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Abstract 

 
The most popular estimator for estimating parameters of linear regression models is the Ordinary Least 

Squares (OLS) Estimator. The OLS is considered the best linear unbiased estimator when certain 

assumptions are not violated. However, when autocorrelation, multicollinearity, and heavy-tail error are 

jointly present in the dataset, the OLS estimator is inefficient and imprecise. In this paper, we developed an 

estimator of linear regression model parameters that jointly handle multicollinearity, autocorrelation, and 

heavy tail errors. The new estimator, LADHLKL, was derived by combining the Hildreth-Lu (HL), the 

Kibria Lukman (KL), and the Least Absolute Deviation (LAD) estimators. The LADHLKL poses both the 
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characteristics of the LAD, HL, and KL estimators which makes it resistant to both problems. We examined 

the properties of the proposed estimator and compared its performance with other existing estimators in terms 

of mean square error. An application to real-life data and simulation study revealed that the proposed 

estimator dominates other estimators in all the considered conditions in terms of mean square error. 

 

 
Keywords:  LAD estimator; Hildreth-Lu estimator; Kibria-Lukman estimator; MSE; multicollinearity; 

autocorrelation; heavy-tail residuals; simulation Study. 

 

1 Introduction 
 

Multiple linear regression is a technique in statistics that describes the relationship between the response 

variable and at least two other variables called explanatory variables. The OLS is the most popular estimator 

used in estimating the linear regression model parameters. In the linear regression model, both the assumptions 

of uncorrelated regressors and uncorrelated residuals can be violated jointly [1]. If these two assumptions are 

jointly violated, the OLS as the usual estimator used in estimating the parameters of the linear regression model 

will be inefficient. To jointly combat these problems, Ayinde et al., [2] Proposed some combined estimators that 

efficiently estimate the parameters of linear regression models in the presence of multicollinearity and 

autocorrelated errors. H. Y. A. Eledum & Alkhalifa, [3], H. Eledum & Zahri, [4] proposed Two Stages Ridge 

estimator when the assumptions of uncorrelated predictors and uncorrelated errors in the linear regression model 

are jointly violated. Zubair & Adenomon, [5] combined the Praise-Winston estimator with the Kibria-Lukman 

estimator to handle the joint effects of multicollinearity and serially correlated residuals in the linear regression 

model.  

 

Multicollinearity and outliers are among the problems that are jointly encountered in regression analysis. The 

usual OLS estimator gives unfavorable results when multicollinearity and outliers jointly exist in data [6]. In the 

joint presence of outliers and multicollinearity, the ridge regression, Liu, principal components, stein estimators, 

etc, and other robust estimators such as M, MM, S, LTS, LMS, and LAD yield inefficient results [7].  Lukman 

et al., [6] proposed a two-parameter estimator called Ridge-Type Modified M-Estimator to circumvent the joint 

effect of multicollinearity and outliers in the linear regression model. Suhail et al., [7] also proposed some 

quantile-based ridge M-estimators to combat y-direction outliers and multicollinearity simultaneously under 

various distributions of error terms.  

 

The threat posed by the autocorrelation becomes more complicated when this assumption violation comes 

together with outliers [8]. Researchers who erroneously assumed independent residuals and the complete 

absence of outliers obtained inefficient estimates as a consequence [8]. In the joint presence of autocorrelation 

and outliers, the OLS and some of its modifications are inefficient [9,10]. In regression models, it is commonly 

found that the response variable contains a significant number of outliers, and the residual term is serially 

correlated. These assumptions violations unfavorably affect model estimation (Yang et al., 2023). To address 

these problems, Kucuk & Asikgil, [10] proposed a robust modified two-stage least squares to handle the 

simultaneous effects of autocorrelation and outliers in non-linear regression.  

 

This study aims to develop an estimator of linear regression model parameters that handle multicollinearity, 

autocorrelation, and heavy-tail errors jointly with the following objectives: 

 

I. To propose an estimator that jointly handles multicollinearity, autocorrelation, and heavy-tail outliers in 

the residuals. 

II. To examine the properties of the proposed estimator. 

III. To identify the most efficient estimator among the proposed and considered estimators when 

autocorrelation, multicollinearity, and heavy-tail errors jointly exist. 

IV. To apply the proposed estimator to real-life data. 

 

2 Materials and Methods 
 

Consider the linear regression model given by: 
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          (1) 

 
Where 𝑦  is a nx1 random vector of a response variable, X is a nxp matrix with full rank,  is                                         

a px1 vector of estimable parameters, and 𝑢  is a nx1 random vector of residuals, distributed                                           

as . 

 

Let T be an orthogonal matrix, satisfying where                                             

is a diagonal matrix of order p x p with diagonal elements  as the eigenvalues of .                          

