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Abstract

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-

lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19

severity on the memory B cell response and characterize changes in the memory B cell

compartment between recovery and five months post-symptom onset. Using high-parame-

ter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity

against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recov-

ered individuals who had been hospitalized with non-severe (n = 8) or severe (n = 5)

COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+

B cells showed an activated phenotype. In individuals who experienced non-severe disease,

spike-specific IgG+ B cells showed increased expression of markers associated with durable

B cell memory, including T-bet and FcRL5, as compared to individuals who experienced

severe disease. While the frequency of T-bet+ spike-specific IgG+ B cells differed between

the two groups, these cells predominantly showed an activated switched memory B cell phe-

notype in both groups. Five months post-symptom onset, the majority of spike-specific

memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+

memory B cells decreased to baseline levels. Collectively, our results highlight subtle differ-

ences in the B cells response after non-severe and severe COVID-19 and suggest that the

memory B cell response elicited during non-severe COVID-19 may be of higher quality than

the response after severe disease.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0261656 December 22, 2021 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Reyes RA, Clarke K, Gonzales SJ,

Cantwell AM, Garza R, Catano G, et al. (2021)

SARS-CoV-2 spike-specific memory B cells

express higher levels of T-bet and FcRL5 after non-

severe COVID-19 as compared to severe disease.

PLoS ONE 16(12): e0261656. https://doi.org/

10.1371/journal.pone.0261656

Editor: Menno C van Zelm, Monash University,

AUSTRALIA

Received: November 17, 2021

Accepted: December 7, 2021

Published: December 22, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0261656

Copyright: © 2021 Reyes et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

https://orcid.org/0000-0002-2234-4758
https://orcid.org/0000-0002-6621-4103
https://orcid.org/0000-0001-5122-6112
https://orcid.org/0000-0001-6047-2286
https://orcid.org/0000-0001-6980-9164
https://orcid.org/0000-0002-3843-6657
https://orcid.org/0000-0003-4003-3053
https://doi.org/10.1371/journal.pone.0261656
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261656&domain=pdf&date_stamp=2021-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261656&domain=pdf&date_stamp=2021-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261656&domain=pdf&date_stamp=2021-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261656&domain=pdf&date_stamp=2021-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261656&domain=pdf&date_stamp=2021-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261656&domain=pdf&date_stamp=2021-12-22
https://doi.org/10.1371/journal.pone.0261656
https://doi.org/10.1371/journal.pone.0261656
https://doi.org/10.1371/journal.pone.0261656
http://creativecommons.org/licenses/by/4.0/


Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the global

coronavirus disease 2019 (COVID-19) pandemic resulting in more than 5 million deaths

reported worldwide as of December 2021 [1]. Highly efficacious vaccines have limited SARS-

CoV-2 transmission and significantly reduced morbidity and mortality in regions of the world

with access to these vaccines. However, the majority of the world’s population lives in areas

with low vaccination rates and remain at higher risk of SARS-CoV-2 infection and COVID-

19. Both vaccination and natural infection elicit immunological protection against SARS-

CoV-2 (re-)infection. Although mRNA vaccination elicits higher antibody titers and more

diverse antibody responses against the SARS-CoV-2 spike protein than natural infection [2, 3],

results from the first longitudinal studies in unvaccinated individuals with prior COVID-19

suggest that naturally acquired immune responses are maintained for at least a year after infec-

tion and that these responses protect from subsequent re-infection [4–11]. Because many peo-

ple remain unvaccinated, it will be important to understand the immune response elicited by

natural infection and whether the durability of naturally acquired immunity is influenced by

the severity of disease.

Although SARS-CoV-2 infection elicits robust responses in both the T cell and B cell arms

of the adaptive immune system [12, 13], the majority of research efforts have focused on B cell

and antibody responses, which are thought to be critical for the control of infection and pro-

tection against re-infection. Humoral immune responses against pathogens consist of multiple

components. The early B cell response is dominated by short-lived antibody-secreting cells,

called plasmablasts. Simultaneously, other B cell populations undergo selection for high affin-

ity antigen-binding in germinal centers of the secondary lymphoid organs, and can differenti-

ate into long-lived, antibody-secreting plasma cells that migrate to the bone marrow or into

memory B cells that remain in the circulation (reviewed in [14]). COVID-19 patients rapidly

generate potent neutralizing IgG antibodies against the spike protein [15, 16]. Anti-spike anti-

body titers peak within the first two months post-infection, decline in the subsequent 3–4

months, and then plateau at titers higher than those detected in pre-pandemic samples, but are

lower than anti-spike antibody titers elicited by vaccination [3, 5, 7, 17]. These phases of the

anti-spike IgG profile in the circulation are the result of early short-lived plasmablast

responses, followed by the secretion of antibodies by longer-lived bone marrow plasma cells

[5]. In addition, spike-specific IgG+ memory B cells are maintained or even increase in num-

bers for at least six months to one year following SARS-CoV-2 infection [6–8, 18]. Analysis of

monoclonal antibodies obtained from these memory B cells revealed continued evolution of

the B cell response over time, as evidenced by higher levels of somatic hypermutation, resulting

in increased binding affinity and neutralizing capacity [7, 19, 20].

In recent years, novel subsets of activated B cells and memory B cells have been identified.

These novel B cell subsets have mainly been defined by their phenotype, that is, the collection

of markers expressed on their cell surface or intracellularly, and are thought to possess either

protective or pathogenic functions in the immune response. For example, several subsets of

double negative (DN; CD27- IgD-) B cells have been defined in recent years [21, 22]. Type 1

double negative cells (DN1 cells), defined as DN cells that express CXCR5 or CD21 and lack

CD11c and FcRL5, are transcriptionally similar to class-switched memory B cells and seem to

be part of a functional B cell response [21, 23]. On the other hand, type 2 DN cells (DN2 cells),

defined as CD11c+/FcRL5+ and CXCR5-/CD21- DN cells, are thought to arise from the activa-

tion of naïve B cells outside of the B cell follicle in the lymph node. Type 3 DN cells (DN3

cells), defined as CD11c-/FcRL5- and CXCR5-/CD21- DN cells, have also been associated with

this extrafollicular response and may be DN2 cell precursors [22, 23]. DN2 cells are more
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abundant in patients with autoimmune disorders, such as systemic lupus erythematosus, and

are thought to differentiate into auto-antibody-secreting cells. DN2 cells are also observed in

the circulation of patients with severe COVID-19 [22], an observation that has been linked to

lack of germinal center formation, presumably leading to an impaired B cell response [24].

Interestingly, memory B cells (CD27+ IgD-) expressing some of the same markers as DN2

cells, including CD11c and FcRL5, as well as the transcription factor T-bet, have been

described as part of normal, functional immune responses [25, 26]. Specifically, these cells

have been implicated in long-lived B cell memory after tetanus toxoid and influenza virus

vaccination [27, 28]. In recovered COVID-19 patients, memory B cells present 1–3 months

after symptom onset are also found to express FcRL5 and T-bet, suggesting that these mark-

ers may delineate a subset of long-lived memory B cells against SARS-CoV-2 [13, 29]. How-

ever, it is unclear whether disease severity influences the development of memory B cells

that express T-bet or FcRL5, and whether the phenotype of memory B cells changes with the

continued evolution of this B cell compartment in the months following SARS-CoV-2 infec-

tion. A more detailed analysis of B cell subsets in recovered COVID-19 patients will there-

fore be needed to acquire insight into the early B cell response and the evolution of memory

B cells over time.

