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Abstract 
Recently we have reported a new method of rational approximation of the 
sinc function obtained by sampling and the Fourier transforms. However, this 
method requires a trigonometric multiplier that originates from the shifting 
property of the Fourier transform. In this work, we show how to represent 
the Fourier transform of a function ( )f t  in form of a ratio of two polyno-
mials without any trigonometric multiplier. A MATLAB code showing algo-
rithmic implementation of the proposed method for rational approximation 
of the Fourier transform is presented. 
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1. Introduction 

The forward and inverse Fourier transforms of two related functions ( )f t  and 
( )F ν  can be defined in a symmetric form as [1] [2]: 

( ){ }( ) ( ) ( ) 2e di tf t F f t tνν ν
∞

−

∞

π

−

= = ∫                 (1) 

and: 

( ){ }( ) ( ) ( )1 2e d ,i tF t f t F νν ν ν
∞

−

π−

∞

= = ∫                (2) 

where variables t and ν  are the corresponding Fourier-transformed arguments 
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in t-space and ν -space, respectively (time t vs. frequency ν , for example). 
Fourier transform methods are widely used in many applications including 

signal processing [1] [2], spectroscopy [3] [4] and computational finance [5] [6] 
[7]. 

There are several efficient methods that have been reported for rational ap-
proximations in literature. For example, the rational approximations may be built 
on the basis of the Newman nodes [8], Chebyshev nodes [9], logarithmic nodes 
[10] and so on. 

Recently we have reported a new method of rational approximation of the 
Fourier transform (1) as given by [11]: 

( ){ }( ) ( )
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where M is an integer determining the number of summation terms 12M − , a  
is a shift constant, σ  is a decay (damping) constant and: 
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are expansion coefficients. 
It has been noticed that approximation (3) is not purely rational and there was 

a question whether or not a rational function of the Fourier transform (1) in ex-
plicit form without any trigonometric multiplier of the kind: 

( ) ( )2e cos 2 sin 2 ,i a a i aν ν νπ +π π=                (4) 

depending on the argument ν , can be obtained [12]. Theoretical analysis shows 
that this trigonometric multiplier originating from the shifting property of the 
Fourier transform can be indeed excluded. As a further development of our work 
[11], in this paper, we derive a rational function of the Fourier transform (1) that 
has no any trigonometric multiplier of the kind (4). Therefore, it can be used as 
an alternative to the Padé approximation. To the best of our knowledge, this me-
thod of rational approximation of the Fourier transform (1) for a non-periodic 
function ( )f t  has never been reported in scientific literature. 

2. Derivation 
2.1. Preliminaries 

Assume that ( ){ }Re f t  is even while ( ){ }Im f t  is odd such that :f →  , 
but { }Re :f → 

 and { }Im :f → 
. Then it is not difficult to see that the 

Fourier transform (1) of the function ( )f t  can be expanded into two integral 
terms as follows: 
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( ){ }( ) ( ) ( ){ } ( ) ( ){ } ( )
0 0
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∞ ∞

= = +π π∫ ∫  

Assume also that the function ( )f t  behaves in such a way that for some 
positive numbers 1τ  and 2τ  the following integrals: 

( ){ } ( )
1

Re cos 2 d 0f t t t
τ

ν
∞

π ≈∫  

and: 

( ){ } ( )
2

Im sin 2 d 0f t t t
τ

ν
∞

π ≈∫  

are negligibly small and can be ignored in computation. Consequently, we can 
approximate the Fourier transform as given by: 

( ){ }( ) ( ) ( ){ } ( ) ( ){ } ( )
1 2

0 0

2 Re cos 2 d 2 Im sin 2 d .f t F f t t t f t t t
τ τ

ν ν ν ν= ≈ +π π∫ ∫ (5) 

Further the values 12τ  and 22τ  will be regarded as widths (pulse widths) for 
the real and imaginary parts of the function ( )f t , respectively. 