T and  are the matrices of eigenvectors and eigenvalues, respectively. Hence, the canonical form of model (1) 

is:  

 
           (2) 

 

Where   and . 

 
The OLS estimator of  is: 

 

         (3) 

 

         (4) 

 
If the residuals of model (2) above are generated by a first-order autoregressive process given by: 

 

          (5) 

 

Where , and  are not necessarily normal but are independent and identically 

distributed. 

 

Here,  and  where  is a positive definite symmetric matrix. Under this 

situation,  although linear unbiased, is found to be inefficient. 

 
The feasible Generalized Least Squares (FGLS) estimator suggested by (Hildreth & John, 1960) is among the 

appropriate estimators for estimating linear regression model parameters when the residuals are correlated. The 

procedure is: 

 

From     (6) 
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      (7) 

 

The variables in equation (2) above are transformed as: 

 

          (8) 

 

Hence, 

 

          (9) 

 

Using the OLS estimator, estimate the coefficients of the model in equation (9). The resulting estimator  of 

 is called the HL estimator and is given by  

 

 

         (10) 

 

MSE of GLS: 

 

         (11) 

 

Often, the regressors involved in regression analysis are found to be linearly related. This condition renders the 

OLS estimator inefficient by inflating the coefficient estimates' variances, leading to erroneous conclusions. To 

address this problem, (B. M. Kibria & Lukman, 2020) introduced a biased estimator defined as: 

 

       

   

Where p is the number of estimable parameters and k>0, is the biasing parameter whose estimator is given by: 

 

 

 

         (12) 

 

Where and  

 

Bias, variance-covariance, and Mean Square Error matrix of the KL estimator are: 

 

       (13) 
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      (14) 

 

(15) 

 

When the residuals in Equation (2) above have a heavy-tail distribution, the usual OLS estimator will be 

affected. Dielman, [11] proposed the LAD estimator that minimizes the sum of the absolute deviations of the 

residuals. This estimator is less affected by the heavy-tailed errors than the OLS estimator in Equation (3), the 

FGLS estimator in Equation (10), and the KL estimator in Equation (12). The LAD estimator is defined as: 

 

         (16) 

 

The MSE of the LAD estimator is given by 

 

 where       (17)     

  

But apart from the autocorrelated residuals, if at least two of the independent variables in Equation (2) above are 

linearly related, then the OLS estimator in Equation (3), the FGLS estimator in Equation (10), and the KL 

estimator in Equation (12) would be inefficient. To simultaneously combat these two problems, (Zubair & 

Adenomon, 2021) suggested the generalized KL estimator given by 

 

       (18) 

 

Where and  

 

Their estimator is also biased. The Bias, Covariance, and MSE matrices of their estimator are: 

 

       (19) 

 

     (20) 

 

    (21) 

 

If, from the model (2), the independent variables involved are correlated and the residual term has heavy-tail 

outliers, the ,  and  in Equations (3), (12), and (16) respectively will be inefficient. Majid et al., 

[12]. suggested a robust KL M estimator to jointly address outliers in the response variable and multicollinearity 

given by: 

 

        (22) 

 

Where is the robust-M estimator. 

 

Bias, covariance, and the MSE matrices of their Robust KL M estimator are: 

 

        (23) 
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where  

 

     (25) 

 

Hence, the robust KL base on LAD estimator is used to combat multicollinearity and heavy-tail outliers in the 

residuals simultaneously, and is given by: 

 

       

  

        (26) 

 

The Bias, variance-covariance, and MSE matrices of the LAD KL estimator are: 

 

       (27) 

 

      (28) 

 

Where  

(29) 

 

However, in many reported cases where the residuals, apart from following the autoregressive of first order, 

have heavy-tail outliers, the ,  and  were found to be inefficient and imprecise. To overcome 

these two challenges, Robust LAD estimator is applied to the transformed data (autocorrelated free data). The 

robust LAD estimator was used to estimate the parameters of the model in equations (9). The resulting estimator 

is called the LADHL estimator and is given by: 

 

         (30) 

 

Where  is the autocorrelated residual in equation (9). 

 

The MSE of the LADHL estimator is given by 

 

 where     (31) 

 

2.1 The proposed estimator 
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       (33) 

 

Where  is the LAD Hildreth-Lu estimator in equation (30). 

 

2.1.1 Properties of the proposed estimator 

 

Bias, variance-covariance, and Mean Square Error matrix of the LAD HL KL estimator are: 

 

Bias: 

 

 

 

 

                                (34) 

 

Variance: 

 

 

 

     (35) 

 

Where  

 

Mean Square Error Matrix: 

 

The mean square error matrix is given by 

 

 

 

 

 

(36) 

 

Hence, the scalar MSE is given by 

 

 

 

  (37) 

 

2.2 Robust choice of the biasing parameter 
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    (38) 

 

The procedure is to minimize equation (38). This is achieved by setting and by proceeding will 

yield an estimation for the biasing parameter k which is complex. Hence,  we proposed to use a robust 

equivalence of the biasing parameter used for the KL estimator [14]. The estimate of the shrinkage parameter 

used for the KL estimator is presented in equation (39). 

