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In this article, we discuss the de Rham cohomology class for bislant submanifolds in nearly trans-Sasakian manifolds. Moreover,
we give a classification of warped product bislant submanifolds in nearly trans-Sasakian manifolds with some nontrivial examples
in the support. Next, it is of great interest to prove that there does not exist any doubly warped product bislant submanifolds other
than warped product bislant submanifolds in nearly trans-Sasakian manifolds. Some immediate consequences are also obtained.

1. Introduction and Motivations

The most inventive topic in the field of differential geometry
currently is the theory of warped product manifolds. These
manifolds are the most fruitful and natural generalization
of Riemannian product manifolds. Due to the important
roles of the warped product in mathematical physics and
geometry, it has become the most active and interesting
topic for researchers, and many nice results are available in
the literature (see [1–3]).

Chen [4, 5] initiates the concept of warped product sub-
manifolds by proving the nonexistence result of warped
product CR-submanifolds of type N ⊥ × fN T in Kähler
manifolds, where N ⊥ and N T are anti-invariant and invari-
ant submanifolds, respectively. Moreover, he considers
warped product CR-submanifolds of type N T × fN ⊥ and
gives an inequality involving a warping function f and the
squared norm of the second fundamental form khk2.

On the other hand, the concept of ordinary warped
products can be extended to doubly warped products. By
using this generalization, Sahin [6] shows that there exist
no doubly warped product CR-submanifolds in Kähler man-
ifolds other than warped product CR-submanifolds. He also
investigates the existence of doubly twisted product CR-
submanifolds in the same ambient. Many geometers have

obtained several results on warped products and doubly
warped products [7–12].

The concept of bislant submanifolds is defined by Cab-
rerizo et al. [13] as the natural generalization of contact
CR-, slant, and semislant submanifolds. Such submanifolds
generalize invariant, anti-invariant, and pseudoslant subma-
nifolds as well. Recently, the warped product bislant subma-
nifolds in nearly trans-Sasakian manifolds is studied by
Siddiqui et al. in [1]. They obtain several inequalities for
the squared norm of the second fundamental form in terms
of a warping function f .

In this paper, firstly, we discuss the de Rham cohomol-
ogy class for closed bislant submanifolds in a nearly trans-
Sasakian manifold. Secondly, in view of embedding theorem
of Nash [14], we study an isometric immersion of a warped
product bislant submanifold into an arbitrary nearly trans-
Sasakian manifold. Then, we investigate the existence of
doubly warped products in the same ambient.

2. Nearly Trans-Sasakian Manifolds and
their Submanifolds

Definition 1 (see [15]). A ð2m + 1Þ-dimensional differentia-
ble manifold �N is said to have an almost contact structure
ðϕ, ξ, η, gÞ if there exists on �N , where
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(i) a tensor field ϕ of type ð1, 1Þ
(ii) a vector field ξ

(iii) a 1-form η

(iv) a Riemannian metric g

such that

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ξð Þ = 1, η ∘ ϕ = 0, η Xð Þ = g X, ξð Þ,
g ϕX, ϕYð Þ = g X, Yð Þ − η Xð Þη Yð Þ, g ϕX, Yð Þ + g X, ϕYð Þ = 0,

ð1Þ

for any X, Y ∈ T �N .

The covariant derivative of the tensor field ϕ is given by

�∇Xϕ
� �

Y = �∇XϕY − ϕ�∇XY , ð2Þ

for any X, Y ∈ T �N .
In 2000, Gherghe introduced a notion of nearly trans-

Sasakian structure of type ðα, βÞ, which generalizes the
trans-Sasakian structure. A nearly trans-Sasakian structure
of type ðα, βÞ is called nearly α-Sasakian (resp. nearly β-Ken-
motsu) if β = 0 (resp. α = 0).

Definition 2 (see [16]). An almost contact metric structure
ðϕ, ξ, η, gÞ on �N is called a nearly trans-Sasakian structure if

�∇Xϕ
� �

Y + �∇Yϕ
� �

X = α 2g X, Yð Þξ − η Yð ÞX − η Xð ÞYð Þ − β η Yð ÞϕX + η Xð ÞϕYð Þ,
ð3Þ

for any X, Y ∈ T �N .

Remark 3.

(i) A nearly trans-Sasakian structure of type ðα, βÞ is

(a) nearly Sasakian if β = 0, α = 1 [17]

(b) nearly Kenmotsu if α = 0, β = 1 [18]

(c) nearly cosymplectic if α = β = 0 [19]

(ii) Remark that every Kenmotsu manifold is a nearly
Kenmotsu manifold but the converse is not true.
Also, a nearly Kenmotsu manifold is not a Sasakian
manifold. On another hand, every nearly Sasakian
manifold of dimension greater than five is a Sasakian
manifold.

