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Abstract: In modern society, high-quality material development and a large stable supply are key to
perform frontier research and development. However, there are negative issues to address to utilize
high-quality resources with a large stable supply for research, such as economic accessibility, commer-
cialization, and so on. One of the cutting-edge research fields, perovskite-related research, usually
requires high-quality chemicals with outstanding purity (>99%). We developed an economically
feasible PbI2 precursor with around 1/20 cost-down for perovskite/perovskite quantum dots through
recrystallization and/or hydrothermal purification. Following the methodology, the quantum dots
from both as-prepared and purified PbI2 demonstrated identical photophysical properties, with a
photoluminescence quantum yield (PLQY) of 52.61% using the purified PbI2 vs. 45.83% PLQY using
commercial PbI2. The role of hydrothermal energy was also checked against the problematic PbI2, and
we checked whether the hydrothermal energy could contribute to the hindrance of undesired particle
formation in the precursor solution, which enables them to form enlarged grain size from 179 ± 80 to
255 ± 130 nm for higher photoconversion efficiency of perovskite solar cells from 14.77 ± 1.82% to
15.18 ± 1.92%.

Keywords: perovskite; perovskite quantum dots; perovskite solar cells; hydrothermal; perovskite
precursor purification

1. Introduction

In modern research and development (R&D), high-quality products usually require
high-quality resources with very low impurity. Current chemical industries successfully
developed various strategies to provide high-quality chemicals with high purities up
to 99.999% in general, or even higher purities. For example, some modern researchers
can purchase high-quality chemicals for their research to elucidate the effect of impuri-
ties [1], doping [2], regional deformation [3], or to aim at high performances of various
electronic/optoelectronic devices [4]. Limiting impurities in the stage of material synthesis
or device fabrication is essential to control experimental factors. This variable control
should be performed to reduce negative aspects in numerous R&D fields: byproducts in
synthesis, current loss, and/or short circuit current in electronic devices, and non-radiative
recombination sites in optoelectronic devices. The market for supplying high-quality
chemicals is inevitable for cutting-edge R&D and industrial processes.

Some of the negative aspects of the supply of high-quality chemicals are economic
accessibility, production costs, commercialization, and the supply of large amounts for
industrial processes. Usually, scientists and engineers need to spend more to obtain
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the same amount of chemicals with higher purities. This trend gets worse when the
researchers would like to purchase ultra-high-quality chemicals with >99.99% purities
or higher. Economically, researchers who had limited research funding do not have an
equal chance to obtain high-quality resources, which are essential for the frontier R&D,
compared to those who can perform research with sufficient funding. The expensive
chemicals required for higher purity can induce economic inaccessibility, so the uneven
opportunity to perform cutting-edge R&D can be derived. In addition, usage of the high-
cost resources increases production costs, so the price of alternative devices can limit their
commercialization. Beyond the large-scale production, the consumption of a larger amount
of chemicals is essential, but the sustainable supply of the high purity chemicals is often
one of the general issues for large-scale production [5]. For the frontier R&D and industrial
process, it is still essential to develop purification strategies to use economic chemicals with
low quality and prove the similarity by using two low-and-high purity chemicals so that we
can achieve equal opportunity for all researchers with different funding situations, reducing
production costs for commercialization, and a sustainable supply for the industrial process.