Here, we performed spectral flow cytometry to characterize the phenotype of SARS--

CoV-2-specific B cells in unvaccinated patients who recovered from non-severe or severe

COVID-19. We focused on two comparative analyses. First, we compared the phenotype of

spike-specific B cells between convalescent patients who were hospitalized with non-severe

and severe disease to determine whether the B cell response developed differently in these

two groups. Second, we compared the phenotype of memory B cells shortly after recovery to

that at five months post-symptom onset to analyze the ongoing evolution of the B cell

response. The results from this study provide insight into naturally acquired B cell memory

against SARS-CoV-2 and a better understanding of the characteristics of durable B cell

immunity.

Results

Study criteria

Study participants (n = 16) were enrolled in the Adaptive COVID-19 Treatment Trial

(ACTT)-1 or ACTT-2 clinical trials, which were designed to evaluate the effect of remdesivir

or baricitinib plus remdesivir for the treatment of COVID-19 in hospitalized patients [30, 31]

and co-enrolled in the University of Texas Health San Antonio COVID-19 Repository, which

provided samples for this study. Participants identified predominantly as white (94%) and His-

panic (75%), and all except one individual had one or more comorbidities (S1 Table). Partici-

pants were classified as non-severe (n = 11) or severe (n = 5) COVID-19 cases based on their

worst ordinal score for disease severity during hospital stay. In summary, non-severe cases did

not require supplemental oxygen (score = 4) or required supplemental oxygen or non-invasive

ventilation (score = 5 or 6), while severe cases needed invasive mechanical ventilation (MV) or

extracorporeal membrane oxygenation (ECMO) (score = 7). The definition of severe disease

was made based on the need for MV or ECMO, because this distinguishes the most critical

patients, who are the most likely to develop impaired immune responses [24, 32]. Blood was

collected after discharge from the hospital (a median of 30 days after symptom onset for non-

severe cases (n = 8) and 32 days after symptom onset for severe cases (n = 5)) (Fig 1). For par-

ticipants with non-severe disease, additional samples were collected at an earlier time point (a

median of 18 days post-symptom onset; n = 9) and at a follow-up visit approximately 5 months

post-symptom onset (median, 147 days; n = 7) based on availability and consent. Peripheral
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blood mononuclear cells (PBMCs) from healthy donors (n = 3) collected before the start of the

pandemic (2018 or early 2019) were used as negative controls.

The proportions of B cell subsets in convalescent patients are similar

between non-severe and severe COVID-19 cases

Severe COVID-19 is associated with an extrafollicular B cell response characterized by a high

percentage of DN2 B cells in the circulation, similar to what is observed in patients with auto-

immune disorders [21, 22]. Previous data suggest that the percentage of DN2 B cells in patients

with severe COVID-19 had returned to normal levels approximately 1.5 months after hospital

discharge [33]. To determine whether COVID-19 severity affects the distribution of B cell sub-

sets shortly after recovery (four to five weeks after symptom onset), we analyzed the relative

proportions of B cell subsets individuals who recovered from non-severe (n = 8) or severe

(n = 5) disease by spectral flow cytometry using an antibody panel against 19 cell surface and

intracellular markers (S2 Table). B cells were first gated on live, CD19+ CD20+ CD38-/lo cells to

exclude transitional B cells and antibody-secreting cells, and were subsequently divided into

naïve (CD27- IgD+), unswitched memory (CD27+ IgD+), resting switched memory (CD27+

IgD- CD21+), activated switched memory (CD27+ IgD- CD21-) and double negative (DN;

CD27- IgD-) B cells (Fig 2A). Apart from a significant increase in the percentage of unswitched

memory B cells in individuals who had experienced severe disease compared to those with

non-severe COVID-19, no differences in the distribution of these B cell subsets were observed

between the two groups of recovered COVID-19 patients (Fig 2B and 2C, S1A Fig). Among

DN cells, DN1 (FcRL5- CXCR5+) B cells were the dominant subset in both groups of recovered

COVID-19 patients, and we did not detect significant differences in the frequencies of DN1,

DN2 (FcRL5+ CXCR5-), and DN3 (FcRL5- CXCR5-) B cells between the two groups (Fig 2D,

S1B Fig). In combination with previous reports [22, 33], these results suggest that expansion of

the DN2 B cell population during severe COVID-19 might be transient and that these cells dis-

appear soon after recovery.

Fig 1. Timing of sample collection. Hospitalized COVID-19 patients were recruited for the study and sampled after hospital discharge. Samples from T2 were used

for the comparison of B cell responses between individuals who recovered from non-severe and severe COVID-19 (Figs 2–4). All samples at T2 were collected 4–5

weeks post-symptom onset (PSO), with the exception of one severe donor who was sampled just after 5 weeks PSO (37 days). Longitudinal analysis of samples

collected at T1 –T3 could only be performed for individuals who experienced non-severe disease, because the majority of severe patients were still hospitalized at T1

and we were unsuccessful in recruiting recovered severe patients for a follow-up blood draw at T3. The donor marked with � was included in the analysis of B cell

subsets (Fig 2) and the percentage of spike-specific B cells (Fig 3C), but could not be included in all subsequent analyses because only a small number of spike-specific

B cells (n = 6) was detected in this sample.

https://doi.org/10.1371/journal.pone.0261656.g001
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The percentage of spike-specific and RBD-specific B cells and their isotype

distributions are similar between non-severe and severe cases

Our flow cytometry panel also included antigen probes to detect B cells reactive with the

SARS-CoV-2 spike protein and the spike receptor binding domain (RBD). RBD is the part of

the spike protein that interacts with angiotensin-converting enzyme 2, the viral receptor on

host cells, and is the dominant target of neutralizing antibodies [34]. However, the majority of

antibodies generated against the spike protein bind to epitopes outside RBD [35]. Whereas the

RBD sequence is highly specific for SARS-CoV-2 [36], the non-RBD parts of spike, in particu-

lar the S2 subunit, share epitopes with other coronaviruses that circulate in the human popula-

tion [37–39]. Evidence for pre-existing memory B cells that are cross-reactive with other

coronaviruses has been reported [40]. Because pre-existing immunity could affect the develop-

ment of the immune responses against these two parts of the spike protein, we analyzed B cell

responses against RBD and non-RBD spike epitopes separately.