We put dim N = n and dim �N = 2m + 1. The Riemann-
ian metric for N and �N is denoted by the same symbol g.
Let TN and T⊥N denote the Lie algebra of the vector field

and set of all normal vector fields on N , respectively. The
operator of covariant differentiation with respect to the
Levi-Civita connection in N and �N is denoted by ∇ and �∇
, respectively. The Gauss and Weingarten formulae are
respectively given as [15]

�∇XY = ∇XY + h X, Yð Þ, ð4Þ

�∇XV = −AV Xð Þ + ∇⊥
XY , ð5Þ

for any X, Y ∈ TN and V ∈ T⊥N . Here, h is the second
fundamental form, A is the shape operator, and ∇⊥ is the
operator of covariant differentiation with respect to the lin-
ear connection induced in the normal bundle T⊥N .

The second fundamental form and the shape operator
are related as [15]

g h X, Yð Þ,Vð Þ = g AV Xð Þ, Yð Þ, ð6Þ

for any X, Y ∈ TN and V ∈ T⊥N . Here, g denote the
induced metric on N as well as the Riemannian metric on
�N .

Let x ∈N and fE1,⋯,Eng be a local orthonormal
frame of TxN and fEn+1,⋯,E2m+1g be a local orthonormal
frame of T⊥

xN . The mean curvature vector H of a submani-
fold N at x is given by [15]

H = 1
n
〠
n

i=1
h Ei,Eið Þ: ð7Þ

A submanifold N of �N is said to be [15]

(i) totally umbilical if hðX, YÞ = gðX, YÞH , for any X,
Y ∈ TN

(ii) totally geodesic if hðX, YÞ = 0, for any X, Y ∈ TN

(iii) minimal if H = 0, that is, trace h ≡ 0

For any X ∈ TN , we put [15]

ϕX = PX + FX, ð8Þ

where PX = tangentðϕXÞ and FX = normalðϕXÞ. Then P
is an endomorphism of TN , and F is the normal bundle val-
ued 1-form on TN . In the same way, for any V ∈ T⊥N , we
put [15]

ϕV = BV +CV , ð9Þ

where BV = tangentðϕV Þ and CV = normalðϕV Þ. It is
easy to see that P and C are skew-symmetric and

g FX,Vð Þ = −g X, BVð Þ, ð10Þ

for any X ∈ TN and V ∈ T⊥N .

Definition 4. A submanifold N of an almost contact metric
manifold �N is said to be invariant if F ≡ 0, that is, ϕX ∈ T
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N , and anti-invariant if P ≡ 0, that is, ϕX ∈ T⊥N , for any
X ∈ TN .

In contact geometry, Lotta introduced slant immersions
as follows [20].

Definition 5. Let N be a submanifold of an almost contact
metric manifold �N . For each nonzero vector X ∈ TxN − f
ξxg and x ∈N , the angle θðpÞ ∈ ½0, π/2� between ϕX and P
X is called slant angle ofN . If slant angle is constant for each
X ∈ TxN − fξxg, then the submanifold is called the slant
submanifold.

For slant submanifolds, the following facts are known:

P2 Xð Þ = cos2θ −X + η Xð Þξð Þ,
g PX, PYð Þ = cos2θ g X, Yð Þ − η Yð Þη Xð Þð Þ, ð11Þ

g FX, FYð Þ = sin2θ g X, Yð Þ − η Yð Þη Xð Þð Þ, ð12Þ

for any X, Y ∈ TN . Here, θ is slant angle of N .

Remark 6. If we assume

(i) θ = 0, then N is an invariant submanifold

(ii) θ = π/2, then N is an anti-invariant submanifold

(iii) θðpÞ ∈ ð0, π/2Þ, then N is a proper slant submanifold

There are some other important classes of submanifolds
which are determined by the behavior of tangent bundle of
the submanifold under the action of an almost contact met-
ric structure ϕ of �N [1]:

(i) A submanifold N of �N is called a contact CR-sub-
manifold of �N if there exists a differentiable distri-
bution D on N whose orthogonal complementary
distribution D⊥ is anti-invariant

(ii) A submanifold N of �N is called a semislant subma-
nifold of �N if there exists a pair of orthogonal distri-
butions D and Dθ such that D is invariant and Dθ is
proper slant

(iii) A submanifold N of �N is called pseudoslant subma-
nifold of �N if there exists a pair of orthogonal distri-
butions D⊥ and Dθ such that D⊥ is anti-invariant
and Dθ is proper slant

Definition 7 (see [13]). A submanifold N of an almost con-
tact metric manifold �M is said to be a bislant submanifold if
there exists a pair of orthogonal distributions Dθ1

and Dθ2
of

N such that

TN =Dθ1
⊕Dθ2

⊕ ξf g: ð13Þ

(i) PDθ1
⊥Dθ2

and PDθ2
⊥Dθ1

(ii) Each distribution Dθi
is slant with slant angle θi for

i = 1, 2

Remark 8. If we assume

(i) θ1 = 0 and θ2 = π/2, then N is a CR-submanifold

(ii) θ1 = 0 and θ2 ≠ 0, π/2, then N is a semislant
submanifold

(iii) θ1 = π/2 and θ2 ≠ 0, π/2, then N is a pseudoslant
submanifold

(iv) θ1, θ2 ∈ ð0, π/2Þ, then N is a proper bislant
submanifold

For a bislant submanifold N of an almost contact metric
manifold, the normal bundle of N is decomposed as

T⊥N = FDθ1
⊕ FDθ2

⊕ μ, ð14Þ

where μ is a ϕ-invariant normal subbundle of N .

