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In this paper, white noise functional solutions of Wick-type stochastic fractional mixed KdV-mKdV equations have been obtained
by using the extended (G'/G)-expansion method and the Hermite transform. Firstly, the Hermite transform is used to transform
Wick-type stochastic fractional mixed KdV-mKdV equations into deterministic fractional mixed KdV-mKdV equations.
Secondly, the exact traveling wave solutions of deterministic fractional mixed KdV-mKdV equations are constructed by
applying the extended (G'/G)-expansion method. Finally, a series of white noise functional solutions are obtained by the

inverse Hermite transform.

1. Introduction

The study of stochastic differential equation (SDE) can be
traced back to Einstein’s classical paper in 1905, which pro-
posed the microscopic random motion of particles and
macrodiffusion equations. In Einstein’s research, the exact
dynamics of the system is quite uncertain and which can
be modeled by SDE. In 1949, It6 [1], a Japanese mathemati-
cian, first defined a random integral named Itd stochastic
integral, which laid the theoretical foundation for the
research of SDEs. In fact, the physical quantities of the objec-
tive world generally change with time and space, which are
usually simulated by partial differential equation. Thus, sto-
chastic partial differential equation (SPDE) [2] is usually
used to simulate mathematical problems in the fields of
science and engineering.

Fractional calculus was proposed before the birth of
SPDE. In 1695, Leibniz and L’Hospital have discussed the
definition and significance of derivative when the order of
derivative is 1/2. In recent years, with the combination of

fractional calculus theory and SPDE, it is gradually found
that fractional SPDE can describe some nonlinear
phenomena in the fields of natural science and engineering
applications [3, 4]. In recent years, white noise functional
solution is a very important topic in the research of frac-
tional SPDEs. Many researchers have proposed many
methods to construct the white noise functional solutions
of fractional SPDEs, such as the Exp-function method [5],
the Kudryashov method [6], improved computational
method [7], and computerized symbolic [8]. The biggest
obstacle in finding the white noise functional solution of
SPDE is that the nonlinear ordinary differential equation
obtained by the Hermite transform and random traveling
wave transform is a nonlinear ordinary differential equation
with variable coeflicients. Therefore, many methods of con-
structing the white noise functional solutions of fractional
partial differential equations are not applicable. So, it is par-
ticularly important to find a new method to construct the
solution of nonlinear differential equation with variable
coeflicients. As early as 2008, Professor Wang [9] proposed
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a method named (G'/G)-expansion method to construct the
exact traveling wave solution of partial differential equation.
Later, many experts and scholars [10, 11] further expanded
the method to enrich the solutions of partial differential equa-
tions. In this paper, we intend to find the solutions of frac-
tional SPDES by the extended (G'/G)-expansion method.

In recent years, with the development of fractional deriv-
ative, the Wick-type stochastic fractional mixed KdV-mKdV
equation (see [5, 6, 8, 12, 13]), a very important class of
fractional SPDE, has been widely concerned by many
researchers. This model can be described as follows:

DU + @, (t)oUoD2U + @, (t)oU?eDU + DX*U =0, (1)

where U=U(t,x), (t,x) e R, xR,and 0 < a < 1. D}U, D{U,
and D>*U are the conformable fractional derivative. ®, (t)
and ©,(t) are integrable white noise functionals from R,
to the Kondrative distribution space &_;. The operator ¢
represents the Wick product on Z_;.

Based on Eq. (1), we consider the fractional mixed KdV-
mKdV equation which is a very important fractional partial
differential equation and usually used to simulate shallow
water surface waves phenomena [14-19].

DYu+0,(t)uD%u +0,(H)u’D*u+DX*u=0,0<a<1, (2)

where u(t,x) stands for the wave profile. 6,(¢) and 6,(¢)
are integrable function on R,. The fractional derivatives
are considered in the sense of conformable fractional
derivatives [20-23].

Our work is as follows. In Section 2, we review the white
noise theory and briefly introduce the extend (G'/G)
-expansion method of Wick-type fractional SPDE. In
Section 3, white noise functional solutions of Eq. (1) are con-
structed by apply Hermite transform, fractional traveling
wave transformation, and the extend (G'/G)-expansion
method. In Section 4, we give a summary.