We constructed spike tetramers in two fluorochrome formats and defined the population

of cells staining positive for both tetramers as spike-specific (Fig 3A, S2 Fig). The spike-specific

B cells were then divided into non-RBD-specific and RBD-specific B cells based on reactivity

with the RBD tetramer (Fig 3A). Non-RBD-specific and RBD-specific B cells were strongly

enriched for antigen-experienced B cells (Fig 3B, compare to Fig 2B), with no statistically sig-

nificant differences in the proportions of various B cell populations between individuals who

recovered from non-severe or severe disease (Fig 3B, S3 Fig). In addition, reactivity against

Fig 2. Distribution of major B cell subsets in recovered COVID-19 patients. A) Gating strategy to obtain non-antibody-secreting B cells (CD38lo) that are further

divided into naïve, unswitched memory (uswM), switched memory (swM), and double negative (DN). SwM B cells were divided into activated and resting populations

based on the expression of CD21. DN cells were divided into DN1–3 based on the expression of FcRL5 and CXCR5. B) Median percentage of each B cell subset in

samples from individuals who recovered from non-severe COVID-19 and severe COVID-19. C) Percentage of unswitched memory B cells, which was increased in

individuals who recovered from severe disease as compared to those who had non-severe COVID-19. D) Median proportions of the three different DN populations 1

month after non-severe or severe disease. In panel B–D, results are shown for individuals who recovered from non-severe COVID-19 (n = 8) and severe COVID-19

(n = 5). See S1 Fig for graphs with individual data points for the data shown in panels B and D. � P< 0.05.

https://doi.org/10.1371/journal.pone.0261656.g002
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Fig 3. Detection of spike-specific and RBD-specific B cells and plasma antibody responses. A) Flow cytometry gating of spike-specific (S+) and RBD-specific (RBD

+) B cells. B) Phenotype of non-RBD-specific (S+RBD-) and RBD-specific (S+RBD+) B cells, showing the median percentage among each group. Graphs with

individual data points for each B cell subset are presented in S2 Fig. C) Percentage of antigen-experienced spike-specific B cells in individuals who have never been

exposed to SARS-CoV-2 (control) or who recovered from non-severe or severe disease. D) Percentage of spike-specific B cells that recognized RBD. E) Percentage of

class-switched spike-specific B cells that express IgM (left), IgG (middle), or IgA (right). F) Plasma IgM (left) and IgG (right) titers against spike and RBD. Note that

the range of the Y axes are different between IgM and IgG. In panel C, results are shown for individuals who recovered from non-severe COVID-19 (n = 8) and severe

COVID-19 (n = 5). Only seven individuals with non-severe COVID-19 were included in panels B, D, and E, due to the low number of spike-specific B cells detected in

the individual marked with # in panel C.

https://doi.org/10.1371/journal.pone.0261656.g003
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spike and RBD tetramers among control donor B cells was minimal (Fig 3A and 3C), suggest-

ing that these probes selectively bind to antigen-specific B cells.

The percentage of spike-specific B cells among antigen-experienced B cell populations

(unswitched memory, switched memory, and DN B cells) among all patients ranged from

0.1% to 1.8% (median, 0.6%) (Fig 3C). One donor (marked with # in Fig 3C) had only six

spike-specific B cells and was therefore not included in subsequent analyses that required fur-

ther subsetting of these cells. All other donors had between 42 and 450 spike-specific B cells

(median n = 121). In line with a previous study [4], a median of 22% of spike-specific B cells

(median n = 18, range 7–84) were reactive against RBD (Fig 3D). Ogega et al. recently reported

that patients who recovered from severe COVID-19 harbored more RBD-specific B cells than

COVID-19 patients who never required hospitalization [29]. We did not observe a difference

in the percentage of RBD-specific cells between individuals who recovered from non-severe

and severe disease, potentially because our non-severe group had been hospitalized and suf-

fered from more severe disease than the group with non-severe disease in the Ogega et al.
study.

Next, we compared the isotype of class-switched spike-specific B cells between patients who

recovered from non-severe and severe COVID-19 by categorizing spike-specific antigen-expe-

rienced B cells based on IgM, IgG, or IgA expression. The percentage of IgM+, IgG+, and IgA+

class-switched B cells among spike-specific B cells did not differ significantly between the two

patient groups and in both groups, the majority of class-switched spike-specific B cells were

IgG+ (Fig 3E). We also determined plasma IgM and IgG reactivity to the spike protein and

RBD and observed no significant differences in IgM or IgG titers to the spike protein or RBD

between convalescent patients who recovered from non-severe or severe disease (Fig 3F). Col-

lectively, these results suggest that individuals who recovered from either non-severe or severe

COVID-19 have similar immune responses to the SARS-CoV-2 spike protein, in terms of the

prevalence of spike-specific B cells and their major phenotype.

Non-severe COVID-19 is associated with an increased population of T-bet

+ spike-specific IgG+ B cells

To gain deeper understanding of the differences in memory B cell responses between individu-

als who had either non-severe or severe COVID-19, we combined the acquired flow cytometry

data for all 19 markers (S2 Table) of all individuals and plotted a composite image using Uni-

form Manifold Approximation Projection (UMAP). UMAP clusters cells in a 2D plot based

on similarity in phenotype and therefore provides meaningful organization of cell subsets. For

each recovered COVID-19 patient, we took a random sample of cells (n = 10,000) and pro-

jected the spike-specific antigen-experienced B cells onto the composite UMAP (Fig 4A). We

also plotted contours for various B cell subsets to visualize their location within the UMAP

(Fig 4B, see S4 Fig for heatmaps of all individual markers overlaid on the composite UMAP).

The composite image shows differences in the location of spike-specific B cells, predominantly

among IgG+ B cells (Fig 4A and 4B). The large majority of IgG+ B cells are memory B cells, but

a small fraction of these cells are DN1 B cells that are thought to contribute to a functional

immune response and were therefore included in a phenotypic analysis of spike-specific IgG+

B cells.

Irrespective of disease severity, spike-specific IgG+ B cells expressed increased levels of acti-

vation markers CD80, Ki-67, and CD95 compared to all IgG+ B cells, with no differences

between the two groups (Fig 4C, S5 Fig). In contrast, spike-specific IgG+ B cells after non-

severe disease showed an increase in the expression of the transcription factor T-bet that was

not seen after severe disease (Fig 4D). A median of 28% of spike-specific IgG+ B cells in
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Fig 4. Differences in the percentage spike-specific T-bet+ and FcRL5+ B cells between patients recovered from non-severe and severe COVID-19. A) Composite

UMAP showing the overlay of spike-specific B cells from individuals who recovered from non-severe (left) or severe (right) disease onto all B cells from that group. B)

Overlay of major B cell subsets and isotypes onto the composite UMAP. C) Expression of CD80, Ki-67, and CD95 by spike-specific (S+) IgG+ B cells in individuals

who experienced non-severe (n = 7) or severe (n = 5) COVID-19. D) Expression of T-bet, FcRL5, CD11c, and CD21 by spike-specific IgG+ B cells in individuals who

experienced non-severe or severe COVID-19. In all plots, the median expression level of the marker of interest in all IgG+ B cells from both non-severe and severe

COVID-19 recovered patients are indicated with a dashed line (see also S5 Fig). E) Expression of T-bet, FcRL5, and CD11c by all IgG+ B cells in individuals who

experienced non-severe or severe COVID-19. � P< 0.05.

https://doi.org/10.1371/journal.pone.0261656.g004
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individuals who experienced non-severe disease expressed T-bet, which has been associated

with strong anti-viral immunity [41]. Conversely, T-bet was expressed in only about 10% of

spike-specific IgG+ memory B cells in individuals who recovered from severe disease (Fig 4D,

S6 Fig). T-bet+ cells often have a distinct cell surface marker profile, including expression of

CD11c and FcRL5 and the absence of CD21 [25, 26, 28]. Indeed, in addition to T-bet, the per-

centage of FcRL5+ spike-specific IgG+ memory B cells was increased after non-severe disease

as compared to severe disease (Fig 4D). The expression of CD11c and CD21 was not statisti-

cally significantly different between the two groups (Fig 4D). However, the percentage of

CD11c+ spike-specific IgG+ memory B cells was increased among spike-specific IgG+ B cells in

patients who recovered from non-severe COVID-19 as compared to all IgG+ B cells in these

patients, while this difference was not seen in individuals who recovered from severe COVID-

19 (S5 Fig). Conversely, a lower percentage of CD21+ spike-specific IgG+ B cells was observed

as compared to all IgG+ B cells after non-severe disease but not after severe disease (S5 Fig).