3. Cohomology Class for Bislant
Submanifolds of Nearly Trans-
Sasakian Manifolds

Chen [21] introduces a canonical de Rham cohomology
class for a closed CR-submanifold in a Kähler manifold.
So, in this section, we discuss the de Rham cohomology class
for a closed bislant submanifold of a nearly trans-Sasakian
manifold ð �N , ϕ, ξ, η, gÞ with minimal horizontal distribu-
tion ðDθ1

⊕ fξgÞ. We put dimðN Þ =m and
dimðDθ1

⊕ fξgÞ = 2a + 1. Let us assume the following:

(i) fE1,⋯,Ea,Ea+1 = sec θ1PE1,⋯,E2a = sec θ1PEa,
E2a+1 = ξ,E2a+2 =E∗

1 ,⋯,E2a+b+1 =E∗
b ,E2a+b+2 =

E∗
b+1 = sec θ2PE∗

1 ,⋯,Em =E2a+2b+1 =E∗
2b = sec θ2P

E∗
bg is a local orthonormal frame of N

(ii) fE1,⋯,Ea,Ea+1 = sec θ1PE1,⋯,E2a = sec θ1PEa,
E2a+1 = ξg is a local orthonormal frame of ðDθ1

⊕ f
ξgÞ

(iii) fE2a+2 =E∗
1 ,⋯,E2a+b+1 =E∗

b ,E2a+b+2 =E∗
b+1 = sec

θ2PE∗
1 ,⋯,Em =E2a+2b+1 =E∗

2b = sec θ2PE∗
bg is a

local orthonormal frame of Dθ2

We choose ς1,⋯, ς2a+1, ς2a+2,⋯, ςm as the dual frame of
1-forms to the above local orthonormal frame. Then, we
define a ð2a + 1Þ-form ϖ on N by ϖ = ς1 ∧ ς2 ∧⋯∧ς2a+1. It
is globally defined on N . In the same way, we again define
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a ðm − 2a − 1Þ-form Ω on N by Ω = ς2a+2 ∧ ς2a+3 ∧⋯∧ςm,
which is globally defined on N .

We prepare some preliminary lemmas.

Lemma 9. Let N be a submanifold of an arbitrary nearly
trans-Sasakian manifold �N , then

∇XPY − AFYX − P∇YX − 2Bh X, Yð Þ + ∇YPX − AFXY − P∇XY

= α 2g X, Yð Þξ − η Yð ÞX − η Xð ÞYð Þ − β η Yð ÞPX + η Xð ÞPYð Þ,
ð15Þ

h X, PYð Þ + ∇⊥
XFY − F∇XY − 2Ch X, Yð Þ + h Y , PXð Þ+∇Y⊥FX − F∇YX

= −β η Yð ÞFX + η Xð ÞFYð Þ,
ð16Þ

for any X, Y ∈ TN .

Proof. For any vector fields X, Y ∈ TN , making use of the
structure equation and (2), we obtain

�∇XϕY − ϕ�∇XY + �∇YϕX − ϕ�∇YX = α 2g X, Yð Þξ − η Yð ÞX − η Xð ÞYð Þ
− β η Yð ÞϕX + η Xð ÞϕYð Þ,

ð17Þ

which gives

∇XPY + h PY , Xð Þ − AFYX + ∇⊥
XFY − P∇XY − 2Bh X, Yð Þ

− F∇XY − 2Ch X, Yð Þ + ∇XPY + h PX, Yð Þ − AFXY

+ ∇⊥
YFX − P∇YX − F∇YX

= α 2g X, Yð Þξ − η Yð ÞX − η Xð ÞYð Þ
− β η Yð ÞPX + η Xð ÞPY + η Yð ÞFX + η Xð ÞFYð Þ:

ð18Þ

Comparing the tangential and normal components of
the above equation, we get the desired relations (15) and
(16).

The next lemma gives the integrability condition of slant
distribution Dθ2

.☐

Lemma 10. Let N be a bislant submanifold of an arbitrary
nearly trans-Sasakian manifold ð �N , ϕ, ξ, η, gÞ. Then, slant
distribution Dθ2

is integrable if and only if

−2F∇YX + h X, PYð Þ + h Y , PXð Þ − 2Ch X, Yð Þ + ∇⊥
XFY + ∇⊥

YFX ∈ FDθ2
,

ð19Þ

for any X, Y ∈Dθ2
.