One of the cutting-edge R&D fields is research about the organic–inorganic hybrid
ABX3 (A = MA+, FA+, and Cs+, where MA+: methylammonium, FA+: formamidinium,
B = Pb2+ and Sn2+, and X = Cl−, Br−, and I−) perovskites. Ever since the pioneering
research of Mitzi and coworkers was published [6–8], research about hybrid perovskites
has been published since the early 21st century with a drastic photoconversion efficiency
increment of perovskite solar cells (PSCs) in 11 years, from 3.8% [9] to 25.17% [4], which
overcomes the minimum efficiency (~19%) for commercialization. This is because there
are positive potentials of the perovskite, such as fast charge transport [10], long diffusion
length (up to few micrometers [11]), high absorption cross-sections comparable to various
outstanding photosensitizers [12], and low exciton binding energies (16–32 meV) [13],
which are similar to thermal energy (kbT) at room temperature for the efficient charge
separation in the PSCs. Researchers have used precursors with the best qualities to maxi-
mize the perovskite potentials, for example, >99.99% for PbI2 precursor [4]. Furthermore,
various techniques to improve the quality of material have been applied to achieve higher
photophysical properties and/or photoconversion efficiency of PSCs, such as anti-solvent
engineering [14], perovskite powder preparation and crystallization [15], inverse recrystal-
lization [16], single crystal growth [17], incorporation of mixing A-site cations [18] and/or
X-site anions [19], and so on. In short, the cutting-edge research field for perovskites has
also been focused on the development of high-quality perovskite materials using ultra-high
purity of precursors. This is because small impurities, hydrated sources, and stabilizers
can induce various trap states, which can act as non-radiative recombination sites; these
sites can decrease the charge carrier’s lifetime, photoluminescence quantum yield (PLQY),
and photoconversion efficiency in PSCs [1,15,20].

The drastic improvement of PSCs’ performance attracts researchers to utilize the
perovskite in various fields, such as light-emitting diodes (LEDs) [21], lasers [22], pho-
tocatalysis [23], hydrogen-evolution reactors [24], non-linear optics [25], and so on. For
the application of the perovskites to the various fields, various factors were controlled,
such as dimensionalities (3D bulk film [14], 2D nanosheet [26], 1D nanowire [27], and 0D
quantum dots [25,28]), compositions [18,19], crystallinities [17], and so on. Among the
various dimensional perovskites, 0D perovskite quantum dots (PQDs) were widely used
with outstanding PLQY (>90%) [29] due to the preferred major radiative recombination
process (as opposed to the less preferred minor non-radiative recombination process).

Considering the aspects mentioned earlier, such as economic accessibility, commercial-
ization, large-scale production, and importance of the key material quality improvement, it
is necessary to develop strategies to improve the quality of perovskite precursor from low-
grade economic sources for better perovskite/perovskite quantum dot quality. In this work,
we used economically low-grade chemicals to synthesize one of the key precursors for
perovskite/PQDs, PbI2. Through additional recrystallization and consecutive hydrother-
mal process, with the purified PbI2, we could obtain similar PLQY compared to high-cost
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PbI2 with 99.99% purity (purchased from TCI®). The hydrothermal also applied to another
high purity PbI2 with 99.9985% (purchased from Alfa Aesar®) purity and with undesired
dissolution issue at certain reaction batch (LOT:U14E066). Through hydrothermal using the
issued PbI2, we solved the dissolution issue with enlarged grain and slight improvement of
photoconversion efficiency. Our work could provide a practical solution for the researchers
to obtain better PbI2 precursors from economically approachable low-grade sources, which
acts like high-quality PbI2.

2. Materials and Methods
2.1. Materials
2.1.1. Materials for Perovskite Precursors and Perovskite Quantum Dots

Lead acetate (Pb(CH3CO2)2, Fisher Chemical, 6080-56-4, 99.5%), Potassium iodide (KI,
Samchun Chemicals, 7681-11-0, 99.5%) and Hydrochloric acid (HCl, Daejung Chemicals,
7647-01-0, 35.0%) for Lead iodide synthesis

All reagents except PbI2 were used as received without further purification: PbI2
(lead(II) iodide 99.999%, 10101-63-0, TCI), Cesium carbonate (Cs2CO3, Daejung, 534-17-8,
99.5%), Oleic acid (OA, Alfa aesar, 112-80-1, 90%), 1-octadecene (Sigma-Aldrich, 112-88-9,
90%), Oleylamine (OLA, TCI, 112-90-3, 50%), n-hexane (Daejung, 110-54-3, 95%), Molecular
sieves 4 A, 4–8 mesh (Samchun, 70955-01-0) and riboflavin (Daejung, 83-88-5, 98%) were
used to synthesized perovskite quantum dots and analyzed properties. 1-Octadecene was
heated at 120 ◦C for 2 h to remove the dissolved oxygen. In the case of hexane, Molecular
sieves 4 Å, 4-8 mesh were used to eliminate water, and other solutions also used nitrogen
purge to stabilize the synthesis of quantum dots.