2.2. New Sampling Method 

Consider a sampling Formula (see, for example, Equation (3) in [13]): 

( ) ( ) ( ) ( )sinc ,
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n n
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f t f t t t t
h

ε
=−
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∑                 (6) 

where: 
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1, 0,
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t t
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is the sinc function, nt  is a set of sampling points, h is small adjustable parame-
ter (step) and ( )tε  is error term. François Viète discovered that the sinc function 
can be represented by cosine product1 [14] [15]: 
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In our earlier publications we introduced a product-to-sum identity [16]: 
12

1
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1 2 1cos cos
2 2 2
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and applied it for sampling [17] [18] as incomplete cosine expansion of the 
sinc function for efficient computation of the Voigt/complex error function. It is 
worth noting that this product-to-sum identity has also found some efficient ap-
plications in computational finance [6] [19] [20] involving numerical integra-
tion. 

Comparing identities (7) and (8) immediately yields: 

 

 

1This equation is also attributed to Euler. 
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Unlike Equation (7), this limit consists of sum of cosines instead of product of 
cosines. As a result, its application provides significant flexibilities in various nu-
merical integrations [6] [17] [18] [19] [20]. 

Change of variable 12M M− →  in the limit above leads to: 

( )
1

1sinc lim 1os 2c .
M

M m

mt t
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− =  
 

∑  

Therefore, by truncating integer M and by making another change of variable 
t t h→ π  we obtain: 
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1sinc co
1 2

s , .
M

m

m
t t Mh t Mh
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π −   ≈ − ≤ ≤  
   

π ∑          (9) 

The right side of Equation (9) is periodic due to finite number of the summa-
tion terms. As a result, the approximation (9) is valid only within the interval 

[ ],t Mh Mh∈ − . 
At equidistantly separated sampling grid-points such that nt nh= , the subs-

titution of approximation (9) into sampling Formula (6) gives: 
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π
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∑ ∑   (10) 

It is important that in sampling procedure the total number of the sampling 
grid-points 2 1N +  as well as the step h should be properly chosen to insure that 
the widths 12τ  and 22τ  are entirely covered. 

As we can see, the sampling Formula (10) is based on incomplete cosine ex-
pansion of the sinc function that was proposed in our previous works [17] [18] 
as a new approach for rapid and highly accurate computation of the Voigt/complex 
error function [21] [22] [23]. Computations we performed show that this me-
thod of sampling is particularly efficient in numerical integration. 

2.3. Even Function 

Suppose that our objective is to approximate the sinc function ( )sinc νπ . First 
we take the inverse Fourier transform (2) of the sinc function: 

( ){ }( ) ( ) ( )1 2sinc sinc e d rect ,i tt tνν ν ν
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where:  
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= =
 >

 

is known as the rectangular function. This function is even since ( ) ( )rect rectt t= − . 
The rectangular function ( )rect t  has two discontinuities at 1 2t = −  and 1 2t = . 
Therefore, it is somehow problematic to perform sampling over this function. 
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However, we can use the fact that: 

( )
( )2

1rect lim .
2 1kk

t
t→∞

=
+

                     (11) 

Thus, by taking a sufficiently large value for the integer k, say 35k = , we can 
approximate the rectangular function (11) quite accurately as: 

( ) ( )
( )70

1rect .
2 1

t f t
t

≈ =
+

 

Figure 1 shows the function ( ) ( )( )701 2 1f t t= +  by blue curve. As we can 
see from this figure, the function very rapidly decreases at 1 2t >  with in-
creasing t. Therefore, we can take 1 0.6τ = . Thus, the width of this function is 

12 1.2τ = . 
Sampling of function ( ) ( )( )701 2 1f t t= +  in accordance with Equation (10) 

results in a periodic dependence. Consequently, due to periodicity on the right 
side of Equation (10) it cannot be utilized for rational approximation of the Fouri-
er transform. However, this problem can be effectively resolved by sampling the 
function ( )e tf t σ  instead of ( )f t  itself. This leads to: 

( ) ( ) ( ) ( )
1

1e e cos ,
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m
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σ σ
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π
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∑ ∑  (12) 