 

        (39) 

 

The robust equivalence of the biasing parameter in equation (39) is given by 

 

      (40) 
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is a nuisance parameter, and is the height of the density of the errors at zero, their 

median [15]. 

 

2.3 Monte carlo simulation 
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      (42) 

 

 

  such that       (43) 

 

Where is the autocorrelation coefficient and was set to = 0.85, 0.95, and 0.99, and the error variance was 

set as  =0.5, 1, and 4. For the model, we assume zero intercept, and the values of the coefficients are selected 

such that .  

 

Outliers are being introduced by increasing the magnitude of the tail values of . The procedure is 

 

     (44) 

 

Where is the number of outliers along the tail of . 

 

Three (3) sample sizes were used: n = 10, 30, and 50, and three (3) levels of percentages of outliers were 

considered (noutlier%= 10%, 20%, 30%). 

 

By implication, 1000 replications of these experiments are carried out and the MSE is estimated as 

 

       (45) 

 

3 Results and Discussion 
 

3.1 Simulation results and discussion 
 

The Monte Carlo simulation’s results of the estimators are presented in Tables 1-9. 

 

The EMSE of the OLS, HL, LAD, LADHL, KL, HLKL, LADKL, and LADHLKL estimators for the various 

factors taken into consideration in this investigation are shown in Tables 1–9. The error variance values, sample 

sizes, autocorrelation levels, multicollinearity, and outlier percentages are among the variables taken into 

account. It has been noted that these variables have an impact on the simulation design. In particular, we found 

that: 

 

1. When autocorrelation and heavy tail outliers in the residuals coexist, the increase in the level of 

multicollinearity negatively affects the performances of OLS and HL, while having the least impact on 

LADHL, LADKL, and the proposed LADHLKL. But in terms of minimal MSE, the suggested 

LADHLKL outperformed all the estimators that were taken into consideration. 
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4. The estimators' Performance improved as the sample size increased from 10, 30, and 50, except for the 

proposed LADHLKL estimator when the values of error variance are 0.5 and 1 and the level of 

multicollinearity is 0.85, whose EMSE increases as sample size increases from 30 to 50 across all the 

percentages of outliers and levels of autocorrelation. However, in comparison with other estimators, the 

proposed LADHLKL was still better. 

5. An increase in the error variance values generally hurts the estimators' performances. As the error 

variance goes from 0.5, 1 to 4, the EMSE of each estimator increases. The least impacted are the 

LADKL, LADHL, and the proposed LADHLKL. However, the suggested LADHLKL has shown its 

superiority in terms of lower MSE values. 

 

3.2 Numerical application 
 

We used the dataset that was originally used by (H. Y. A. Eledum & Alkhalifa, 2012). Though we considered 

the 1960 to 1975 period for the data, (Awwad et al., [19], H. Eledum & Zahri, [4], Lukman et al., [20], Lukman, 

Ayinde, Kun, et al., [21], Lukman, Ayinde, Olatayo, et al., [22] used the same dataset for the period from 1960 

to 1990. The regression model is given as follows: 

 

       (46) 

 

Where  represents the product in the manufacturing sector,  is the imported intermediate commodities, 

is the imported capital commodities, and  is the imported raw materials.  

 

The method of Ordinary Least Squares was used to estimate the parameters of model (46). Based on the fitted 

model, the following statistics were obtained: 

 

The correlation matrix of the predictors is: 

 

 

 

From the correlation matrix above, it can be seen that the estimated correlations between the independent 

variables γ𝑗 are more than 0.870 and the Variance Inflation Factor  for j = 1, 2, 3, as can be seen from 

Table 10 above are all greater than 30. This implies that the data suffer from multicollinearity. 

 

Also, the Durbin-Watson statistic value DW (0.803) <dl (0.860), with a p-value of 0.001. This implies that the 

model suffers from autoregressive of order 1 (AR (1)). 

 

Table 10 above also shows that the value of the Kurtosis for the residuals, K is greater than three (K>3), which 

indicate that the residuals is heavily skewed to the right. 

 

Therefore, apart from having a heavy-tail residual, the data suffers from both multicollinearity and 

autocorrelation. 

 

We used the proposed LADHLKL and seven other considered estimators to estimate the coefficients of the 

model (46). The estimates of the regression coefficients, their corresponding AMSE values, and ranks are 

presented in Table 11. 