Additionally, when comparing expression profiles of T-bet, FcRL5, and CD11c on total IgG+ B

cells, we only observed a small difference between the two groups for FcRL5 (Fig 4E). How-

ever, the relative increase in FcRL5 expression was higher in spike-specific B cells (2.0-fold)

than in total IgG+ B cells (1.4-fold), suggesting that differences between spike-specific B cells

are mainly driven by the response to antigen, not by a more generalized effect of infection on

the B cell compartment. To confirm that the measurement of T-bet, FcRL5, CD11c, and CD21

expression was robust between experiments, we processed and analyzed technical replicates

for samples from one non-severe and one severe case on different days, and observed almost

perfect correlation between the replicates (Spearman r = 0.99, P = 0.0002, S7 Fig). We then

analyzed the combinatorial expression of these markers by combining spike-specific IgG+ T-

bet+ B cells from all donors and plotting contour plots depicting the expression of FcRL5,

CD11c, CD21, CD27, CXCR3, and CXCR5 (Fig 5). This revealed four subpopulations of T-

bet+ IgG+ B cells, of which cells expressing FcRL5, CD11c, CD27 and CXCR3, and lacking

CD21 and CXCR5 (type I; activated switched memory B cells) were most abundant in both

non-severe and severe cases (Fig 5). This phenotype has previously been observed in activated

Fig 5. The phenotype of T-bet+ IgG+ spike-specific B cells. A) UMAPS showing the expression of individual markers in T-bet+ IgG+ spike-specific B cells. B) Gating

of four populations of T-bet+ IgG+ B cells based on unique expression profiles of the markers shown in panel A. C) Distribution of the four T-bet+ IgG+ B cell

population among individuals who recovered from non-severe (n = 7) and severe (n = 5) COVID-19. D) Summary of the phenotype of the four T-bet+ IgG+ B cell

populations identified here and their classification into one of the major B cell subsets: activated switched memory (act. swM), DN2, or resting switched memory (rest.

swM) B cells.

https://doi.org/10.1371/journal.pone.0261656.g005
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B cells after influenza virus vaccination and is thought to delineate a B cell subset associated

with long-lived humoral immunity [26, 28, 41]. Collectively, the higher prevalence of spike-

specific B cells that express markers associated with durable immunity in individuals who

recovered from non-severe COVID-19 than in those who experienced severe disease suggests

that disease severity influences the quality of the B cell response.

SARS-CoV-2 spike-specific memory B cells return to a resting phenotype

with baseline levels of T-bet expression five months post-symptom onset

Activated T-bet+ B cell subsets have been shown to expand and contract rapidly following

influenza virus vaccination, peaking between 14 and 28 days post-vaccination and returning to

baseline levels after three months [25]. In addition, it has been shown that the memory B cell

response continues to mature up to one year following SARS-CoV-2 infection, giving rise to B

cell clones with higher levels of somatic hypermutation and resulting in increases in antigen-

binding affinity and ability to neutralize the virus [7, 19, 20]. To evaluate the early dynamics of

T-bet+ spike-specific B cells and continued development of the phenotype of memory B cells

in parallel with ongoing selection and maturation, we analyzed additional blood samples from

recovered COVID-19 patients with non-severe disease collected at an earlier time point

(median, 19 days post-symptom onset) (T1, Fig 1) and at a follow-up visit five months post-

symptom onset (T3, Fig 1). Unfortunately, we were unable to recruit any individuals who had

experienced severe disease for a follow-up visit at five months post-symptom onset. In addi-

tion, at the earlier time point, most individuals with severe disease were still hospitalized (Fig

1). We therefore limited this analysis to individuals who recovered from non-severe COVID-

19.

The percentages of total naïve, unswitched memory, resting switched memory, activated

switched memory, and double negative B cell subsets among total B cells did not differ between

the two time points (S8 Fig). However, the phenotype of spike-specific B cells changed consid-

erably between the two early time points and five months post-symptom onset (Fig 6A, S9

Fig), as described in further detail below. Similar to what has been reported by Dan et al. and

Sokal et al. [4, 8], the percentage of spike-specific B cells among antigen-experienced B cells

remained relatively stable at five months post-symptom onset (Fig 6B). In addition, the reactiv-

ity against RBD among these spike-specific B cells increased between 2–3 weeks and 4–5

weeks post-symptom onset, but did not change at the 5-month time point (Fig 6C). The larger

proportion of non-RBD-specific B cells early in infection may be the result of recall responses

of pre-existing memory B cells that are cross-reactive with other coronaviruses.

The percentage of antigen-experienced spike-specific B cells with an unswitched memory B

cell phenotype was reduced at the 5-month time point (Fig 6D). The percentage of spike-spe-

cific activated switched memory B cells drastically decreased over time, accompanied by an

increase in resting memory B cells (Fig 6E). Among switched memory B cells, the percentage

of IgM+ and IgA+ memory B cells declined and the proportion of IgG+ memory B cells

increased at five months post-symptom onset (Fig 6F). In line with the decrease of IgM+ mem-

ory B cells, the anti-spike and anti-RBD plasma IgM responses were lost almost completely at

five months post-symptom onset. Plasma IgG titers against the spike protein remained stable,

whereas plasma IgG titers against RBD showed a modest decrease (Fig 6G). These results indi-

cate that both the unswitched plasma cell and memory B cell response against the spike protein

are short-lived, while the class-switched IgG+ response is more durable, as has been reported

by others [4, 8].

Both the decrease of unswitched memory B cells and the change from an activated to a rest-

ing switched memory B cell phenotype can be seen in composite UMAPs of the three time
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Fig 6. Change from activated to resting memory phenotype of IgG+ spike-specific B cells at five months post-symptom onset. A) Phenotype distribution of non-

RBD-specific (S+RBD-) and RBD-specific (S+RBD+) B cells, showing the median percentage among each group. Graphs with individual data points for each B cell

subset are presented in S6 Fig. B) Percentage of antigen-experienced spike-specific B cells at 2–3, 4–5, and 20–23 weeks post-symptom onset. C) Percentage of S+RBD

+ B cells among antigen-experienced spike-specific B cells. D) Percentage of unswitched memory B cells among antigen-experienced spike-specific B cells. E)

Percentage of activated (left) and resting (right) switched memory B cells among antigen-experienced spike-specific B cells. F) Percentage of class-switched spike-

specific B cells that express IgM (left), IgA (middle), or IgG (right). G) Plasma IgM (left) and IgG (right) titers against spike and RBD. In all panels, results are shown

for samples collected 2–3 (n = 9), 4–5 (n = 7), and 20–23 (n = 7) weeks post-symptom onset. � P< 0.05; �� P< 0.01; ��� P< 0.001.