2. Preliminaries

2.1. White Noise Theory. Assume that the rigging 2(RY)
c L*(RN) c 2*(RYN), where Z(RY) represents the Schwartz
test functions space. 2* (RY) stands for the tempered distri-
butions space. In Ref. [24], Holden et al. have proved that
there is a unique measure of white noise, that is measure y
on (Z*(RN), B(2*(RYN))), where B(2*(RY)) is the fam-
ily of all Borel sets in 2*(RY). The Hermite function e, (x)
is defined by e, (x)=e">"h, (v2x)/(n(n—-1)!)"?, where
n>1, h,(x), is the Hermite polynomial. Define

H,(0) -

—

Il
—_

B (@) 0e D" (RY),  (3)

1

where (h,, ), represents the Hermite polynomials. (e;),.,
denotes the orthonormal basis in L*(RY). Let (2)] be
the Kondrative space of stochastic test functions space,

and then (92)", stands for the Kondrative space of
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stochastic distributions. Let F=Y),6 a,H,,G=).a;H,
€(2)",, where a,,b; cR". The wick product is
defined by

FoG = Z (am’ brﬁ)HerFn' (4)

Then, the Hermite transform of F is given by

HF(z)=F(z)=) a,z"eC", (5)

where z=(z;,2,,:,2,) €C", F=Y
we define the Hermite transform

a,H,, € (D)",. Next,

mm= m

FoG(z) = F(2)G(2), (6)

where F(z) and G(z) exist.
For g< oo, p>0, then we define the neighborhoods

N,(p)
N,(p) = {() ecV:y |z“|2<2N>q“<p2}- (7)
m#0

Theorem 1 (see [24]). Suppose u: DX N, (p) — R be a
strong solution of the following equation

P(t, x, D% D2 DY D% z) =0, (8)

where (t,x) in open bounded set in D CR, X R", z € N,(r).
Then, there exists U(t,x) € (D)", such that u(t,x,z)=

U(t,x)(z) and solves the stochastic equation
P (t, x, D%, D2, DY DX T, w) =0,in(2)",. (9)

2.2. Extended (G'/G)-Expansion Method. Now, we consider a
wick-type stochastic fractional partial differential equation

P°(t,x, U, D;*U, DU, DU, ) =0, (10)

where D*U, D:%U, D$**U, - are the conformable fractional
derivatives of u in the wick-type sense. Applying the Hermite
transform, we can get a fractional partial differential equation
as follows

P(t,x,U,D{U,DiU, DU, ,z) =0, (11)

where U = #(U) is the Hermite transform of U. z = (z,, z,,
--+,z,) € C". Then, we introduced the transformation:

U(t,x,2) =u(&),&(t,x, 2) =k<x7:> +cr 9;(7’17’5) dn, (12)

a

where a > 0. k and ¢ are constants. 6 is a nonzero function.
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Next, substituting Eq. (12) into Eq. (11), we can obtain the fol-
lowing of the ordinary differential equation

du d*u dPu
Q(u,df,dgz,w,m):& (13)

Next, we briefly introduce the extended (G'/G)-expansion
method. Firstly, we assume that the traveling wave solution of
Eq. (13) can be described as follows:

:Za< >+th<%>’ (14)

where G = G(£) satisfies
Iy ! ! 2 2
GG' = AGG +B<G) +CG, (15)

where A, B, and C are real number. Secondly, substituting Eq.
(14) into Eq. (13), and balancing the highest order derivative
term and the highest order nonlinear term, then, we can deter-
mine the positive integer N. Next, substituting Eq. (14)
together with (15) into Eq. (13) with the value of N deter-
mined in the previous step, we can get the polynomials about
(G"G)" (i=0,1,2,---) and (G'/G)' (i=0,1,2,---), then we
set all coefficients of the polynomial to zero, and we have a
set of algebraic equation. Finally, we solve the algebraic equa-
tions, and we can get the values of a; and b,. The readers can
refer to [25] for details of this method.