 

The results of the real-life application show that our proposed LADHLKL estimator had the smallest MSE value 

and therefore, performed better than other considered estimators. This result is consistent with the simulation 

results [23]. 
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Table 1. Estimated MSE values when the error variance = 0.5, n = 10 

 

% of Outlier ρ ꝩ OLS HL LAD LADHL KL HLKL LADKL LADHLKL 

10% 

0.85 

0.850 171.850 167.313 3.948 2.979 57.120 52.581 0.854 0.545 

0.950 521.054 515.607 11.095 8.751 170.142 159.604 2.027 1.376 

0.990 2662.446 2640.594 56.205 46.216 854.159 805.721 9.329 7.371 

0.95 

0.850 172.782 167.744 10.752 7.225 56.735 51.954 3.358 2.351 

0.950 524.316 514.052 26.886 19.562 170.030 155.752 7.022 5.963 

0.990 2682.937 2628.849 133.217 95.701 859.987 787.690 29.946 28.565 

0.99 

0.850 173.945 172.518 53.383 29.718 53.625 51.701 21.682 14.212 

0.950 528.623 523.409 127.379 80.150 163.743 152.859 45.126 37.759 

0.990 2720.707 2660.798 544.818 390.588 851.880 759.942 167.828 185.367 

20% 

0.85 

0.850 687.952 197.826 4.305 1.659 223.138 28.763 0.801 0.150 

0.950 2003.240 508.808 12.276 5.101 622.531 59.613 2.043 0.332 

0.990 9945.791 2283.137 61.016 25.098 2986.876 223.022 9.461 1.263 

0.95 

0.850 758.495 233.403 11.567 1.601 247.299 35.392 2.916 0.144 

0.950 2214.230 611.247 31.043 4.819 693.740 76.874 7.165 0.315 

0.990 11014.820 2778.822 150.442 23.366 3343.373 298.453 32.651 1.279 

0.99 

0.850 787.724 248.173 56.008 2.021 253.732 38.246 18.573 0.212 

0.950 2304.366 654.002 145.678 6.105 719.248 84.430 45.017 0.392 

0.990 11493.084 2986.618 702.271 29.184 3507.063 331.958 209.842 1.561 

30% 

0.85 

0.850 1421.815 391.260 4.753 2.545 416.174 86.622 1.015 0.238 

0.950 4235.762 1184.063 12.399 12.064 1217.035 261.653 2.246 0.806 

0.990 21416.884 6008.384 61.372 92.610 6056.272 1317.118 10.300 5.616 

0.95 

0.850 1724.258 498.788 12.788 2.344 514.410 114.816 3.382 0.234 

0.950 5134.572 1497.830 30.468 13.066 1502.639 341.403 7.018 1.126 

0.990 25950.784 7554.185 143.468 98.629 7471.364 1696.965 31.518 8.427 

0.99 

0.850 1858.946 548.156 60.894 2.657 558.709 127.776 19.151 0.306 

0.950 5539.193 1641.920 141.751 24.052 1639.743 377.947 40.013 3.142 

0.990 28020.038 8263.977 653.303 172.310 8194.601 1870.526 180.424 25.883 
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Table 2. Estimated MSE values when the error variance = 0.5, n = 30 

 