2.1.2. Materials for Perovskite Solar Cells

The SnO2 colloid precursor (tin (IV) oxide, 15% in H2O colloidal dispersion, prod-
uct # 44592) and PbI2 (99.9985%, product # 12724, Lot # U14E066) were purchased from
Alfa Aesar. Bis(trifluoromethylsulfonyl)imide lithium salt (Li-TFSI, product # 449504),
acetonitrile (99.8%, anhydrous, product # 271004), 4-tert-butylpyridine (t-BP, 98%, product
# 142379), N,N-dimethylformamide (DMF, 99.8%, anhydrous, product # 227056), dimethyl
sulfoxide (DMSO, 99.9%, anhydrous, product # 276855), and chlorobenzene (CB, 99.8%,
anhydrous, product # 284513) were purchased from Sigma-Aldrich. Methylammonium
iodide (MAI, 99.99%, product # MS101000) was purchased from Greatcell Solar. The 2,2′,7,7′-
tetrakis(N,N-dip-methoxyphenylamine)-9,9′-spirobifluorene (Spiro-OMeTAD, 99.5%, prod-
uct # LT-S922) was purchased from Lumtech.

2.2. Methods
2.2.1. Methods for Lead Iodide Synthesis and Purification

First, 3.793 g lead acetate and 5.29 g potassium iodide were dissolved in 1 L distilled
water each. Continuously addition of 3 mL of 4 M Hydrochloric acid to lead acetate
solution could prevent its hydrolysis. We mixed the two aqueous solutions gradually with
few drops early. As soon as bright yellow lead iodide precipitate was observed in the
mixing process. After the precipitate is formed, we heated the remaining solution until
the PbI2 precipitate was dissolved to induce recrystallization. After the observing clean
solution, the heat was turned off and then the heated solution was cooled down to room
temperature on its own (~2h). Around 2 h later, recrystallized PbI2 was formed. When the
PbI2 solution’s temperature was stabilized, it was placed into a fridge for 3 h to obtain as
much PbI2 from the solution as possible. Recrystallized PbI2 was consecutively filtered to
isolate the PbI2. The PbI2 was dried overnight in a vacuum. Furthermore, hydrothermal
was performed after the drying process, according to methods found in the literature [30].
In short, 0.8 g of Lead iodide and 120 mL of DI-water were placed in a 150 mL Teflon-lined
Hydrothermal autoclave. We maintained the autoclave at 200 ◦C for 6 h and then cooled
the solution at room temperature; the crystallized PbI2 was filtered out and dried in a
vacuum oven overnight [30].
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2.2.2. Synthesis of CsPbI3 Perovskite Quantum Dots

Cs oleate synthesis: 0.407 g of Cs2CO3, 1.25 mL of oleic acid (OA) and 20 mL of
octadecene (ODE) were placed in a 50 mL three-neck flask and heated to 80 ◦C for 1 h in
a vacuum to remove any water. Then, the temperature was kept at 120 ◦C for 1 h. The
Cs precursor was raised to 140 ◦C under N2 until all Cs2CO3 reacted with OA and then
naturally cooled to 115 ◦C.

Pb precursor synthesis: a mixture of ODE (25 mL) and 0.5 g PbI2 was put in another
three-neck flask, and the system was degassed under vacuum at 120 ◦C for 1 h. In addition,
OA 2.5 mL and oleylamine (OLA) 2.5 mL were put in another beaker at 130 ◦C. After
completely removing the water from PbI2 and ODE, we injected the OA and OLA mixture
into another three-neck flask. Afterwards, an injection vacuum was applied to remove
the water.

Hot injection: The temperature in the three-neck flask containing ODE, PbI2, OA, and
OLA was adjusted in a nitrogen environment to 170 ◦C. When the temperature reached
170 ◦C, we injected 2 mL of Cs-oleate; we cooled down the temperature by putting an ice
bath under the reacting flask. When the temperature reached 60 ◦C, the supernatant was
obtained, and centrifugation at 6000 rpm for 10 min was used to obtain a precipitate of
PQDs. The precipitate was obtained, and the PQDs precipitate was dissolved in 10 mL of
hexane and N2 purging for 5 min.