3. Explicit Solutions of System (1)

Applying Hermite transform, Eq. (1) can be transformed
into fractional partial differential equation in the sense of
conformable fractional derivatives

DU(t,x,2) + O, (t,2)U(t, x, 2) D*U(t, x, 2)

+0,(t,2) U’ (t, %, 2)D*U(t, x, 2) (16)
+D*U(t,x,2) =0,

where z = (2, z,,---) € CN. Next, we introduce the transfor-
mation O, (t,z) =0,(t, z), O,(t,z) =0,(t, z), and U(t,x,z)
=u(&(t, x,z)) with

(n:2)
i dn, (17)

&(t, x, 2) =k<§> +CJ; 0 liz

where a > 0. k and ¢ are nonzero constants. 6 is a nonzero
function.
Substituting (16) into (3.1), we obtain

3
LY d; 0.  (18)

du
c— +k0u df

d€ dé

Integrating Eq. (18) with respect to & and assuming the
integral constant to zero, we obtain

2
cOu + k—eluz + == k9 +k du_ . (19)
2 3 e

By making the homogeneous balance between u® and

d*u/dE* in Eq. (19), we have N =1. Thus, the solution of
Eq. (19) can be written as follows:

ul€)=ay+a, % +b <%> , (20)

where a,, a,, and b, are undetermined parameters.
Substituting Eq. (20) together with Eq. (15) into Eq. (19),

Eq. (19) is transformed into polynomials in (G'16)™
(i=1,2,3) and (G'/G)'(i=0, 1,2, 3). Collecting each coeffi-
cient of the polynomials yields a set of algebraic equations.
By solving the algebraic equations, we can get following.

Set 1: a,=+/-6k*(A-1)%/0,, a,=+B(A-1)
\/-3K*12(A-1)*0,-6,/20,, b, =0, and ¢ =—(k6,/40)a,

(3k’BCa, 120a,) + (k*120a,)[B> + 2C(A - 1)].

Set 2: a, =0, a,=+BC\/-3k*/2C?0,-0,/20,, b =+
\/—6k’C?/0,, and c=—(k0,/40)a, — (3k’B(A - 1)b,/20a,)
+ (K*120a,)[B* +2C(A - 1)).

Substituting the solutions into (20), we have

CB(A-1) K? ii _6k(A-1° (¢
204-17%0, 26, \ 6, G
sk 9, [ ekc(c\"
- 2C%0, 7 6, \G
(21)

3.1. The Solutions of Eq. (19). Next, we can obtain the solu-
tions of Eq. (19) as follows.
Family 1. When B> — 4(A — 1)C >0 and A # 1, we obtain

A 1 3K*(A - 1)*(B> +4C - 4AC)

”1(5)—_2—02i 1—A\/_ 26, H,,
(22)

3k 6, 6k*C?
+BC\/ 2C%0, 7 -
(23)
VB +4C-4AC .
2(1-A) PR2(1-4)]

where &(t,x, z) = k(x*/a) + c[; (0(n, 2)In*~*)dn, H, =C, sinh ((
VB? +4C—-4AC/2)&) + C, cosh ((VB? +4C - 4AC/2)§)/C
cosh ((VB? +4C -4AC/2)¢) + C, sinh ((VB? +4C - 4AC/

2)¢). C, and C, are constants.



Ficure 1: The solution u,(t,x) of Equation (22) for differential
parameter.
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Ficure 2: The solution u;(t,x) of Equation (24) for differential
parameter.

Fixed parameters are as follows: A=2, B=4, C=3,
C,#0, C,=0, 6, =—12, 6,=—6, 0=2, k=1, and a=1/2;
then, three-dimensional portrait can be drawn in Figure 1.

Family 2. When 4(A - 1)C - B* >0 and A # 1, we have

us(§) = —% + 1A \/_ 3K (A - 1)2(‘21%\ - I)C_BZ)HZ,

(24)
3K2 6 6k*C?
- 2C%0, 7 \/_ 6,

(25)
VAA-1)C-B?
2(1—A) 2+2(1—A)] ’
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Ficure 3: The solution us(t,x) of Equation (26) for differential
parameter.

where &(t, x, z) = k(x*/a) + c[; 0(n, 2)In*~*)dn, H, = —C sin
((V4AC —4C - B%/2)&) + C, cos ((V4AC —4C — B2/2)¥)/
C, cos ((V4AC—4C - B?/2)&) + C, sin ((V4AC - 4C - B?/
2) &). C, and C, are constants.

Fixed parameters are as follows: A=2, B=4, C=5,
C,#0, C,=0, 0, =—12, 6,=—6, 0=2, k=1, and a=1/2;
then, three-dimensional portrait can be drawn in Figure 2.

Family 3. When B> — 4(A - 1)C=0 and A # 1, we obtain

R 1 62 (A-1?  C 26
@) ==2p 14\ " 8, CE+C, (26)
B 3K 6, 6k2c2 C, B\1™"

4s(8) =#BCy [~ 3ceg. ~ 20, £ (1A {CE+C E)} :
(27)

where &(t, x,z) = k(x%/a) + cf; 0(n
are constants.