https://doi.org/10.1371/journal.pone.0261656.g006
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points (Fig 7A and 7B). In line with the return to a resting memory B cell phenotype, expres-

sion of CD80, Ki-67, and CD95 was decreased at 20–23 weeks post-symptom onset as com-

pared the two earlier time points (Fig 7C). The percentage of CD80+ spike-specific IgG+ B cells

at 20–23 weeks post-symptom onset still showed an increase over baseline levels (P = 0.016,

Wilcoxon signed rank test), while expression of Ki-67 and CD95 had returned to levels seen in

non-spike-specific IgG+ B cells (Fig 7C, S10 Fig). The expression of T-bet was higher at 2–3

Fig 7. Longitudinal dynamics in the percentage of spike-specific B cells that express T-bet and various surface markers shortly after recovery and five months

post-symptom onset. A) Composite UMAP showing the overlay of spike-specific B cells from individuals who recovered from non-severe COVID-19 at 2–3 (left), 4–5

(middle), and 20–23 (left) weeks post-symptom onset. B) Overlay of major B cell subsets and activated/resting switched memory B cells onto the composite UMAP. C)

Expression of CD80, Ki-67, and CD95 by spike-specific (S+) IgG+ B cells at the three time points. D) Distribution of the four T-bet+ subsets (as defined in Fig 5)

among spike-specific IgG+ B cells at the three time points post-symptom onset. E) Expression of T-bet, FcRL5, CD11c, and CD21 by spike-specific IgG+ B cells at the

three time points post-symptom onset. In all graphs, results are shown for samples collected 2–3 (n = 9), 4–5 (n = 7), and 20–23 (n = 7) weeks post-symptom onset. �

P< 0.05; �� P< 0.01; ��� P< 0.001; ���� P< 0.0001.

https://doi.org/10.1371/journal.pone.0261656.g007

PLOS ONE B cell memory after severe and non-severe COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0261656 December 22, 2021 12 / 23

https://doi.org/10.1371/journal.pone.0261656.g007
https://doi.org/10.1371/journal.pone.0261656


weeks post-symptom onset than at 4–5 weeks post-symptom onset (median, 58% and 28%,

respectively), although this difference was not statistically significant, and decreased further to

baseline levels (~ 10%) at 20–23 weeks post-symptom onset (Fig 7D and 7E). Similar dynamics

were observed for FcRL5 and CD11c, while CD21 expression increased significantly over time

(Fig 7E). The percentage of type I T-bet+ spike-specific IgG+ B cells (activated switched mem-

ory B cells) that dominated the early response decreased dramatically over time (Fig 7D).

Instead, the T-bet+ spike-specific IgG+ B cells present at five months post-symptom onset were

mainly type II (FcRL5+ CD11c+ CD21- CD27-, DN2 B cells) and type IV (FcRL5- CD11c-

CD21+ CD27+, resting switched memory B cells) subsets, making up ~35% and ~40% of T-

bet+ spike-specific IgG+ B cells, respectively. These results suggest that the memory B cell

response continues to evolve until at least five months after infection. In addition, the decrease

of T-bet+ spike-specific B cells in the circulation over the course of five months post-symptom

onset suggests that their abundant presence in the blood may signify recent exposure.

Discussion

In the current COVID-19 pandemic, an important question that has only partially been

answered is whether SARS-CoV-2 infection elicits durable immunity. Assessments of B cell

responses up to one year post-infection suggest that both neutralizing antibodies and memory

B cells against the SARS-CoV-2 spike protein remain detectable in the circulation of most

recovered COVID-19 patients and are stable or decay slowly at this time point. In this study,

we aimed to better understand the memory B cell response and to determine whether the

severity of COVID-19 disease course influences the development of B cell responses. Using

high-parameter spectral flow cytometry, we analyzed the phenotype of B cells reactive with

both non-RBD and RBD epitopes on the spike protein shortly after recovery and approxi-

mately five months post-symptom onset.

Our study consisted of a relatively small number of individuals but recapitulated many of

the observations reported from much larger cohorts, including the frequency of spike-specific

memory B cells after infection and the fraction of spike-specific B cells that recognizes RBD

epitopes. We also confirmed the loss of IgM+ and IgA+ spike-specific memory B cells and anti-

spike and anti-RBD plasma IgM, as well as maintenance of IgG+ spike-specific memory B cells

and anti-spike plasma IgG five months post-symptom onset [4, 17]. This gives us confidence

in the validity of several new observations that we discuss in more detail below. While antigen-

specific B cells make up only a small percentage of total B cells (<1%), we detected a meaning-

ful population of spike-specific B cells (between 42 and 450 cells) in all except one donor, who

was therefore excluded from further analysis. RBD-specific B cells were sparser (between 7 and

84 cells per donor) and all main observations are therefore based on the larger populations of

spike-specific B cells.

The most striking result from this study is the higher percentage of spike-specific IgG+ B

cells that express the transcription factor T-bet in individuals who recovered from non-severe

disease as compared to those who recovered from severe disease. Previously, it was observed

that a higher percentage of total CD19+ T-bet+ IgG1
+ B cells was associated with shorter symp-

tom duration [42]. Here, we determined that this association predominantly involves SARS--

CoV-2 antigen-specific B cells, suggesting implications for the development of B cell memory.

The expression of T-bet, in parallel with a surface marker profile that includes the presence of

FcRL5 and CD11c and the absence of CD21, has previously been reported on activated B cells

shortly after vaccination and infection, and is associated with long-lived humoral immunity

[26, 28, 41]. Here, we observed an increase in the percentage of spike-specific IgG+ B cells that

expressed T-bet and FcRL5 shortly after recovery from non-severe COVID-19, but not after
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severe COVID-19. This increased expression was only observed in SARS-CoV-2 spike-specific

B cells for T-bet and was larger in spike-specific B cells as compared to total B cells for FcRL5,

suggesting an alteration exclusively in the B cell response to the virus and not a global change

to the B cell compartment as a result of infection. Ogega et al. reported higher FcRL5 expres-

sion on RBD-specific class-switched memory B cells after non-severe COVID-19 (non-hospi-

talized patients) than after severe disease (hospitalized patients) [29], findings that are in

agreement with our results. In addition, higher levels of somatic hypermutation were observed

in IgG+ memory B cells following non-severe COVID-19 than severe disease [43], while

patients who died from COVID-19 showed an absence of germinal centers and a delay in the

development of neutralizing antibodies [24, 44]. Collectively, these data are indicative of func-

tional development of B cell immunity with germinal center responses in patients with non-

severe disease, as compared to a more dysfunctional B cell response in severe disease cases.