% of Outlier ρ ꝩ OLS HL LAD LADHL KL HLKL LADKL LADHLKL 

10% 

0.85 

0.850 106.719 8.108 1.265 0.155 35.820 1.175 0.112 0.033 

0.950 201.888 23.009 3.373 0.411 45.893 3.302 0.233 0.023 

0.990 752.410 110.860 15.865 1.943 120.280 15.718 0.880 0.077 

0.95 

0.850 125.960 10.229 5.255 0.149 40.749 1.578 1.115 0.032 

0.950 247.390 29.720 14.075 0.401 58.534 4.882 2.378 0.021 

0.990 951.318 145.659 65.821 1.916 180.921 25.252 9.704 0.071 

0.99 

0.850 138.080 11.381 35.785 0.180 46.359 2.020 16.982 0.035 

0.950 280.813 33.300 90.733 0.493 75.824 6.327 36.016 0.026 

0.990 1111.871 164.108 397.612 2.378 251.031 32.913 144.675 0.093 

20% 

0.85 

0.850 316.520 11.455 1.288 0.185 93.776 1.652 0.071 0.037 

0.950 475.720 33.685 3.402 0.485 106.222 4.438 0.119 0.022 

0.990 1669.627 168.706 16.217 2.300 236.746 22.500 0.425 0.063 

0.95 

0.850 491.612 14.656 5.504 0.179 146.191 1.884 0.312 0.036 

0.950 760.786 43.963 14.313 0.470 167.560 5.033 0.557 0.020 

0.990 2665.315 222.332 68.524 2.229 395.432 25.812 2.105 0.058 

0.99 

0.850 591.930 16.742 33.414 0.229 179.059 2.137 4.513 0.040 

0.950 936.987 50.667 89.597 0.609 205.221 5.678 9.848 0.025 

0.990 3315.553 257.444 394.421 2.888 496.005 29.182 32.877 0.076 

30% 

0.85 

0.850 997.066 2.946 2.147 0.203 456.666 0.198 0.139 0.028 

0.950 2507.966 7.638 6.358 0.537 671.345 0.480 0.224 0.018 

0.990 12984.931 36.108 31.029 2.537 3104.076 1.611 0.571 0.061 

0.95 

0.850 1564.191 7.528 6.349 0.194 737.149 0.420 0.604 0.028 

0.950 3604.272 20.622 18.923 0.512 1051.750 1.261 0.880 0.018 

0.990 18017.443 98.269 90.898 2.424 3354.627 5.685 1.809 0.057 

0.99 

0.850 1926.157 12.207 28.125 0.232 909.472 0.678 4.596 0.029 

0.950 4270.783 34.247 102.255 0.621 1287.733 2.047 9.733 0.021 

0.990 20926.636 164.958 500.156 2.947 4039.963 9.707 33.906 0.074 
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Table 3. Estimated MSE values when the error variance = 0.5, n = 50 

  
% of Outlier ρ ꝩ OLS HL LAD LADHL KL HLKL LADKL LADHLKL 

10% 

0.85 

0.850 38.623 1.488 0.413 0.060 3.906 0.265 0.063 0.036 

0.950 109.631 3.961 1.112 0.162 10.967 0.278 0.039 0.014 

0.990 535.311 18.845 5.531 0.778 53.133 0.710 0.081 0.018 

0.95 

0.850 57.477 2.030 1.378 0.055 6.745 0.338 0.161 0.042 

0.950 163.408 5.438 4.122 0.148 18.900 0.362 0.208 0.013 

0.990 799.318 26.169 21.668 0.718 91.837 0.966 0.798 0.014 

0.99 

0.850 69.634 2.339 11.048 0.063 9.488 0.376 2.595 0.047 

0.950 197.702 6.297 37.641 0.168 26.334 0.409 8.371 0.014 

0.990 968.013 30.487 201.833 0.794 128.207 1.126 45.023 0.017 

20% 

0.85 

0.850 44.017 0.439 0.450 0.069 12.604 0.027 0.057 0.051 

0.950 86.516 1.404 1.224 0.188 24.467 0.033 0.032 0.012 

0.990 308.820 7.369 6.113 0.911 35.699 0.182 0.065 0.014 

0.95 

0.850 54.261 1.357 1.355 0.063 18.454 0.056 0.138 0.053 

0.950 104.599 4.259 4.451 0.173 34.586 0.074 0.122 0.011 

0.990 371.003 22.282 23.383 0.830 48.796 0.433 0.316 0.012 

0.99 

0.850 67.573 2.267 10.716 0.072 21.568 0.090 0.936 0.053 

0.950 138.918 7.037 40.476 0.196 39.657 0.127 1.827 0.012 

0.990 532.447 36.671 220.367 0.942 55.551 0.727 9.034 0.013 

30% 

0.85 

0.850 474.990 1.916 0.608 0.078 69.733 0.285 0.044 0.057 

0.950 1205.431 4.757 1.742 0.215 148.007 0.236 0.034 0.014 

0.990 5438.885 21.543 8.584 1.029 458.181 0.643 0.089 0.014 

0.95 

0.850 696.372 0.753 1.531 0.074 99.619 0.340 0.140 0.058 

0.950 1712.754 1.362 6.097 0.205 194.927 0.159 0.146 0.013 

0.990 7547.278 5.282 28.265 1.000 445.363 0.127 0.349 0.013 

0.99 

0.850 793.216 0.431 8.685 0.087 121.058 0.426 1.183 0.060 

0.950 1911.602 0.450 47.519 0.239 230.985 0.194 1.239 0.015 

0.990 8291.114 1.555 213.142 1.157 454.620 0.095 3.456 0.015 
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Table 4. Estimated MSE values when the error variance = 1, n = 10 