Fixed parameters are as follows: A=2, B=4, C=4,
C,=1,Cy=2,0,=-12, 0,=-6, 0=2, k=1, and a=1/2;
then, three-dimensional portrait can be drawn in Figure 3.

,2)In'"%)dy. C, and C,

3.2. White Noise Functional Solutions of Eq. (1). In order to
construct the white noise functional solutions of Eq. (1),
we apply the inverse Hermite transform and Theorem 1 to
the solutions u;(&), u,(§), -+, ug(&). Then, we obtain six
white noise functional solution.

Family 1. When B> — 4(A — 1)C >0 and A # 1, we obtain

U,(t,x) =~

1)*(B? +4C—4AC)>% -
oH,,

o , 1 3K (A -
A\ 20, (1)

20,(f) " 1-
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(a) Perspective view of the wave

FiGURE 4: Wave profiles of exact solution U, (t,x) with A=2,B=1,C=0,k=1,c=1,0,(t) =

o\ e [ ek Oi
U,(t x) —iBC< 2C2®2(l‘)) 20,(t) * < @2(t)> (28)
vPric-ac, 5 ]’
| 20-4) ETIR ]

where H, = C, sinh®((V/B? +4C - 4AC/2) (k(x*/a) + ¢’ (6
(1) ~*)dn)) + C, cosh®((VB? + 4C — 4AC/2) (k(x%/a) + ¢
J“t (0(n)In'~*)dn))IC, cosh®((VB* +4C — 4AC/2) (k(x*/c)
+cf" (6(n)/n'~)dn)) + C, sinh®((VB? + 4C — 4AC/2) (k(x"
o) + cfa (n)/n*~)dn)). C, and C, are constants.

Fixed parameters are as follows: A=2,B=1,C=0,k=1,
c=1,0,(t) =0,60,(t) = —t/sin*0.5t; then, three-dimensional
portrait and two-dimensional portrait can be drawn in

Figure 4.
Family 2. When 4(A - 1)C - B? >0 and A # 1, we have

Us(t:2) =~ 20,5 * 1 26,(1)

K\ o) , (_okc °i
2¢0,1) 20,0\ 6,00
HA-1)C-B
2(1-4A)

o , 1 (_3k2(A1)2(4(A1)CBZ))°iH

U,(t,x) =+BC (
(29)

o(-1)
H, + B
2 2(1—A)} ’

where H, =-C, sin®((V4AC - 4C — B%/2) (k(x*/a) + cj; C
(n)/n'=*)dn)) + C, cos®((V4AC - 4C — B*/2) (k(x/at) + c "
(0(n)/n'=*)dn))/C, cos*((VAAC - 4C — B*/2)(k(x"/a) + c[*
(8(n)/n'~%)dn)) + C, sin°((V/4AC — 4C — B2/2) (k(x*/a) + ¢
ft (n)/m*~*)dn)). C, and C, are constants.

a

60 -
50
40

S U

0 T T T T

1
20 40 60 80 100
t

(b) The wave along ¢

0, 0,(t) = —t/sin®0.5t.

Family 3. When B> — 4(A - 1)C =0 and A # 1, we obtain

o , 1
UsbX) =26, * -4
. <_6k2(A—1)2>°§0 o
O,(t) C, (k(x“/tx) +cf (B(W)/nl‘“)dﬂ) +C

0,(t) sk2c\
20,0 Y (’ ®z(t>> ’

C s\
. + = s
c, (k(x"‘/oc) + cJ"; (B(n)/nlfa)dq> +C, 2

Ug(t, x) —iBC(— sz > 2—
2070, (1)
(30)

where C, and C, are constants.

4. Conclusion

In this paper, we constructed the white noise functional solu-
tions of Wick-type stochastic fractional mixed KdV-mKdV
equation by using the extended (G'/G)-expansion method
and the Hermite transform. Compared with the existing liter-
ature [5, 6, 8, 12, 13], the negative power solutions U, (¢, x),
U,(t, x), and Ug(t, x) obtained in the paper are not reported.
The method discussed in the paper is not only applicable to
Eq. (1), but also can help mathematicians and physicists find
the white noise functional solutions of Wick-type fractional
SPDEs. In the future, our work will mainly focus on the white
noise functional solutions of SPDEs.

Data Availability
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