Proof. Making use of Lemma 9, we obtain

g F X, Y½ �, FZð Þ = −2 g F∇YX, FZð Þ + g h X, PYð Þ, FZð Þf
+ g h Y , PXð Þ, FZð Þ − g 2Ch X, Yð Þ, FZð Þ
+ g ∇⊥

XFY , FZ
� �

+ g ∇⊥
YFX, FZ

� ��
,

ð20Þ

for any Z ∈ ðDθ1
⊕ fξgÞ. Thus, the assertion follows from

the fact that FDθ1
and FDθ2

are mutually perpendicular. In
this way, we proved the integrability condition of slant dis-
tribution Dθ2

.☐

We prove the following.

Theorem 11. For any closed bislant submanifold N of an
arbitrary nearly trans-Sasakian manifold ð �N , ϕ, ξ, η, gÞ with
minimal ðDθ1

⊕ fξgÞ and

−2F∇YX + h X, PYð Þ + h Y , PXð Þ − 2Ch X, Yð Þ + ∇⊥
XFY + ∇⊥

YFX ∈ FDθ2
,

ð21Þ

for any X, Y ∈Dθ2
, the ð2a + 1Þ-form ϖ is closed and

defines a canonical de Rham cohomology class ½ϖ� ∈H2a+1ð
N ,ℝÞ, where dimðDθ1

⊕ fξgÞ = 2a + 1.
Moreover, the cohomology group H2a+1ðN ,ℝÞ is nontriv-

ial if Dθ2
is minimal and ðDθ1

⊕ fξgÞ is integrable.

Proof. From the definition of ϖ, we have dϖ =∑2a+1
i=1 ð−1Þi−1

ς1 ∧⋯∧dςi∧⋯∧ς2a+1, which implies that dϖ = 0 if and only
if

dϖ X2, Y2, X1,⋯, X2að Þ = 0, ð22Þ

dϖ X2, X1,⋯, X2a+1ð Þ = 0, ð23Þ
for any X2, Y2 ∈Dθ2

and X1,⋯, X2a+1 ∈ ðDθ1
⊕ fξgÞ.

Thus, by simple computation, we find that (22) is satisfied
if and only if Dθ2

is integrable. On the other hand, (23) is sat-
isfied if and only if ðDθ1

⊕ fξgÞ is minimal. However, the
integrability condition of Dθ2

holds due to Lemma 10, and
by the hypothesis of the theorem, we have ðDθ1

⊕ fξgÞ is
minimal. Hence, the form ϖ is closed. It defines a canonical
de Rham cohomology class ½ϖ� ∈H2a+1ðN ,ℝÞ.

Next, we prove that the cohomology class ½ϖ� is nontriv-
ial. Since Dθ2

is minimal and ðDθ1
⊕ fξgÞ is integrable, then

in this case, we need to show that ϖ is harmonic. By defini-
tion ofΩ and the similar argument for ϖ, we see that dΩ = 0,
that is, Ω is closed, if ðDθ1

⊕ fξgÞ is integrable and Dθ2
is

minimal. This further proves that δϖ = 0, that is, ϖ is
coclosed. From dϖ = 0, δϖ = 0, and N is a closed submani-
fold, we deduce that ϖ is harmonic ð2a + 1Þ-form. Hence,
the cohomology group H2a+1ðN ,ℝÞ is nontrivial if Dθ2

is
minimal and ðDθ1

⊕ fξgÞ is integrable.☐

4. Warped Product Bislant Submanifolds

Definition 12 (see [22]). Let ðN 1, g1Þ and ðN 2, g2Þ be two
Riemannian manifolds and f > 0 be a differentiable function
on N 1. Consider two projections on N 1 ×N 2, ρ : N 1 ×
N 2 ⟶N 1 and δ : N 1 ×N 2 ⟶N 2. The projection maps
given by ρðp, qÞ = p and δðp, qÞ = q for ðp, qÞ ∈N 1 ×N 2.
Then, the warped product N =N 1 × fN 2 is the product
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manifold N 1 ×N 2 equipped with the Riemannian structure
such that

g X, Yð Þ = g1 ρ∗X, ρ∗Yð Þ + f ∘ ρð Þ2g2 δ∗X, δ∗Yð Þ, ð24Þ

for any X, Y ∈ TN , where ∗ is the symbol for the tangent
maps. The function f is called the warping function of N .

Example 13. A surface of revolution is a warped product
manifold.

Example 14. The standard space-time models of the universe
are warped products as the simplest models of neighbour-
hoods of stars and black holes.

Remark 15. In particular, a warped product manifold is said
to be trivial if its warping function is constant. In such a case,
we call the warped product manifold a Riemannian product
manifold. If N =N 1 × fN 2 is a warped product manifold,
then N 1 is totally geodesic and N 2 is totally umbilical sub-
manifold of N [22].

Let N =N 1 × fN 2 be a warped product manifold with a
warping function f . Then,

∇XZ = ∇ZX = X ln fð ÞZ, ð25Þ

for any X ∈ TN 1 and Z ∈ TN 2, where ∇ln f is the gradi-
ent of ln f and ∇ and ∇N 2 denote the Levi-Civita connec-
tions on N and N 2, respectively.

The definition of warped product bislant submanifolds in a
nearly trans-Sasakian manifold is as follows.