  
% of Outlier ρ ꝩ OLS HL LAD LADHL KL HLKL LADKL LADHLKL 

10% 

0.85 

0.850 343.699 334.626 7.896 5.958 114.240 105.132 1.707 1.090 

0.950 1,042.108 1,031.215 22.190 17.502 340.283 319.193 4.053 2.752 

0.990 5,324.892 5,281.187 112.411 92.432 1,708.318 1,611.434 18.658 14.742 

0.95 

0.850 345.564 335.488 21.505 14.449 113.469 103.879 6.717 4.703 

0.950 1,048.632 1,028.104 53.772 39.124 340.060 311.489 14.045 11.928 

0.990 5,365.874 5,257.699 266.435 191.402 1,719.973 1,575.373 59.892 57.132 

0.99 

0.850 347.890 345.036 106.766 59.435 107.250 103.371 43.366 28.428 

0.950 1,057.246 1,046.818 254.757 160.300 327.486 305.704 90.253 75.521 

0.990 5,441.413 5,321.595 1,089.635 781.176 1,703.759 1,519.877 335.657 370.736 

20% 

0.85 

0.850 1,375.904 395.653 8.609 3.317 446.291 57.524 1.605 0.302 

0.950 4,006.481 1,017.617 24.553 10.201 1,245.067 119.224 4.086 0.665 

0.990 19,891.582 4,566.275 122.033 50.196 5,973.754 446.043 18.922 2.526 

0.95 

0.850 1,516.990 466.806 23.134 3.203 494.613 70.777 5.835 0.291 

0.950 4,428.459 1,222.494 62.086 9.638 1,387.484 153.742 14.332 0.631 

0.990 22,029.640 5,557.644 300.884 46.732 6,686.747 596.904 65.301 2.558 

0.99 

0.850 1,575.449 496.346 112.015 4.041 507.479 76.482 37.155 0.427 

0.950 4,608.731 1,308.003 291.356 12.209 1,438.502 168.853 90.037 0.784 

0.990 22,986.168 5,973.235 1,404.542 58.368 7,014.128 663.914 419.684 3.122 

30% 

0.85 

0.850 2,843.630 782.519 9.506 5.091 832.366 173.200 2.031 0.471 

0.950 8,471.523 2,368.125 24.798 24.127 2,434.076 523.278 4.492 1.608 

0.990 42,833.768 12,016.768 122.743 185.220 12,112.544 2,634.218 20.599 11.230 

0.95 

0.850 3,448.516 997.576 25.577 4.688 1,028.840 229.585 6.765 0.463 

0.950 10,269.144 2,995.660 60.936 26.132 3,005.284 682.777 14.036 2.248 

0.990 51,901.567 15,108.369 286.936 197.259 14,942.728 3,393.912 63.037 16.852 

0.99 

0.850 3,717.893 1,096.313 121.788 5.315 1,117.439 255.503 38.309 0.611 

0.950 11,078.386 3,283.840 283.502 48.104 3,279.493 755.863 80.027 6.280 

0.990 56,040.075 16,527.954 1,306.606 344.620 16,389.203 3,741.034 360.849 51.762 
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Table 5. Estimated MSE values when the error variance = 1, n = 30 

  
% of Outlier ρ ꝩ OLS HL LAD LADHL KL HLKL LADKL LADHLKL 

10% 

0.85 

0.850 213.438 16.216 2.531 0.310 71.912 2.343 0.224 0.045 

0.950 403.777 46.018 6.747 0.823 91.903 6.612 0.472 0.044 

0.990 1504.819 221.720 31.731 3.887 240.585 31.446 1.761 0.155 

0.95 

0.850 251.919 20.458 10.509 0.299 81.791 3.143 2.250 0.043 

0.950 494.780 59.440 28.151 0.803 117.188 9.774 4.767 0.039 

0.990 1902.636 291.319 131.642 3.831 361.867 50.517 19.410 0.141 

0.99 

0.850 276.160 22.762 71.570 0.360 93.018 4.025 34.020 0.048 

0.950 561.625 66.600 181.466 0.987 151.764 12.666 72.052 0.050 

0.990 2223.741 328.216 795.224 4.755 502.086 65.842 289.352 0.187 

20% 

0.85 

0.850 633.040 22.909 2.576 0.370 188.579 3.223 0.140 0.050 

0.950 951.440 67.370 6.805 0.970 212.799 8.844 0.242 0.040 

0.990 3339.255 337.412 32.433 4.601 473.558 44.984 0.851 0.126 

0.95 

0.850 983.224 29.311 11.008 0.358 293.548 3.679 0.647 0.049 

0.950 1521.572 87.926 28.626 0.940 335.536 10.038 1.126 0.037 

0.990 5330.629 444.663 137.049 4.459 790.943 51.614 4.211 0.115 

0.99 

0.850 1183.860 33.483 66.828 0.457 359.325 4.180 9.106 0.055 

0.950 1873.974 101.334 179.193 1.218 410.880 11.331 19.729 0.047 

0.990 6631.106 514.889 788.841 5.776 992.094 58.359 65.757 0.151 

30% 

0.85 

0.850 1994.133 5.892 4.293 0.405 914.695 0.451 0.313 0.038 

0.950 5015.932 15.277 12.717 1.074 1343.140 0.988 0.464 0.036 

0.990 25969.863 72.216 62.059 5.073 6208.221 3.233 1.145 0.122 

0.95 

0.850 3128.382 15.056 12.697 0.387 1476.102 0.884 1.302 0.037 

0.950 7208.544 41.244 37.846 1.023 2104.096 2.554 1.797 0.034 

0.990 36034.887 196.538 181.795 4.848 6709.366 11.386 3.626 0.114 

0.99 

0.850 3852.314 24.414 56.250 0.464 1820.974 1.388 9.461 0.039 

0.950 8541.566 68.493 204.511 1.242 2576.137 4.127 19.562 0.042 

0.990 41853.273 329.916 1000.313 5.893 8080.052 19.435 67.831 0.148 
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Table 6. Estimated MSE values when the error variance = 1, n = 50 