T-bet expression in B cells can be induced by interferon gamma (IFNγ) signaling through

the IFNγ receptor [45, 46]. IFNγ plays an important role in the immune response against viral

infections. Although many contradictory findings have been reported about the role of INFγ
in SARS-CoV-2 infection, the induction of INFγ early in infection seems important in the con-

trol of viral replication (summarized in [47]). Indeed, low IFNγ and low induction of inter-

feron-stimulated genes contribute to the development of COVID-19 [48]. Failure to control

viral load leads to the induction of a hyper-inflammatory response later in disease, in parallel

with persistent high levels of IFNγ. However, these conditions may not promote the develop-

ment of T-bet+ memory B cells. Instead, patients with severe disease show a strong extrafolli-

cular B cell response, resulting in an accumulation of DN2 B cells [22]. In our study, no

difference was observed in the percentage of DN2 B cells shortly after recovery between

patients with either non-severe or severe disease, suggesting that these DN2 B cells may be rel-

atively short-lived. Of note, DN2 cells typically also express T-bet [21], highlighting that the

expression of this transcription factor alone is not the determining factor in the development

of either a functional or pathogenic B cell response. The difference that we observed in the per-

centage of T-bet+ spike-specific IgG+ B cells between patients recovered from non-severe or

severe COVID-19 could reflect these two developmental pathways of anti-viral immune

responses.

In individuals who experienced non-severe COVID-19, T-bet+ spike-specific IgG+ B cells

almost disappeared from the circulation five months post-symptom onset. This is in line with

the transient peak of activated memory B cells observed after influenza vaccination [25, 26].

The cell surface marker expression profile and dynamics of the T-bet+ B cells detected in this

study matches best with the AM2 subset of activated memory B cells defined by Andrews

et al., which peaked 14 days after influenza vaccination and had almost disappeared 90 days

post-vaccination [25]. However, this does not necessarily mean that these cells are short-lived.

It was recently shown that the spleen harbors a population of resident T-bethi memory B cells

with specificity to viral antigens [49]. In addition, it has been reported that T-bethi memory B

cells elicited in response to influenza virus vaccination rapidly differentiated into antibody-

secreting cells upon reactivation one year later [28]. T-bet+ memory B cells thus seem to con-

tribute to effective recall responses upon re-exposure, but may only be detectable in the circu-

lation shortly after infection. In this regard, it is important to point out that the timing of

sampling can strongly affect the frequency of transient B cell populations, and samples selected

for comparative analyses need to be carefully matched to account for rapid changes in the

abundance of activated B cell populations over time. For example, this may explain the dis-

crepancy between this study and the observation by Sokal et al. that T-bet expression in spike-

specific B cells was higher in individuals with severe COVID-19 than individual with non-

severe COVID-19 [8]. In the Sokal et al. study, samples from severe cases were collected at an
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earlier time point than those from non-severe cases (median, 18.8 days versus 35.5 days post-

symptom onset), which could have influenced these results [8].

Thus far, no differences have been observed in serum anti-spike antibody titers, in vitro
serum neutralizing activity, or percentages of spike-specific memory B cells between non-

severe and severe COVID-19 patients in the months after infection [18]. It remains to be deter-

mined whether the durability of B cell memory differs between individuals who experienced

non-severe or severe disease. We speculate that individuals who recovered from non-severe

disease develop a higher quality memory B cell response that may be longer-lived or may give

rise to a larger population of antibody-secreting cells upon re-exposure. An alternative inter-

pretation of the paucity of T-bet+ spike-specific memory B cells in patients with severe disease

could be that a robust T-bet+ B cell response protects against severe COVID-19. Although

patients who died from COVID-19 show defects in the development of B cell responses [24,

44], it is likely that the absence of a population of T-bet+ spike-specific memory B cells is a con-

sequence of the immune environment during disease, not a factor contributing to pathogene-

sis. We believe these cells are a sign of a balanced immune response that contributes to viral

clearance through the production of neutralizing antibodies and leads to the development of

durable B cell memory, but that T-bet+ memory B cells do not play a direct role in protection

against severe disease.

In conclusion, we have shown that the memory B cell response against SARS-CoV-2 spike

protein develops differently in patients with non-severe disease compared those with severe

disease, with more spike-specific B cells that express a B-cell marker profile associated with

durable immunity, characterized by expression of T-bet and FcRL5 in individuals who recov-

ered from non-severe COVID-19. Although antibody titers or percentage of spike-specific

memory B cells up to one year are similar or higher in individuals who recovered from severe

disease as compared to non-severe cases [8, 18], the increased percentage of B cells associated

with long-lived immunity in non-severe COVID-19 patients may have consequences for long-

term immunity against SARS-CoV-2 re-infection or severity of the resulting disease. T-bet+

spike-specific B cells nearly disappeared from the circulation five months post-symptom onset,

consistent with loss of these cells from the periphery or migration into tissues. These data aid

in the understanding of naturally acquired B cell responses against SARS-CoV-2 and help

characterize the B cell populations that may be responsible for durable, long-lived immunity.

Materials and methods

Isolation of plasma and peripheral blood mononuclear cells

Blood from recovered COVID-19 patients was processed within four hours of blood draw.

Plasma was separated from cells by centrifugation at 250 × g for 5 min at room temperature

(RT). Plasma was depleted of platelets by centrifugation at 2,000 × g for 15 min at 4˚C and was

stored at -20˚C. Peripheral blood mononuclear cells (PBMCs) were isolated from the cellular

fraction as described below. PBMCs used as negative controls were collected in 2018 and early

2019 by isolation from buffy coats (Interstate Blood Bank, Memphis, TN) obtained the day fol-

lowing blood draw. Buffy coats were stored and shipped at room temperature (RT) and pro-

cessed immediately upon arrival. Cells were diluted approximately 4 × in PBS with 2 mM

EDTA. PBMCs were layered on Ficoll-Paque (GE Healthcare, cat. no. 17144002) and spun at

760 × g for 20 min at RT to pellet erythrocytes and separate leukocytes. The leukocytes were

then washed in PBS with 2 mM EDTA, centrifuged at 425 × g for 15 min at RT, followed by

centrifugation at 250 × g for 10 min at RT for all subsequent wash steps necessary to remove

all platelets, determined by cloudiness of the supernatant. Next, PBMCs were resuspended in

cold IMDM/GlutaMAX (Gibco, cat. no. 31980030) supplemented with 10% heat-inactivated,

PLOS ONE B cell memory after severe and non-severe COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0261656 December 22, 2021 15 / 23

https://doi.org/10.1371/journal.pone.0261656


USA-sourced, fetal bovine serum (FBS) and 5% cell culture grade DMSO, counted, and cryo-

preserved in the liquid nitrogen vapor phase.

Spike and RBD protein production and tetramer synthesis

Recombinant SARS-CoV-2 HexaPro spike and RBD were produced from Addgene plasmid

#154754 [50] and BEI plasmid NR-52309, respectively, for use in ELISA experiments. DNA

plasmids were purified from DH5alpha Competent Cell (Zymo, cat. no. T3007) cultures using

a ZymoPURE II Plasmid Maxiprep (Zymo, cat. no. D4203). 25 μg plasmid was used to trans-

fect 25 ml Expi293F (Thermo, cat. no. A14635) culture per manufacturer’s instructions. Cul-

ture supernatants were collected 5 days post-transfection. His-tagged S and RBD were purified

using HiTrap chelating high performance columns (Cytiva, cat. no. 17-0408-01) charged with

Ni2+, washed with PBS (pH 7.2), and eluted with 0.3 M imidazole in PBS (pH 7.2). The imidaz-

ole was removed from the eluted protein buffer using a HiPrep desalting column (Cytiva, cat.

no. 17-5087-01). The protein was concentrated using a 30 kDa MWCO Amicon ultra-15 cen-

trifugal filter (Sigma, cat. no. UFC903024), and stored at -70˚C. For the production of biotiny-

lated S and RBD protein used for the synthesis of antigen tetramers, Addgene plasmid

#154754 and BEI plasmid NR-52309 were altered to include a biotinylation site. The modified

plasmids have been deposited to Addgene: #166856 and #166857 for spike and RBD, respec-

tively. Cells were co-transfected with either plasmid #166856 or #166857 and a plasmid encod-

ing BirA ligase (Addgene #32408) at a 4:1 ratio (m/m). 100 mM D-biotin (Sigma, cat. no.