2.2.3. Characterizations of PbI2 Precursor and CsPbI3 Perovskite Quantum Dots

TEM images and selective area electron diffraction patterns (SAED) were acquired
using a Tecnai G2 F20 S-TWIN (FEI Korea). The XRD was performed using a D8 Advance
(Bruker). The X-ray diffractometer was equipped with Cu Kα radiation, 10-80◦ with
0.05 deg/step, 0.5 sec/step. UV-Vis absorption and photoluminescence spectrophotometer
data were performed using Duetta (HORIBA Scientific). We used excitation light at 435 nm
to excite PQDs to prevent overtone up to 800 nm and obtain pristine photoluminescence
spectra of the PQDs. The PQDs were compared to the PLQY of riboflavin, as 0.3 [31]
for measured PLQY. We used an excitation wavelength of 435 nm to obtain PLQY. X-ray
fluorescence spectroscopic analysis (XRF) was characterized through NEX-CG (Rigaku) by
fundamental parameter (FP) analysis with Energy-dispersive X-ray fluorescence (ED-XRF)
semi-quantitative analytic method.

2.2.4. Perovskite Solar Cell Fabrication and Photoconversion Efficiency Measurement

The patterned Fluorine-doped Tin Oxide (FTO) glass was cleaned by using ultrasoni-
cation for 15 min in detergent, deionized (DI) water, acetone, and isopropyl alcohol (IPA).
Before use, the cleaned FTO glass was treated with UV/ozone for 20 min. The substrate
was then spin-coated with SnO2 solution (2.75% in DI water) at 3000 rpm for 30 s, annealed
at 150 ◦C for 30 min, and UV/ozone treated for 20 min.

A perovskite precursor solution of MAPbI3 (1.13 M) was prepared by dissolving
PbI2 and MAI in a mixed solvent of N,N-dimethylformamide (DMF): dimethyl sulfoxide
(DMSO) = 4:1 (volume ratio) and heated at 60 ◦C for 20 min before using. The precursor
solution was spin-coated onto SnO2 at 1000 rpm for 5 s and 5000 rpm for 50 s. In the second
step, 600 µL of CB was smoothly dropped on the film when 45 s of the spinning remained.
After deposition, the film was annealed at 100 ◦C for 15 min in an N2-filled glove box. The
spiro-OMeTAD solution was then prepared by dissolving 91 mg spiro-OMeTAD in 1 mL
chlorobenzene after adding 20.9 µL of Li-TFSI in acetonitrile (517 mg/mL) and 35.4 µL
of t-BP and spin-coated at 4000 rpm for 30 s. As a counter electrode, 100 nm of Au was
deposited by thermal evaporated through a shadow mask under a high vacuum condition
(under 10−5 torr).

Current density-voltage curves (J-V curves) were measured using Keithley 2602A
Source Meter under simulated air mass (AM) 1.5 G illumination (100 mW cm−2) with a
solar simulator (K3000 model, McScience) calibrated using a standard Si reference cell
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(K801S-K067, McScience). The effective area of devices was 0.875 cm2 using a patterned
mask during measurement.

3. Results and Discussion
3.1. PbI2 Synthesis and Purification Using Economical Low-Grade Sources

To obtain economically feasible PbI2 with affordable quality, by obtaining motivation
from “Golden Rain”, provided Royal Society of Chemistry, we modified the experiment to
synthesize PbI2 using a precipitation reaction (details in Section 2) [32], as follows:

Pb(CH3COO)2 (aq) + 2KI(aq) → PbI2 (s) + 2(CH3COO)2 (aq) (1)

Furthermore, we performed recrystallization and consecutive hydrothermal to ob-
tain bright crystalline PbI2 crystals with a facet angle. In the Teflon-lined hydrothermal
autoclave, an un-crystallized PbI2 aqueous solution was observed, but we obtained PbI2
crystals for further work.