Figure 2 shows the results of computation for even function  
( ) ( )( )701 2 1f t t= +  by approximation (12) at 32M = , 28N = , 0.04h =  wi- 

th 0σ =  (blue curve), 0.25σ =  (red curve) and 0.75σ =  (green curve). As we 
can see from this figure, all three curves are periodic as expected. However, if 
the constant σ  is big enough, then slight rearrangement of Equation (12) in 
form: 

( ) ( ) ( ) ( )
1

e e cos
1 2

,
t M N

nh

m n N

m
f t f nh t nh

M Mh

σ
σ

−

= =−

− 
≈ − 



π


∑ ∑         (13) 

can effectively eliminate this periodicity due to presence of the exponential de-
cay multiplier e tσ−  on the right side. This suppression effect can be seen from  
 

 

Figure 1. The even ( )( )701 2 1t +  and odd ( )( )702 1t t +  functions shown by blue and 

red curves, respectively. 
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Figure 2. Approximation (12) to the function ( ) ( )70e e 2 1t tf t tσ σ  = +   computed at 

32M = , 28N = , 0.04h =  with 0σ =  (blue curve), 0.25σ =  (red curve) and 
0.75σ =  (green curve). 

 
Figure 3 illustrating the results of computation for the even function  
( ) ( )( )701 2 1f t t= +  by approximation (13) at 32M = , 28N =  with 0σ =  

(blue curve), 0.25σ =  (red curve) and 0.75σ =  (green curve). As it is depicted 
by blue curve, at 0σ =  the function is periodic. However, as decay coefficient 
σ  increases, the exponential multiplier e tσ−  suppresses all the peaks (except 
the first peak at the origin) such that the resultant function tends to become so-
litary along the entire positive t-axis. This tendency can be observed by red and 
green curves at 0.25σ =  and 0.75σ = , respectively. As a consequence, if the 
damping multiplier σ  is big enough, say greater than unity, the approximated 
function becomes practically solitary as the original function ( ) ( )( )701 2 1f t t= +  
itself. 

Thus, substituting approximation (13) into Equation (5) and considering the 
fact that at sufficiently large σ  the function becomes solitary along positive 
x-axis, the upper limit 1τ  of integration can be replaced by infinity as2: 
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This integral can be taken analytically in form of rational function now and 
after some trivial rearrangements that exclude double summation, it follows that  

( ){ }{ }( )
2

2 4
1

Re ,
M

m m

m m m

f t
α β ν

ν
κ λ ν ν=

+
≈

+ +
∑              (14) 

where the expansion coefficients are given by: 

 

 

2For this integration we imply that the interval 2Nh  along t-axis occupied by sampling grid-points 
is larger than the function width 12 1.2τ = . 
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Figure 3. Evolution to the function ( ) ( )701 2 1f t t = +   computed by approximation (13) 

at 32M = , 28N = , 0.04h =  with 0σ =  (blue curve), 0.25σ =  (red curve) and 
0.75σ =  (green curve). 
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Figure 4 shows the original sinc function ( )sinc ν  and its approximation (14) 
within the interval 2 2ν− π ≤ ≤ π  at 32M = , 28N = , 0.04h =  and 2.75σ =  
by black dashed and light blue curves, respectively. These two curves are not vi-
sually distinctive. 

2.4. Odd Function 

Consider, as an example, the following function: 

( )
( )

( )70 rect .
2 1

itf t it t
t

= ≈
+

 

We can see that the condition ( ) ( )( )r rt ect t t ect t= − − −  for odd function in 
its imaginary part is satisfied. The function ( ){ } ( )( )70Im 2 1f t t t= +  is shown 
in Figure 1 by red curve. We can take 2 0.6τ =  and the width is 22 1.2τ = . 