Definition 16. A warped product N 1 × fN 2 of two slant sub-
manifolds N 1 and N 2 of a nearly trans-Sasakian manifold
�N is called a warped product bislant submanifold.

Remark 17. A warped product bislant submanifold N 1 × f

N 2 is called proper if N 1 and N 2 are proper slant in �N .
Otherwise, the warped product bislant submanifold N 1 × f

N 2 is called nonproper.

For a warped product bislant submanifold in a nearly
trans-Sasakian manifold such that ξ ∈ TN 1, we have the fol-
lowing result.

Theorem 18. Let N =N 1 × fN 2 be a warped product bislant
submanifold with bislant angles fθ1, θ2g in a nearly trans-
Sasakian manifold �N such that ξ ∈ TN 1. If, for any X1 ∈ T
N 1 and X2, Y2 ∈ TN 2,

g h X1, X2ð Þ, FY2ð Þ = g h X1, Y2ð Þ, FX2ð Þ, ð26Þ

holds, then one of the following cases must occur:

(i) N is a warped product pseudoslant submanifold
such that N 2 is a totally real submanifold N ⊥ of
�N

(ii) If �N is nearly Sasakian manifold, that is, β = 0, then
N is a Riemannian product

(iii) If β ≠ 0, then βηðX1Þ = −ðX1 ln f Þ

Proof. For any vector fields X1 ∈ TN 1 and X2, Y2 ∈ TN 2, we
have

g h X1, X2ð Þ, FY2ð Þ = g �∇X1
X2, ϕY2

� �
− g ∇X1

X2, PY2
� �

= g �∇X1
ϕ

� �
X2, Y2

� �
− g �∇X1

ϕX2, Y2
� �

− X1 ln fð Þg X2, PY2ð Þ:
ð27Þ

On the other hand, we have

g h X1, X2ð Þ, FY2ð Þ = g �∇X2
X1, ϕY2

� �
− g ∇X2

X1, PY2
� �

= g �∇X2
ϕ

� �
X1, Y2

� �
− g �∇X2

ϕX1, Y2
� �

− X1 ln fð Þg X2, PY2ð Þ:
ð28Þ

By adding (27) and (28), we get

2g h X1, X2ð Þ, FY2ð Þ = g h X1, Y2ð Þ, FX2ð Þ + g h X2, Y2ð Þ, FX1ð Þ
− Plnfð Þg X2, Y2ð Þ − X1 ln fð Þg X2, PY2ð Þ
− αη X1ð Þg X2, Y2ð Þ + βη X1ð Þg PX2, Y2ð Þ:

ð29Þ

Interchanging X2 by Y2 in (29), we find

2g h X1, Y2ð Þ, FX2ð Þ = g h X1, X2ð Þ, FY2ð Þ + g h X2, Y2ð Þ, FX1ð Þ
− Plnfð Þg X2, Y2ð Þ − X1 ln fð Þg Y2, PX2ð Þ
− αη X1ð Þg X2, Y2ð Þ + βη X1ð Þg PY2, X2ð Þ:

ð30Þ

By subtracting (30) from (29) and by applying our
assumption, we obtain

g PX2, Y2ð Þ X1 ln fð Þ + βη X1ð Þ½ � = 0: ð31Þ

For Y2 = PY2, we get

cos2θ2g Y2, X2ð Þ X1 ln fð Þ + βη X1ð Þ½ � = 0: ð32Þ

From the last expression, any one of the following holds:
if β = 0, then f is constant, or if β ≠ 0, then βηðX1Þ = −ðX1
ln f Þ or θ2 = π/2. Thus, our assertions follow.

Now, we have the following theorem for a warped prod-
uct bislant submanifold in a nearly trans-Sasakian manifold
such that ξ ∈ TN 2.☐
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Theorem 19. Let N =N 1 × fN 2 be a warped product bislant
submanifold with bislant angles fθ1, θ2g in a nearly trans-
Sasakian manifold �N such that ξ ∈ TN 2. If, for any X1 ∈ T
N 1 and X2, Y2 ∈ TN 2,

g h X1, X2ð Þ, FY2ð Þ = g h X1, Y2ð Þ, FX2ð Þ, ð33Þ

holds, then one of the following cases must occur:

(i) N is a warped product pseudoslant submanifold such
that N 2 is a totally real submanifold N ⊥ of �N

(ii) N is a Riemannian product

Proof. For any vector fields X1 ∈ TN 1 and X2, Y2 ∈ TN 2, we
have

g h X1, X2ð Þ, FY2ð Þ = g �∇X1
X2, ϕY2

� �
− g ∇X1

X2, PY2
� �

= g �∇X1
ϕ

� �
X2, Y2

� �
− g �∇X1

ϕX2, Y2
� �

:

ð34Þ

On the other hand, we have

g h X1, X2ð Þ, FY2ð Þ = g �∇X2
X1, ϕY2

� �
− g ∇X2

X1, PY2
� �

= g �∇X2
ϕ

� �
X1, Y2

� �
− g �∇X2

ϕX1, Y2
� �

:

ð35Þ

By adding (34) and (35), we get

2g h X1, X2ð Þ, FY2ð Þ = g h X1, Y2ð Þ, FX2ð Þ + g h X2, Y2ð Þ, FX1ð Þ
− Plnfð Þg X2, Y2ð Þ − X1 ln fð Þg X2, PY2ð Þ:

ð36Þ

Interchanging X2 by Y2 in (36), we find

2g h X1, Y2ð Þ, FX2ð Þð37Þ = g h X1, X2ð Þ, FY2ð Þ + g h X2, Y2ð Þ, FX1ð Þ
− Plnfð Þg X2, Y2ð Þ − X1 ln fð Þg Y2, PX2ð Þ:

ð37Þ

By subtracting (37) from (36) and by applying our
assumption, we obtain

X1 ln fð Þg PX2, Y2ð Þ = 0: ð38Þ

For Y2 = PY2, we get

cos2θ2 X1 ln fð Þ g Y2, X2ð Þ − η X2ð Þη Y2ð Þ½ � = 0: ð39Þ

Therefore, either f is constant or cos θ2 = 0 holds. Con-
sequently, either N is a Riemannian product or θ2 = π/2.
In the latter case, N is a warped product pseudoslant sub-
manifold.☐

We give some nontrivial examples of warped product
bislant submanifold of the form N =N θ × fN ⊥ whose

bislant angles θ1 ≠ 0, π/2 and θ2 = π/2. Such warped product
bislant submanifolds are called pseudoslant submanifolds.

Example 20. Let ℂ4 be the complex Euclidean space with its
usual Kähler structure and the real global coordinates ðx1,
y1, x2, y2, x3, y3, x4, y4Þ and �N =ℝ × fℂ

4 be a warped prod-
uct manifold between the product real line of ℝ and the
complex space ℂ4. Let <, > be the Euclidean metric tensor
of ℝ9. An almost contact structure ϕ of �N is defined by

ϕ
∂
∂xi

� �
= ∂
∂yi

, ϕ ∂
∂yj

 !
= −

∂
∂xj

, ϕ ∂
∂t

� �
= 0, 1 ≥ i, j ≥ 4

ð40Þ

such that

ξ = et
∂
∂t

� �
, η = etdt, g = et < , > : ð41Þ

On the other hand, we define a submanifold N by
immersion g as follows:

g u, v,w, s, tð Þ = u, v, 0, 0, v cos r, v sin r, s cos w, s sin w, tð Þ:
ð42Þ

Therefore, it is easy to choose tangent bundle of N

which is spanned by the following:

X1 =
∂
∂x1

, X2 = cos r ∂
∂y1

+ sin r
∂
∂y2

,

X3 = cos w ∂
∂y3

+ sin w
∂
∂y4

, X5 =
∂
∂z

:

ð43Þ

Thus, Dθ1
= SpanfX1, X2g is a slant distribution with

slant angle π/4. Also, it is easy to verify that Dθ2
= SpanfX3

, X4g is a totally real distribution. Hence, the submanifold
N defined by f is a bislant submanifold, which is tangent
to the structure vector ξ and whose bislant angles satisfy θ1
≠ 0, π/2 and θ2 = π/2. It is easy to check that the distribu-
tions Dθ1

and Dθ2
are integrable. Then, it can be verified that

N =N θ × fN ⊥ is a warped product bislant submanifold of
�N with warping function f = et , t ∈ℝ.

Example 21. We consider any submanifold N in a nearly
trans-Sasakian manifold ℝ7

f u, v,w, qð Þ = u cos v,w cos v, u sin v,w sin v,w − u,w + u, qð Þ:
ð44Þ
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The tangent bundle of N is spanned by

E1 = cos v ∂
∂x1

+ sin v
∂
∂x2

−
∂
∂x3

+ ∂
∂y3

,

E2 = −u sin v
∂
∂x1

+ u cos v ∂
∂x2

−w sin v
∂
∂y1

+w cos v ∂
∂y2

,

E3 =
∂
∂x3

+ cos v ∂
∂y1

+ sin v
∂
∂y2

+ ∂
∂y3

,

E4 =
∂
∂q

:

ð45Þ

Furthermore, we have

ϕE1 = cos v ∂
∂y1

+ sin v
∂
∂y2

−
∂
∂y3

−
∂
∂x3

,

ϕE2 = −u sin v
∂
∂y1

+ u cos v ∂
∂y2

+w sin v
∂
∂x1

−w cos v ∂
∂x2

,

ϕE3 =
∂
∂y3

− cos v ∂
∂x1

− sin v
∂
∂x2

−
∂
∂x3

,

ϕE4 = 0:
ð46Þ

It is easy to check that ϕE2 is orthogonal to TN . Then,
the proper slant and anti-invariant distributions of N are
respectively defined by Dθ = SpanfE1,E3g with slant angle
θ = arccos ð1/3Þ and D⊥ = SpanfE2g. Also, E4 = ξ is tangent
to Dθ. Hence, f defines a proper 4-dimensional pseudoslant
submanifold (bislant submanifold with bislant angles f
arccos ð1/3Þ, π/2g) N in ℝ7. It is easy to check that the dis-
tributions Dθ ⊕ fξg and D⊥ are integrable.