Table 1 compares the retail prices of PbI2 and chemicals for PbI2 synthesis, depending
on the purity. Prices of PbI2 with 98.5%, 99.99%, and 99.9985% purities are 1.47 $/g,
6.42 $/g, and 4.33 $/g, respectively. This comparison shows that a high purity of PbI2
beyond 99% requires a high expenditure. The price of 99.9985% purity of PbI2 is three times
higher than that of low-grade PbI2 with 98.5% purity. In contrast, using the mentioned
chemicals for PbI2 synthesis, the retail prices are below 10% of the low-grade PbI2 with
98.5% purity. Considering reaction (1) and assuming that researchers would experiment
crudely so that only 50% yield would be obtained, the price to obtain crystalized PbI2 could
be 0.358 $/g. Comparing the synthesized PbI2 retail price to low-grade PbI2, it is 24% of
the price for low-grade PbI2. Moreover, comparing the synthesized PbI2 retail price to
high-grade PbI2, it is only 8.26% of the high-grade PbI2. Even though considering initial
costs for the synthesis’s tools and systems, the synthesis and purification of PbI2 can be
economically feasible for the long-term view and large-scale production. If photophysical
properties (for PQDs) or photoconversion efficiencies (for PSCs) would be similar, the
prepared PbI2 can be an economical alternative instead of commercially available high-cost
PbI2 with high purity.

Table 1. Comparison of the retail prices of PbI2 and chemicals for PbI2 synthesis, providing purity 1.

Purity, Chemical (Brand) Retail Price, US$ (Quantity (g)) US$ g−1

99.5% Pb(CH3COO)2, (Fisher Chemical) 34.38 (250) 0.138
99.5%, KI (Samchun Chemicals) 56.40 (500) 0.113

99.99%, trace metals basis, PbI2, (TCI) 160.43 (25) 6.42
99.9985%, metals basis PbI2, (Alfa Aesar) 108.33 (25) 4.33

98.5% PbI2, (Alfa Aesar) 73.41 (50) 1.47
1 Chemical price were obtained from chemical companies each.

Firstly, to confirm the synthesized and purified PbI2 as an alternative solution to the
high-cost PbI2 with high purity, X-ray diffraction (XRD) patterns and thermogravimetric
analysis (TGA) were obtained and performed, respectively, see Figure 1. Figure 1A shows
that the crystallized PbI2 exhibits identical patterns, the same as commercially available
PbI2, without additional peaks, which can be either a byproduct or the result of degraded
products. Compared to reference (PDF# 01-080-1000), hexagonal PbI2 with P-3m1 space
group was obtained for all PbI2 chemicals. Even as-synthesized PbI2 without recrystal-
lization and consecutive hydrothermal, XRD patterns match the pattern from commercial
PbI2. This result indicates that the crystallized PbI2 structure was obtained, and identical
crystallinity was observed when compared to the commercial PbI2.
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Figure 1. (A) X-ray diffraction patterns of a. commercially available PbI2 (99.99% purity), b. as-synthesized PbI2 without
purification process, and c. crystallized PbI2 after hydrothermal. (B) Thermogravimetric analysis (TGA) curves for
commercially available PbI2 (99.99% purity), b. as-synthesized PbI2 without purification process, c. crystallized PbI2 after
hydrothermal, and d. commercially available PbI2 (99.99% purity) with an additional hydrothermal process for comparison.

Figure 1B presents TGA curves for various PbI2 sources. All PbI2 sources do not
decrease their weight up to 400 ◦C, which implies that there is no hydrated form and
residual H2O in the powder/crystals. Commercially available PbI2 and as-synthesized
PbI2 start to lose their weight around 440 ◦C and the weight loss is generally expected
decomposition of PbI2, to metallic Pb0, as follows [33,34]:

PbI2 (s) → Pb (s) + I2 (g) (2)

The broad weight loss profile implies breaking the bond between Pb-I-Pb coordination
and sublimation of I2 occurs. Interestingly, all hydrothermal PbI2 from both commercial
and as-synthesized ones start to lose their weight around 500 ◦C, indicating higher ther-
mal stability of PbI2. We speculate that improving crystallinity provides better thermal
stability raising decomposition starting temperature up to 60 ◦C higher than that of PbI2
without hydrothermal. We expect that the enhanced crystallinity could reduce defects.
The enhanced crystallinity could provide better stoichiometric coordination between Pb
and I, reducing imbalanced charging sites induced by the missing crystal components,
which may decrease regional lattice distortion/strain. Thus, incorporating more thermal
energy at a higher temperature would need to distort the Pb-I-Pb coordination to induce
the thermal decomposition of PbI2 [33].

