 4 2 2 5 4 .

j j
j

m

A A
A k

W n G n G n n k n k
−

=

= = + − + + + − −∑ ∑  

Simplify the two equations above:  

( ) ( )3 2
1 1 3 7 6 ,W n n n= + +  

( ) ( )3 2
2 1 3 31 6 1.W n n n= + + −  

Then we get:  

( ) ( ) ( )3 2
1 2 2 3 2 19 3 1.W G W W n n n= + = + + −  

Furthermore, we get ( ) ( ) ( )3 2

2
2 2

2 3 2 19 3 1

n

n n n
W G

C +

+ + −
= . When n gets large 

enough, ( )( )W H n  approximates to ( )1 12 n . 

3) At last, we give a linear subgraph G of tiling (4, 6, 12), as illustrated in 
Figure 6. It contains n regular dodecagons. 

It is easy to calculate: when 1n = , ( ) 2304W G = ; when 2n = ,  
( ) 11556W G = ; when 3n = , ( ) 29052W G = ; when 4n = , ( ) 70020W G = . 

Next, we compute the Wiener number of G when 5n ≥ . 
It is easy to get the number of vertices of G is: 

( ) ( )36 24 1 24 12.n G n n= + − = +  

There are four groups elementary cut segments: the first is horizontal elementary 
cut segment C, ( )0 12 6Cn G n= + , denote C contribute to ( )W G  is 1W ; the se- 
cond group is ( )1,2, , 2 1kH k n= +

, ( )0 6 12
kHn G k= + , denote this group con- 

tribute to ( )W G  is 2W ; the third group is jA  and jA′   
( )1,2, ,j n= 

, here jA′  can be obtained by rotating jA  a certain angle, so jA  
and jA′  ( )1,2, ,j n= 

 contribute to ( )W G  are the same, denote  
( )1,2, ,jA j n= 

 contribute to ( )W G  is 3W ; the fourth group is iC  and iC′  
( )1,2, , 2i n= +

, here iC′  can be obtained by rotating iC  a certain angle, so 

iC  and iC′  ( )1,2, , 2i n= +
 contribute to ( )W G  are the same, denote iC  

( )1,2, , 2i n= +
 contribute to ( )W G  is 4W . 

 

 

Figure 6. A linear subgraph G of tiling (4, 6, 12). 
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By calculating: 

( )2 2
1 12 6 144 144 36,W n n n= + = + +  

( ) ( )

( ) ( )( )

0 1
2

2

0
3 2

6 24 12 6 6 12 24 12 6 12

192 288 168 36,

k k
k

H H
H

n

k

W n G n G

n k n k

n n n
=

=

= + − + + + − −

= + + +

∑

∑  

( ) ( )

( )( )

0 1
3

1

0

3 2

18 24 24 12 18 24

192 288 168 ,

j j
j

A A
A

n

j

W n G n G

j n j

n n n

−

=

=

= + + − −

= + +

∑

∑  

( ) ( )
( ) ( ) ( )

( )( )

0 1
4

4

1
3 2

12 24 12 6 42 24 12 21 84 24 12 42

42 24 24 12 42 24

96 144 516 90.

i i
i

C C
C

n

i

W n G n G

n n n

i n i

n n n

−

=

=

= + − + + − + + −

+ + + − −

= + + −

∑

∑
 

Therefore the Wiener number of G is:  

( ) 3 2
1 2 3 42 2 576 1008 1512 108.W G W W W W n n n= + + + = + + −  

Furthermore, we get ( )
3 2

2
24 12

576 1008 1512 108

n

n n nW G
C +

+ + −
= . When n gets large 

enough, ( )( )W H n  approximates to 2n. 

3. Conclusion Remark 

In this paper, we deduce the Wiener number of Aztec Diamond graph, zig-zag poly- 
omino chain in tiling (4, 4, 4, 4) and a linear subgraph in tiling (4, 6, 12), and 
find their average distance. 
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