Using exactly same procedure as it has been described above and considering 
the fact that at sufficiently large σ  the upper limit 2τ  of integration can be 
replaced by infinity, we can write3: 

 

 

3In this integration we imply again that the interval 2Nh  along t-axis occupied by sampling 
grid-points is larger than the function width 22 1.2τ = . 
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Figure 4. Approximations of the functions ( )sinc νπ  and  

( ) ( )( ) ( )( )2sin cos 2ν ν ν νπ π π π−  within interval 2 2ν− π ≤ ≤ π . Both approximations 

are obtained by Equations (14), (15) for input functions ( )( )701 2 1t +  and ( )( )702 1it t +  

at 32M = , 28N = , 0.04h = , 2.7σ =  (light blue curve) and at 32M = , 28N = , 
0.04h = , 3σ =  (gray curve), respectively. The original functions ( )sinc νπ  and 

( ) ( )( ) ( )( )2sin cos 2ν ν ν νπ π π π−  are also shown by black dashed curves for compari-

son. 
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This leads to: 
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where the expansion coefficients are: 
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The Fourier transform of the function ( )rectit t  can be readily found analyt-
ically: 
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Gray curve in Figure 4 illustrates the Fourier transform of the function 
( ) ( )( )702 1f t it t= +  obtained by using approximation (15) at 32M = , 28N = , 

0.04h =  and 3σ = . The original function: 

( ){ }( ) ( ) ( )
( )2

sin cos
rect

2
it t

ν ν ν
ν

ν

π π π−

π
=  

is also shown for comparison by black dashed curve. These two curves in the in-
terval 2 2ν− π ≤ ≤ π  are also not distinctive visually. 

3. Accuracy 

Figure 5 shows the absolute difference between original sinc function ( )sinc νπ  
and its approximation (14) for input function ( ) ( )( )701 2 1f t t= +  calculated 
at 32M = , 28N = , 0.04h =  and 2.7σ = . As we can see, the absolute dif-
ference within the interval 2 2ν− π ≤ ≤ π  does not exceed 2.5 × 10−3. This accu-
racy is better than that of shown in our recent publication, where we used Equa-
tion (3) for the sinc function approximation (see Figure 6 in [11]). 

Figure 6 shows the absolute difference between original function given by 

( ) ( )( ) ( )( )2sin cos 2ν ν ν νπ π π π−  and its approximation (15) for input func-

tion ( ) ( )( )702 1f t it t= +  calculated at 32M = , 28N = , 0.04h =  and 3σ = . 

We can see that the absolute difference within the interval 2 2ν− π ≤ ≤ π  does 
not exceed 6 × 10−4. 

It should be noted that with more well-behaved functions we can obtain con-
siderably higher accuracies. For example, suppose that we need to obtain the 
Fourier transform of the function ( ) ( ) ( )2 23 2e et tf t i t− −π π = +  

π


π  by using ap-
proximations (14) and (15). Analytically, its Fourier transform is: 

( ) ( ){ }( )
2 2 2 23 2e e e e ,t ti t ν νν νπ π− − − − + = + 

π π   

 

 

Figure 5. Absolute difference between the original sinc function ( )sinc νπ  and its ra-

tional approximation (14) for input function ( ) ( )( )701 2 1f t t= +  at 32M = , 28N = , 

0.04h =  and 2.7σ = . 
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Figure 6. Absolute difference between the original function  

( ) ( )( ) ( )( )2sin cos 2ν ν ν νπ π π π−  and its rational approximation (15) for input function 

( ) ( )( )702 1f t it t= +  at 32M = , 28N = , 0.04h =  and 3σ = . 

 
where 

2
e ν−  is the Fourier transform of ( )2e t− ππ  while 

2
e νν −  is the Fourier 

transform of ( )23 2 e ti t − ππ . 
Blue curve in Figure 7 corresponds to the absolute difference between func-

tion 
2

e ν−  and its approximation (14) for input function ( )2e t− ππ  at 16M = , 
23N = , 0.119h =  and 6.9σ = . Red curve in Figure 7 corresponds to the ab-

solute difference between function 
2

e νν −  and its approximation (15) for input 
function ( )23 2 e ti t − ππ  at 16M = , 23N = , 0.119h =  and 5.9σ = . We can see 
that with only 16 summation terms the absolute differences do not exceed 3 × 
10−10 and 9 × 10−10. These results demonstrate that the rational approximations (14) 
and (15) can be highly accurate in the Fourier transform of well-behaved func-
tions. 