Table 2 shows the X-ray fluorescence spectroscopic analysis (XRF) and elemental
analysis about Pb and I. Other elements were not able to be measured. Interestingly,
the hydrothermal process enhances the I/Pb molar ratio to the two PbI2 from both as-
synthesized and commercial sources. During the hydrothermal process, the dissolution
of PbI2 in the aqueous solution occurred and crystallization occurred while cooling the
Teflon-lined Hydrothermal autoclave [30]. After the crystallization, improvement of iodide
components in the PbI2 implies better crystallinity reduces defects, especially iodide-
mediated defects. Furthermore, incorporating a higher amount of iodide in the PbI2 can
potentially use the larger amount of iodide to fill the iodide medicated vacancies in the
perovskite/PQDs, which acts as non-radiative recombination sites.

Table 2. X-ray fluorescence spectroscopic analysis of various PbI2 sources.

PbI2 Sources Pb (wt%) I (wt%) Molar Ratio (I/Pb)

Commercially available 43.0 57.0 2.164
As-synthesized (without purification) 43.2 56.8 2.147
Hydrothermal (from as-synthesized) 42.7 57.3 2.191

Hydrothermal (from commercial) 42.8 57.2 2.182



Energies 2021, 14, 201 7 of 12

3.2. Similarity of CsPbI3 Perovskite Quantum Dots’ Photophysical Properties and Stabilities Using
Either Crystallized PbI2 or Commercial PbI2 with 99.99% Purity

Figure 2 demonstrates TEM images and SAED patterns of the CsPbI3 PQDs using com-
mercially available PbI2 with 99.99% purity (Figure 2A,C) and crystallized PbI2 (Figure 2B,D).
Both PQDs show cubic shapes with similar size and size distributions (11.3 ± 2.0 nm PQDs
made from the commercial PbI2, and 11.04 ± 1.23 nm, another PQDs from hydrothermal
PbI2, see Figure S1 in supporting information). Note that PQDs made from as-synthesized
PbI2 show a similar cubic shape of PQDs but with a slightly smaller size (9.9 ± 1.4 nm, see
Figure S2). Also, observing SAED patterns, the two kinds of PQDs show similar patterns to
concentric circles and obtained diffractions from multiple PQDs, which imply the presence
of (100), (110), (200) planes in the PQDs. The two insets in Figure 2A,C present identical
d-spacing for (100). All of the patterns and d-spacing were matched with XRD patterns
obtained from the two kinds of PQDs (Figure S3). In the XRD patterns from the two
PQDs, major peak positions, full width at half maximums (FWHMs), and peak intensity
ratios were identical. The two kinds of PQDs made from the crystallized/commercial
PbI2 cannot be distinguished through material characterizations. Therefore, using both
commercial/hydrothermal PbI2 produce the identical material quality of PQDs.
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Figure 2. (A,B) Tunneling electron microscopic (TEM) images of (A) CsPbI3 perovskite quantum
dots (PQDs) with using commercial PbI2 with 99.99% purity and (B) with using crystallized PbI2

through hydrothermal. Insets show an enlarged single PQD with lattice fringe. (C,D) Selected area
electron diffraction (SAED) of CsPbI3 PQDs with using commercial PbI2 with 99.99% purity (C) and
with using crystallized PbI2 through hydrothermal (D).