B4639) was added immediately post-transfection to a final concentration of 10 mM. Spike and

RBD tetramers were synthesized by incubating biotinylated protein with fluorophore-conju-

gated streptavidin overnight at 4˚C (streptavidin-PE, Tonbo, cat. no. 50-4317-U100, streptavi-

din-APC, Tonbo, cat. no. 20-4317-U100, streptavidin-BV421, BioLegend, cat. no. 405226) at a

molar ratio of 5:1, respectively, to generate three individual tetramers: spike-PE, spike-APC,

and RBD-BV421.

Protein gels

As a quality control step, purified spike and RBD proteins were visualized on a polyacrylamide

gel (S11 Fig). 800 ng of protein was loaded on a 4–12% Bis-Tris gel (Thermo, cat. no.

NP0321BOX) after it was mixed with 2× Laemmli loading buffer and incubated at 85˚C for 5

min. The gel was run with MOPS running buffer (Thermo, cat. no. NP0001) at 200 V for 50

min after which the proteins were stained using Imperial Protein Stain (Thermo, cat. no.

PI24615) per manufacturer’s instructions.

B cell isolation and staining

Cryopreserved PBMCs were thawed in a water bath set at 37˚C and immediately mixed with

pre-warmed thawing medium (IMDM/GlutaMAX supplemented with 10% heat inactivated

FBS and 0.01% Universal Nuclease (Thermo, cat. no. 88700). After brief centrifugation

(250 × g, 5 min) at RT, the cell pellet was resuspended in warm thawing medium and viable

cells were counted using trypan blue on a Cellometer Mini (Nexcelom) automated cell

counter. Next, the PBMCs were pelleted (250 × g, 5 min, RT), resuspended in isolation buffer

(PBS supplemented with 2% heat inactivated FBS and 1 mM EDTA) at 50 million live cells/ml,

and filtered through a 35 μm sterile filter cap (Corning, cat. no. 352235) to break apart any

aggregated cells. B cells were isolated using the EasySep Human B Cell Isolation Kit (StemCell,

cat. no. 17954) according to manufacturer’s instructions. After washing with cold PBS

(250 × g, 5 min, RT), the isolated B cells were incubated with 1 μl Zombie UV Fixable Viability

kit (Biolegend, cat. no. 423107) per 1 ml cell suspension for 30 min on ice. Cells were
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subsequently washed with cold PBS with 1% bovine serum albumin (BSA), followed by an

incubation at 4˚C for 30 min with an antigen tetramer cocktail (S2 Table). Next, the cells were

washed again with cold PBS with 1% BSA and incubated at 4˚C for 30 min with a B cell surface

marker antibody cocktail (S2 Table), after which the cells were washed again with cold PBS

with 1% BSA and resuspended in 1 ml Transcription Factor Fix/Perm Concentrate (Tonbo,

part of cat. no. TNB-0607-KIT) diluted with 3 parts Transcription Factor Fix/Perm Diluent

(Tonbo) and incubated at 4˚C for 1 hour. After the incubation, the cells were washed twice

with 3 ml of 1× Flow Cytometry Perm Buffer (Tonbo) and resuspended in intracellular marker

antibody cocktail (S2 Table) diluted in 1× Flow Cytometry Perm Buffer. After an incubation at

4˚C for 30 min., the cells were washed twice with 3 ml 1× Flow Cytometry Perm Buffer and

once with 3 ml cold PBS + 1% BSA. The cells were then fixed by adding 4% formaldehyde at a

1:1 ratio to sample (v/v), washed with 3 ml cold PBS + 1% BSA, and resuspended to 20–30 mil-

lion cells/ml in PBS with 1% BSA, and filtered into a FACS tube through a 35 μm sterile filter

cap. Cells were analyzed by flow cytometry immediately following fixation.

Flow cytometry analysis

B cells were analyzed on a Cytek Aurora spectral flow cytometer equipped with five lasers. Spec-

troFlo QC Beads (Cytek, cat. no. SKU N7-97355) were run prior to each experiment for perfor-

mance tracking. Quality control and LJ tracking reports were used to ensure machine

performance and settings between different runs were comparable. B cells isolated from control

PBMCs collected pre-pandemic were used for the compensation of the live/dead stain and for

the unstained control. UltraComp eBeads (Thermo, cat. no. 01-2222-41) were used for com-

pensation of all other single stain fluorophores. FlowJo was used for gating and quantifying cell

frequencies. The cytometry analysis software OMIQ was used for the integration and dimen-

sion reduction analysis. In short, Uniform Manifold Approximation and Projection (UMAPs)

where created by first pre-gating single/live/CD19+/CD20+/CD38lo cells. Features used for

UMAP projection included mean fluorescence intensity of staining markers, excluding live/

dead, RBD, spike1, and spike2 with default parameters (neighbors = 15, metric = Euclidean,

random seed = 9889) and included all COVID-19 samples used in this study for initial projec-

tion. Subsequently, files were subsampled to include an equal representation of cells from each

donor and concatenated within each group. For the projection of B cell subsets, Ig isotypes, and

antigen-specific B cells onto the UMAP, gates were manually set to identify populations of

interest using two-dimensional displays, which were then overlaid onto the UMAP projection.

Detection of spike protein and receptor binding domain using an enzyme-

linked immunosorbent assay

96-well plates (Corning, cat. no. 07-200-721) were coated with 50 μl of SARS-CoV-2 spike or

RBD at a concentration of 2 μg per ml in PBS and incubated overnight at 4ºC. An additional

plate was coated with goat anti-human IgG (Sigma, cat. no. I2136-1ML) at 4 μg/ml and IgM

(Sigma, cat. no. I1636-2ML) at 8 μg/ml, and served as a positive control. Plates were washed

twice using a gentle stream of deionized water from a faucet and subsequently incubated with

200 μl blocking buffer (PBS with 0.01% Tween-20 (Fisher, cat. no. BP337-100) and 3% non-fat

dry milk (SACO)) for 1 hour at RT. Three-fold serial dilutions of 20 μg/ml human IgG or IgM

were prepared in dilution buffer (PBS with 0.01% Tween-20 and 1% non-fat dry milk) and

were added to the IgG or IgM-coated and blocked plates in 100 μl total volume. Plasma samples

were heat inactivated prior to handling by incubating at 56˚C for 30 min. Plasma samples were

then diluted in dilution buffer starting at a 1:50 dilution, with an additional 7 two-fold serial

dilutions. The diluted plasma samples, 27 from convalescent patients exposed to SARS-CoV-2
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and 1 from a non-infected human control, were added to the plates in a total volume of 200 μl.