In our recent work [24] we applied alternative method of sampling by using 
incomplete cosine expansion of the Gaussian function of kind ( ) ( )2

e t ch c− π , 
where c and h are the fitting parameters. We have shown that this method of 
sampling can also be used to obtain high-accuracy computation of the Voigt/com- 
plex error function. In our future work will apply this method of sampling as an 
alternative that may reduce the absolute difference for rational approximations 
of the piecewise functions with discontinuities. 

4. Alternative Representation 

For a function ( ) ( ){ } ( ){ }Re Imf t f t i f t= + , where its real part ( ){ }Re f t  is 
even and its imaginary part ( ){ }Im f t  is odd, we can write: 
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Figure 7. Absolute difference between the original functions 
2

e ν−  and its approxima-

tion (14) for input function ( )2e t− ππ  at 16M = , 23N = , 0.04h =  and 6.9σ =  (blue 

curve). Absolute difference between the original functions 
2

e νν −  and its approxima-

tion (15) for input function ( )23 2 e ti t − ππ  at 16M = , 23N = , 0.04h =  and 5.9σ =  (red 
curve). 
 

Using a Computer Algebra System (CAS) supporting symbolic programming 
it is not difficult to find coefficients kp  and kq  to represent this approxima-
tion as: 

( ){ }( ) ( )
( )

,
P

f t
Q
ν

ν
ν

≈                        (16) 

where: 

( ) 2 4 2 4 1
0 1 2 4 2 4 1

M M
M MP p p p p pν ν ν ν ν− −
− −= + + + + +  

and: 

( ) 2 4 4 2 4
0 1 2 2 1 2 ,M M

M MQ q q q q qν ν ν ν ν−
−= + + + + +  

are polynomials of the orders 4 1M −  and 4M , respectively. 
Padé approximation is one of the efficient methods to represent a function in 

form of ratio of two polynomials. Our preliminary numerical results show that 
the proposed new method of rational approximation may significantly extend 
the range [ ]min max,ν ν  in coverage [12] than the conventional Padé approxima-
tion. 

5. MATLAB Code and Description 

The MATLAB code shown below is written as a function file raft.m that can be 
simply copied and pasted to create m-file in the MATLAB environment. The 
name of this function file originates from the abbreviation RAFT that stands for 
Rational Approximation of the Fourier transform. The command raft(opt) per-
forms sampling and then computation of the expansion coefficients mα , mβ , 

mη , mθ , mκ , mλ , mµ . Once the coefficients are determined, the program ex-
ecutes the Fourier transform according to Equations (14) and (15) for even and 
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odd input functions, respectively. The results of computations are generated in 
two plots. The first plot shows the Fourier transform of input function while the 
second plot illustrates its absolute difference. 

There are four option values for opt argument. At opt = 0, opt = 1, opt = 2 and 
opt = 3 the corresponding input functions are ( )rect t , ( )rectit t , ( )2e t− ππ  
and ( )23 2 e ti t − ππ . The default value is opt = 0 signifying that for the commands 
without argument raft and raft(), the value zero for opt is assigned. 

The authors did not attempt to optimize the code but rather to write it in a 
simple way with required comment lines in order to make it clear and intuitive 
for reading. The program was built and tested on MATLAB 2014a. However, the 
code should run in any version of MATLAB since it utilizes the most common 
commands. 
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6. Conclusions 

In this work we derived a rational approximation of the Fourier transform that 
with help of a CAS can be readily rearranged as: 

( ){ }( ) ( )
( )

.
P

f t
Q
ν

ν
ν

≈  

This method of the rational approximation is based on integration involving 
an exponential decay multiplier e tσ− . The computational test we performed 
shows that this method of the Fourier transform can provide relatively accurate 
approximations even for the functions with discontinuities like ( )rect t  and 

( )rectit t . Furthermore, this method shows that for the well-behaved function 
( ) ( ) ( )2 23 2e et tf t i t− −π π = +  

π


π  with only 16 summation terms the rational 
approximations (14) and (15) provide the Fourier transform with absolute 
differences not exceeding 3 × 10−10 and 9 × 10−10 for its real and imaginary 
parts, respectively. Our preliminary results indicate that the proposed me-
thod may be promising for rational approximation over the wide range 
[ ]min max,ν ν . 
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