Energies 2021, 14, 201 8 of 12

To compare photophysical properties between the two different PQDs, we performed
PLQY measurement of the two PQDs with other PQDs made from as-synthesized PbI2.
Using as-synthesized, commercial, hydrothermal PbI2 to the PQD synthetic process, PLQY
were obtained as 43.00%, 45.83%, 52.61%, respectively. Enhancement of PLQY can be
correlated to using iodide enriched PbI2 through the hydrothermal process (Table 2). PLQY
is described as follows:

PLQY =
kr

kr + knr
. (3)

PLQY of these PQDs consists of two components: radiative decay rate constant (kr)
and non-radiative decay rate constant (knr). The kr is the rate constant for radiative recombi-
nation such as photoluminescence in these PQDs, and knr is for non-radiative recombination
such as vibration relaxation related processes. The knr is calculated by considering vari-
ous aspects in the PQDs, such as various defects (interstitials, charged/neutral vacancies,
antisites, surface, etc.) [35] charge transfer medium. In this work, the increment of iodide
components can fill the iodide-vacancy mediated defect. This defect-mediate non-radiative
recombination process can be hindered so that overall PLQY can be increased. The control
of non-radiative radiative recombination is key to reducing the translation of electron
energy to vibration energy of lattice atoms, i.e., phonons, which are sources to induce heat
generation. Usage of the more efficient radiation process is also an important factor in
enhancing contrast in the display devices. Therefore, increasing PLQY with this additional
purification process for precursor is essential to solve the major technical issues, such as
reducing internal-generated heat and increasing energy efficiency in the display devices.

We also tested the stability of the two kinds of PQDs; compared to the other PQDs
made from as-synthesized PbI2, the initial emission shapes and intensities were maintained
(see Figure 3). In contrast, photoluminescence intensities from the other PQDs (made
through as-synthesized PbI2) diminished as time goes by, see Figure S4. These PLQY
and stability tests, performed through photoluminescence measurements, photophysical
properties between the two kinds of PQDs resembled each other; we found that even using
hydrothermal PbI2 can reduce production cost by 1/20 (6.42 $/g for commercial PbI2 vs.
0.358 $/g for hydrothermal PbI2, see Table 1).
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Figure 3. (A) Photoluminescence spectra obtained emission from the two kinds of CsPbI3 PQDs by using commercial PbI2

with 99.99% purity (A) or with using crystallized PbI2 through hydrothermal (B). Three emission spectra were obtained on
the day when PQDs colloidal dispersed solutions were made (a, black line), one week (b, red line), and two weeks (c, blue
line) after the synthesis. The solutions were preserved under N2 gas at 2 ◦C.

3.3. Application of the Hydrothermal Process to Problematic PbI2 to Make Better Quality of
MAPbI3 Perovskite Film for Enhanced Photoconversion Efficiency of PSCs

To clarify the hydrothermal process’s effect to cure the unknown dissolving issue, we
used problematic PbI2 with 99.999% purity to prepare two MAPbI3 perovskite films, but
for one of them, the extra hydrothermal process was applied before using the PbI2 to make
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the perovskite film. As shown in Figure 4, bigger grain sizes were obtained by applying the
extra hydrothermal process, even using the identical PbI2 with the same purity. In Figure S5,
grain sizes got bigger from 179 ± 80 to 255 ± 130 nm (for the longest sizes within a grain)
and from 64 ± 25 to 111 ± 60 nm (for shortest sizes within a grain). The grain sizes were
enlarged around 42–73% with the addition of an extra hydrothermal process. Figure S6a
shows that in this PbI2 with a certain synthetic batch, the PbI2 did not completely dissolve
in the mixed solvent of DMF : DMSO (4:1, volume ratio); we cannot determine the reason.
With the addition of the hydrothermal process, we improved the solubility of PbI2 in
the mixed solvent. Note that most PbI2 dissolve well with MAI by forming lead iodide
plumbate complex in the mixed solvent under room temperature, but by applying the
hydrothermal process to PbI2, we tried to solve the dissolving issue. Currently, we are
doing further investigation to clarify the details of the problematic issue. The presence
of the undissolved particles can induce faster crystal film growth at the particle’s surface
that reacts like a seed, so the particles can cause to skip the necessary process: overcoming
an energy barrier to induce the nucleation process. Therefore, relatively smaller grain
sizes (~100 nm) were observed in SEM images. In our previous work [36], we obtained
larger grains with sizes, about 560 nm). Therefore, the hydrothermal process can obtain a
crystallized PbI2 hexagonal structure and reduce lead halide derivates’ unwanted species.
This work’s concentration makes 350 nm MAPbI3 layer thickness (see Figure S7), which
is the optimized thickness for efficient Voc and fill factor (FF) from our earlier work [36].
Also, note that the UV-Vis. absorption spectra of MAPbI3 films (see Figure S8) made using
commercial PbI2 or crystallized PbI2 show an almost similar absorption trend in the visible
region, which indicates an almost identical thickness.
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Figure 4. Scanning electron microscopic (SEM) images of MAPbI3 perovskite films made by using (A) different commercial
PbI2 (from Alfa Aesar, product # 12,724 Lot # U14E066) and (B) the same commercial PbI2 from Alfa Aesar but with the
additional hydrothermal process.