  
% of Outlier ρ ꝩ OLS HL LAD LADHL KL HLKL LADKL LADHLKL 

10% 

0.85 

0.850 77.247 2.977 0.826 0.119 7.802 0.440 0.085 0.056 

0.950 219.262 7.923 2.223 0.323 21.931 0.527 0.073 0.021 

0.990 1070.621 37.689 11.063 1.556 106.265 1.415 0.163 0.035 

0.95 

0.850 114.955 4.060 2.756 0.109 13.459 0.577 0.290 0.059 

0.950 326.817 10.876 8.243 0.296 37.791 0.695 0.415 0.019 

0.990 1598.636 52.339 43.335 1.435 183.673 1.929 1.597 0.027 

0.99 

0.850 139.269 4.679 22.097 0.126 18.941 0.648 5.194 0.061 

0.950 395.405 12.595 75.282 0.335 52.658 0.787 16.743 0.021 

0.990 1936.026 60.974 403.667 1.588 256.412 2.248 90.047 0.033 

20% 

0.85 

0.850 88.035 0.878 0.900 0.138 26.097 0.028 0.076 0.056 

0.950 173.032 2.808 2.448 0.376 49.383 0.075 0.065 0.017 

0.990 617.640 14.738 12.226 1.822 71.509 0.370 0.132 0.027 

0.95 

0.850 108.521 2.713 2.711 0.126 37.989 0.077 0.246 0.056 

0.950 209.197 8.517 8.902 0.346 69.706 0.153 0.249 0.016 

0.990 742.007 44.565 46.766 1.659 97.721 0.871 0.635 0.023 

0.99 

0.850 135.147 4.534 21.432 0.143 44.280 0.135 1.865 0.057 

0.950 277.836 14.074 80.951 0.392 79.873 0.257 3.660 0.017 

0.990 1064.894 73.342 440.733 1.884 111.238 1.460 18.072 0.026 

30% 

0.85 

0.850 949.980 3.832 1.216 0.156 140.636 0.471 0.060 0.063 

0.950 2410.863 9.514 3.484 0.430 296.561 0.446 0.072 0.020 

0.990 10877.771 43.086 17.168 2.058 916.494 1.280 0.181 0.028 

0.95 

0.850 1392.745 1.506 3.063 0.148 201.126 0.540 0.256 0.063 

0.950 3425.508 2.724 12.193 0.410 390.759 0.283 0.306 0.019 

0.990 15094.555 10.564 56.530 1.999 890.946 0.249 0.703 0.025 

0.99 

0.850 1586.432 0.863 17.370 0.175 244.427 0.690 2.336 0.067 

0.950 3823.204 0.900 95.038 0.478 463.092 0.347 2.525 0.022 

0.990 16582.227 3.110 426.284 2.314 909.514 0.185 6.927 0.030 
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Table 7. Estimated MSE values when the error variance = 4, n = 10 