Now, we assume that N θ and N ⊥ are the integral man-
ifolds of Dθ and D⊥, respectively. Then, it follows from Def-
inition 12 and (44) that the induced metric tensor g of N is
given by

g = cos2v + sin2v + 2
� �

du2 + u2 sin2v + u2 cos2v +w2 sin2v +w2 cos2v
� �

dv2

+ cos2v + sin2v + 2
� �

dw2 + dq2 = 3 du2 + dw2� �
+ dq2 + u2 +w2� �

dv2

= g1 + g2,

ð47Þ

where g1 = 3ðdu2 + dw2Þ + dq2 and g2 = ðu2 +w2Þdv2
are respectively the metric tensors of N θ and N ⊥. As a con-
sequence, N =N θ × fN ⊥ is a warped product pseudoslant

submanifold of ℝ7 with a warping function, that is, f =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 +w2

p
such that ξ is tangent to N θ.

5. Doubly Warped Product
Bislant Submanifolds

In general, doubly warped products can be considered as a
generalization of warped products.

Definition 22 (see [23, 24]). Let ðN 1, g1Þ and ðN 2, g2Þ be
Riemannian manifolds. A doubly warped product ðN , gÞ is
a product manifold which is of the form N = f2

N 1 × f1
N

with the metric g = f 21g1 ⊕ f 22g2, where f1 : N 1 ×N 2 ⟶ ð0
,∞Þ and f2 : N 1 ×N 2 ⟶ ð0,∞Þ are smooth maps. More
precisely, if ρ : N 1 ×N 2 ⟶N 1 and δ : N 1 ×N 2 ⟶N 2
are natural projections, the metric g is defined by

g X, Yð Þ = f2 ∘ δð Þ2g1 ρ∗X, ρ∗Yð Þ + f1 ∘ ρð Þ2g2 δ∗X, δ∗Yð Þ,
ð48Þ

for any X, Y ∈ TN , where ∗ is the symbol for the tangent
maps. The functions f1 and f2 are called the warping func-
tions of N .

Remark 23. If we assume

(i) either f1 ≡ 1 or f2 ≡ 1, but not both, then we obtain a
warped product

(ii) both f1 ≡ 1 and f2 ≡ 1, then we have a product
manifold

(iii) neither f1 nor f2 is constant, then we have a non-
trivial doubly warped product

For doubly warped product manifold N = f2
N 1 × f1

N

with warping functions f and g, we have the following:

∇YX = ∇XY = Y ln f1ð ÞX + X ln f2ð ÞY , ð49Þ

for any X ∈ TN 1 and Y ∈ TN 2.
Now, we define the notion of doubly warped product

bislant submanifolds in nearly trans-Sasakian manifolds as
follows.

Definition 24. The doubly warped product of two slant sub-
manifolds, f2

N 1 × f1
N 2, is called the doubly warped product

bislant submanifold of slant submanifolds N 1 and N 2 with
slant angles θ1 and θ2, respectively, of a nearly trans-
Sasakian manifold with warping functions f1 and f2 if only
depend on the points of N 1 and N 2, respectively.

First we have the following theorem for doubly warped
product submanifolds N = f2

N 1 × f1
N 2 in nearly trans-

Sasakian manifolds such that ξ ∈ TN 1.

Theorem 25. Let N = f2
N 1 × f1

N 2 be a doubly warped prod-

uct submanifold in a nearly trans-Sasakian manifold �N ,
where N 1 and N 2 are Riemannian submanifolds of �N and
ξ ∈ TN 1. Then, N is a warped product bislant submanifold
of type N 1 × f1

N 2 if and only if

g h X, Yð Þ, FXð Þ = g h X, Xð Þ, FYð Þ, ð50Þ

for any X ∈ TN 1 and Y ∈ TN 2.
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Proof. From Lemma 9, we get

∇XPY − AFYX − P∇YX − 2Bh X, Yð Þ + ∇YPX − AFXY − P∇XY

= −αη Xð ÞY − βη Xð ÞPY ,
ð51Þ

for any X ∈ TN 1 and Y ∈ TN 2. Applying (49), we derive

PY ln f2ð ÞX − Y ln f2ð ÞPX − X ln f1ð ÞPY + PX ln f1ð ÞY
− AFYX − 2Bh X, Yð Þ − AFXY = −αη Xð ÞY − βη Xð ÞPY :

ð52Þ

Taking the inner product with X ∈ TN 1, we obtain

PY ln f2ð Þ Xk k2 − g h X, Xð Þ, FYð Þ − 2g Bh X, Yð Þ, Xð Þ − g h Y , Xð Þ, FXð Þ = 0:

ð53Þ

Using relation (10) in the above equation, we get

PY ln f2ð Þ Xk k2 = g h X, Xð Þ, FYð Þ − g h Y , Xð Þ, FXð Þ = 0:
ð54Þ

Thus, from (54), we conclude that ðPY ln f2Þ = 0 if and
only if

g h X, Yð Þ, FXð Þ = g h X, Xð Þ, FYð Þ, ð55Þ

for any X ∈ TN 1 and Y ∈ TN 2. ðPY ln f2Þ = 0 shows
that f2 is constant, that is, f2 depends only on the points of
N 1. Thus, it follows that N is a warped product bislant sub-
manifold of type N 1 × f1

N 2. This proves the theorem
completely.☐

Secondly, we prove the following theorem for doubly
warped product bislant submanifolds N = f2

N 1 × f1
N 2 in

nearly trans-Sasakian manifolds such that ξ ∈ TN 2.

Theorem 26. Let N = f2
N 1 × f1

N 2 be a doubly warped prod-
uct bislant submanifold in a nearly trans-Sasakian manifold
�N , where N 1 and N 2 are proper slant submanifolds with
respect to θ1 and θ2, respectively, and ξ ∈ TN 2. Then, N is
a warped product bislant submanifold of type N 1 × f1

N 2 if
and only if

g h X, Yð Þ, FYð Þ = g h Y , Yð Þ, FXð Þ, ð56Þ

for any X ∈ TN 2 and Y ∈ TN 1.

Proof. For any vector fields X ∈ TN 2 and Y ∈ TN 1, we have

g h PX, Yð Þ, FYð Þ = g �∇YPX, ϕY
� �

= −g ϕ�∇YPX, Y
� �

= g �∇Yϕ
� �

PX, Y
� �

− g �∇YϕPX, Y
� �

= −g �∇Yϕ
� �

Y , PX
� �

− g �∇YP2X, Y
� �

− g �∇YFPX, Y
� �

= cos2θ1g ∇YX, Yð Þ + g h Y , Yð Þ,FPXð Þ
= cos2θ1 X ln f2ð Þ Yk k2 + g h Y , Yð Þ,FPXð Þ:

ð57Þ

Replacing X by PX in the last relation, we obtain

PX ln f2ð Þ Yk k2 = g h Y , Yð Þ, FXð Þ − g h X, Yð Þ, FYð Þ: ð58Þ

Thus, from (54), we conclude that ðPX ln f2Þ = 0 if and
only if

g h Y , Yð Þ, FXð Þ = g h X, Yð Þ, FYð Þ, ð59Þ

for any X ∈ TN 2 and Y ∈ TN 1.
ðPX ln f2Þ = 0 implies that f2 is constant, that is, f2

depends only on the points of N 1. Hence, N is a warped
product bislant submanifold of type N 1 × f1

N 2. This proves
the theorem completely.☐

6. Conclusion

From Theorems 25 and 26, we conclude that there exist no
doubly warped product bislant submanifolds in nearly
trans-Sasakian manifolds, other than warped product bislant
submanifolds, under some additional conditions.

7. Some Applications of Theorem 25 for
Different Kinds of Ambient Manifolds

Let N = f2
N 1 × f1

N 2 be a doubly warped product submani-
fold, where N 1 and N 2 are Riemannian submanifolds of
�N and ξ ∈ TN 1. The following corollaries are the immediate
consequences of Theorem 25.

Corollary 27. There does not exist any doubly warped prod-
uct submanifold N = f2

N 1 × f1
N 2 in a nearly Sasakian man-

ifold �N , other than the warped product bislant submanifold,
if and only if (50) holds.

Corollary 28. There does not exist a doubly warped product
submanifoldN = f2

N 1 × f1
N 2 in a nearly Kenmotsu manifold

�N , other than the warped product bislant submanifold, if and
only if (50) holds.

Corollary 29. There does not exist a doubly warped product
submanifold N = f2

N 1 × f1
N 2 in a nearly cosymplectic mani-

fold �N , other than the warped product bislant submanifold, if
and only if (50) holds.
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8. Some Applications of Theorem 26 for
Different Kinds of Ambient Manifolds

Let N = f2
N 1 × f1

N 2 be a doubly warped product bislant
submanifold, where N 1 and N 2 are proper slant submani-
folds with respect to θ1 and θ2, respectively, and ξ ∈ TN 2.
The following corollaries are the immediate consequences
of Theorem 26.

Corollary 30. There is no doubly warped product bislant sub-
manifold N = f2

N 1 × f1
N 2 in a nearly Sasakian manifold �N ,

other than the warped product bislant submanifold, if and
only if (56) holds.

Corollary 31. There is no doubly warped product bislant sub-
manifold N = f2

N 1 × f1
N 2 in a nearly Kenmotsu manifold �N

, other than the warped product bislant submanifold, if and
only if (56) holds.

Corollary 32. There is no doubly warped product bislant sub-
manifold N = f2

N 1 × f1
N 2 in a nearly cosymplectic manifold

�N , other than the warped product bislant submanifold, if
and only if (56) holds.
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