In Figure 5 and Table 3, photovoltaic performances of MAPbI3 PSCs are shown with
J-V curves. In addition to the hydrothermal process, overall photovoltaic performances
increase. By comparing the two best cells in the two cases, we see that hydrothermal
addition enhances FF from 72.31 to 75.88. This increment mainly contributes to improv-
ing the photoconversion efficiency of PSCs by incorporating the hydrothermal process.
From Figure 4, we speculate that enlarged grain size contributes to reducing the series
resistance (Rs) and increasing shunt resistance (Rsh) in the PSCs. Even though the average
photoconversion efficiencies between the two cases are in the standard deviation, seeing
the distribution of the performances carefully in Figure 5A, we observed the positive
contribution of the hydrothermal process to enhance the performance of PSCs. We are
also conducting research further to improve the overall purification to obtain enhanced
performances significantly. However, so far, it is possible to expect similar performances
about PQDs and PSCs, by using the synthesized and crystallized PbI2 from low-quality
sources instead of commercially available high-purity PbI2.
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Table 3. Photovoltaic performances of MAPbI3 perovskite solar cells (PSCs).

PbI2 Sources Voc (V) Jsc (mA/cm2) FF PCE (%)
Best (Average ± stan. dev.)

Commercial 1.029 22.03 72.31 16.39
(14.77 ± 1.82)

Commercial with
hydrothermal 1.031 22.14 75.88 17.31

(15.18 ± 1.92)

4. Conclusions

In conclusion, we aimed to develop a strategy to utilize the economically feasible
low-grade precursors to obtain a comparable quality of material for the cutting-edge
research field, perovskite solar cells, and study the photophysical properties of perovskite
quantum dots. Through recrystallization and hydrothermal, from low-grade resources, we
obtained similar PbI2 with 99.99% purity, and conducted analyses using XRD, TGA, and
XRF. We observed that similar structural but heat-resistible PbI2 was obtained through the
purification processes, and the iodide component increases after the purification, which
can act by increasing photoluminescence quantum yield filling the iodide defect mediated
non-radiative recombination sites. Furthermore, the hydrothermal process can promote
solubility of PbI2 into the DMF/DMSO mixed solvent with MAI, so hindering undissolved
particle formation helps to grow grain bigger and improve photoconversion efficiencies of
perovskite solar cells. This work can provide the strategy to enhance the quality of PbI2
precursor for the fabrication of high-quality perovskite/perovskite quantum dots. Also,
this work can contribute to the commercialization of perovskite-based applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-107
3/14/1/201/s1, Figure S1: Histograms about sizes of PQDs, Figure S2: TEM images of PQDs made
through as-synthesized PbI2 without further recrystallization/hydrothermal and their histogram,
Figure S3: XRD patterns of PQDs, Figure S4: Photoluminescence spectra of PQDs made through as-
synthesized PbI2, Figure S5: Historgrams about grain sizes of perovskite films, Figure S6: Precursor
solution (DMF/DMSO mixed) with MAI and PbI2, Figure S7: A typical cross-sectional SEM image
of perovskite layer for the PSCs whose performances were shown in Figure 5., Figure S8: UV-
Vis. absorption spectra of MAPbI3 films using commercially available PbI2 (99.99 % purity) and
crystallized PbI2 after hydrothermal.
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