After a two-hour incubation at RT, the plates were washed once with 150 μl of PBST by remov-

ing the samples and adding PBST by pipetting and subsequently washed 6 times using a gentle

stream of deionized water from a faucet. Next, 100 μl anti-human IgG or IgM—horseradish

peroxidase (HRP) conjugates (BioLegend), diluted 1:2500 and 1:5000 in dilution buffer, respec-

tively, was added and the plates were incubated for 1 hour at RT. After four subsequent washes

with deionized water 100 μl TMB (Thermo, cat. no. PI34024) was added and the plates were

incubated in the dark at RT. The oxidation of TMB was stopped by adding 100 μl 0.18 M

H2SO4 when the wells containing the most diluted IgG/IgM standard started to color. The

absorbance was measured at 450 nm using a Synergy H4 Hybrid Plate Reader (BioTek). The

average background signal of wells incubated without plasma was subtracted from the absor-

bance values for each sample. All plasma samples were measured in duplicate and the average

absorbance reading was used to calculate the area under the curve using GraphPad 9.

Statistics

Statistical analyses were performed in GraphPad 9. Differences between two groups were eval-

uated using a Mann-Whitney U test. Differences between three or more groups were tested

using a Kruskal-Wallis test, followed by comparisons between selected pairs of groups using

Dunn’s post-hoc test, corrected for multiple comparisons. Non-parametric tests were used

because the limited sample size did not allow for reliable evaluation of normal distribution and

homoscedasticity.

Study approval

Samples and associated clinical data used in this study were received de-identified from the

University of Texas Health San Antonio COVID-19 Repository. This repository was reviewed

and approved by the University of Texas Health Science Center at San Antonio Institutional

Review Board. All study participants provided written informed consent prior to specimen

collection for the repository to include collection of associated clinical information and use of

left-over clinical specimens for research. The COVID-19 Repository utilizes an honest broker

system to maintain participant confidentiality and release of de-identified data or specimens

to recipient investigators.

Supporting information

S1 Fig. Distribution of major B cell subsets in patients who recovered from non-severe or

severe COVID-19. A) The percentage of naïve B cells (NBC; IgD+ CD27-), unswitched mem-

ory B cells (MBCs; IgD+ CD27+), resting switched MBCs (swMBC; IgD- CD27+CD21+), acti-

vated swMBC (IgD+ CD27+ CD21+), and double negative B cells (DN; IgD- CD27-). B) The

percentage of type 1, 2, and 3 DN cells among all DN cells. Results are shown for patients who

recovered from non-severe (n = 8) and severe (n = 5) COVID-19. � P< 0.05.

(TIF)

S2 Fig. Enhanced view of the gating of spike-specific B cells. The plots show separation of

spike-specific B cells from the main cluster of non-specific B cells in the bottom left corner, as

well as from B cells reactive with one of the tetramers but not both.

(TIF)

S3 Fig. Percentage of spike-specific B cells among the major B cell subsets in patients who

recovered from non-severe and severe COVID-19. The percentage of naïve B cells (NBC;

IgD+ CD27-), unswitched memory B cells (MBCs; IgD+ CD27+), resting switched MBCs
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(swMBC; IgD- CD27+ CD21+), activated swMBC (IgD+ CD27+ CD21-), and double negative B

cells (DN; IgD- CD27-) is shown side-by-side for non-RBD-specific (S+RBD-) B cells (left) and

RBD-specific (S+RBD+) B cells (right). Results are shown for patients who recovered from

non-severe (n = 7) and severe (n = 5) COVID-19.

(TIF)

S4 Fig. Composite UMAPs for all intracellular and surface markers included in this study.

The plot in the bottom right shows the overlay of all non-RBD-specific (S+RBD-) and RBD-

specific (S+RBD+) B cells onto the UMAP.

(TIF)

S5 Fig. Expression of activation markers in spike-specific and all IgG+ B cells in individuals

recovered from non-severe and severe COVID-19. The percentage of CD80, Ki-67, and

CD95 (top row) and T-bet, FcRL5, CD11c, and CD21 (bottom row) is shown for spike-specific

(S+) IgG+ B cells and all IgG+ B cells in individuals who experienced non-severe (n = 7) or

severe (n = 5) COVID-19. � P< 0.05; �� P < 0.01.

(TIF)

S6 Fig. Representative flow cytometry plots of the percentage of T-bet+ and FcRL5+ spike-

specific IgG+ B cells in individuals recovered from non-severe and severe COVID-19.

(TIF)

S7 Fig. Correlation between technical flow cytometry replicates. Shown are the percentages

of spike-specific B cells that express T-bet, FcRL5, CD11c, and CD21 in two technical repli-

cates, one from a non-severe case (pink) and one from a severe case (blue), that were processed

and analyzed independently and blinded on separate days. Two data points (pink, ~ 25%)

were overlapping and were changed slightly for visualization purposes.

(TIF)

S8 Fig. Distribution of major B cell subsets in recovered COVID-19 patients at 2–3, 4–5,

and 20–23 weeks post-symptom onset. A) The median distribution of B cell subsets in recov-

ered COVID-19 patients. B) The percentage of naïve B cells (NBC; IgD+ CD27-), unswitched

memory B cells (MBCs; IgD+ CD27+), resting switched MBC (swMBCs; IgD+ CD27+ CD21+),

activated swMBCs (IgD- CD27+ CD21-), and double negative B cells (DN; IgD- CD27-). In all

graphs, results are shown for samples collected 2–3 (n = 9), 4–5 (n = 7), and 20–23 (n = 7)

weeks post-symptom onset.

(TIF)

S9 Fig. Percentage of spike-specific B cells among the major B cell subsets in recovered

COVID-19 patients 2–3, 4–5, and 20–23 weeks post-symptom onset. The percentage of

naïve B cells (NBC; IgD+CD27-), unswitched memory B cells (MBCs; IgD+ CD27+), activated

switched MBCs (swMBC; IgD- CD27+ CD21-), resting swMBC (IgD+ CD27+ CD21+), and

double negative B cells (DN; IgD- CD27-) is shown side-by-side for non-RBD-specific (S

+RBD-) B cells (left) and RBD-specific (S+RBD+) B cells (right). In all graphs, results are

shown for samples collected 2–3 (n = 9), 4–5 (n = 7), and 20–23 (n = 7) weeks post-symptom

onset. � P< 0.05; �� P < 0.01; ��� P< 0.001.

(TIF)

S10 Fig. Expression of activation markers in all IgG+ B cells shortly after recovery and five

months post-symptom onset. In all graphs, results are shown for samples collected 2–3

(n = 9), 4–5 (n = 7), and 20–23 (n = 7) weeks post-symptom onset. � P < 0.05.

(TIF)
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S11 Fig. Quality control of purified S and RBD proteins by SDS-PAGE. A) 800 ng of spike,

RBD, and BSA was run on a 4–12% Bis-Tris gel and stained using Imperial Protein Stain. B)

The full uncropped image of the gel shown in panel A.

(TIF)

S1 Table. COVID-19 patient characteristics.

(PDF)

S2 Table. Reagents and antibodies used for spectral flow cytometry.

(PDF)
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