  
% of Outlier ρ ꝩ OLS HL LAD LADHL KL HLKL LADKL LADHLKL 

10% 

0.85 

0.850 1374.797 1338.503 31.584 23.831 456.955 420.378 6.827 4.358 

0.950 4168.430 4124.858 88.758 70.010 1361.132 1276.700 16.214 11.011 

0.990 21299.568 21124.750 449.642 369.730 6833.273 6445.699 74.632 58.972 

0.95 

0.850 1382.255 1341.952 86.020 57.797 453.872 415.369 26.871 18.822 

0.950 4194.528 4112.418 215.087 156.496 1360.239 1245.887 56.181 47.722 

0.990 21463.498 21030.794 1065.738 765.607 6879.894 6301.458 239.567 228.536 

0.99 

0.850 1391.561 1380.145 427.066 237.742 428.995 413.336 173.476 113.733 

0.950 4228.984 4187.274 1019.029 641.201 1309.946 1222.746 361.017 302.098 

0.990 21765.654 21286.381 4358.542 3124.703 6815.038 6079.475 1342.628 1482.957 

20% 

0.85 

0.850 5503.615 1582.610 34.437 13.269 1785.234 230.089 6.429 1.218 

0.950 16025.923 4070.466 98.211 40.805 4980.290 476.886 16.347 2.662 

0.990 79566.328 18265.099 488.131 200.783 23895.019 1784.165 75.690 10.105 

0.95 

0.850 6067.959 1867.223 92.536 12.811 1978.524 283.076 23.360 1.175 

0.950 17713.837 4889.978 248.343 38.551 5549.956 614.946 57.332 2.530 

0.990 88118.561 22230.575 1203.538 186.927 26746.992 2387.602 261.206 10.232 

0.99 

0.850 6301.794 1985.386 448.061 16.165 2029.989 305.887 148.663 1.728 

0.950 18434.925 5232.012 1165.422 48.836 5754.030 675.386 360.158 3.141 

0.990 91944.672 23892.941 5618.168 233.472 28056.516 2655.638 1678.738 12.488 

30% 

0.85 

0.850 11374.521 3130.077 38.024 20.363 3329.553 692.588 8.127 1.863 

0.950 33886.093 9472.502 99.193 96.509 9736.329 2092.980 17.967 6.417 

0.990 171335.071 48067.071 490.973 740.880 48450.183 10536.789 82.397 44.910 

0.95 

0.850 13794.064 3990.305 102.306 18.753 4115.452 918.107 27.073 1.834 

0.950 41076.574 11982.639 243.745 104.527 12021.163 2730.966 56.145 8.974 

0.990 207606.268 60433.476 1147.746 789.034 59770.918 13575.558 252.147 67.394 

0.99 

0.850 14871.570 4385.251 487.151 21.259 4469.855 1021.769 153.275 2.432 

0.950 44313.543 13135.361 1134.008 192.417 13117.999 3023.303 320.116 25.098 

0.990 224160.301 66111.817 5226.425 1378.480 65556.817 14964.044 1443.396 207.034 
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Table 8. Estimated MSE values when the error variance = 4, n = 30 

  
% of Outlier ρ ꝩ OLS HL LAD LADHL KL HLKL LADKL LADHLKL 

10% 

0.85 

0.850 853.753 64.865 10.123 1.239 288.966 9.360 0.945 0.116 

0.950 1615.107 184.074 26.988 3.292 368.180 26.490 1.917 0.169 

0.990 6019.277 886.882 126.923 15.547 962.463 125.826 7.049 0.621 

0.95 

0.850 1007.677 81.834 42.038 1.195 328.586 12.528 9.135 0.108 

0.950 1979.121 237.762 112.603 3.210 469.336 39.149 19.125 0.151 

0.990 7610.545 1165.275 526.567 15.326 1447.590 202.134 77.649 0.567 

0.99 

0.850 1104.639 91.048 286.278 1.441 373.532 16.042 136.371 0.128 

0.950 2246.501 266.401 725.865 3.946 607.619 50.719 288.306 0.193 

0.990 8894.966 1312.862 3180.895 19.021 2008.460 263.440 1157.422 0.751 

20% 

0.85 

0.850 2532.158 91.638 10.305 1.480 759.294 12.513 0.597 0.123 

0.950 3805.760 269.479 27.218 3.880 852.919 35.221 0.993 0.150 

0.990 13357.019 1349.648 129.733 18.402 1894.552 179.857 3.410 0.502 

0.95 

0.850 3932.897 117.245 44.031 1.430 1179.838 14.306 2.748 0.118 

0.950 6086.290 351.705 114.505 3.758 1344.155 40.023 4.568 0.138 

0.990 21322.518 1778.653 548.195 17.835 3164.150 206.410 16.851 0.462 

0.99 

0.850 4735.439 133.934 267.313 1.829 1443.153 16.290 36.851 0.138 

0.950 7495.895 405.337 716.773 4.874 1645.641 45.208 79.079 0.176 

0.990 26524.426 2059.555 3155.366 23.102 3968.776 233.411 263.044 0.605 

30% 

0.85 

0.850 7976.531 23.566 17.174 1.621 3665.370 2.107 1.472 0.097 

0.950 20063.727 61.106 50.866 4.296 5374.728 4.090 1.938 0.140 

0.990 103879.450 288.865 248.235 20.294 24833.214 12.988 4.597 0.488 

0.95 

0.850 12513.530 60.223 50.789 1.550 5913.133 3.780 5.710 0.093 

0.950 28834.174 164.975 151.384 4.093 8419.261 10.373 7.369 0.132 

0.990 144139.548 786.150 727.181 19.392 26838.000 45.630 14.537 0.459 

0.99 

0.850 15409.257 97.654 224.999 1.856 7293.708 5.745 39.187 0.108 

0.950 34166.264 273.973 818.043 4.968 10307.789 16.672 78.719 0.165 

0.990 167413.091 1319.664 4001.251 23.572 32320.817 77.843 271.415 0.594 
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Table 9. Estimated MSE values when the error variance = 4, n = 50 

  
% of Outlier ρ ꝩ OLS HL LAD LADHL KL HLKL LADKL LADHLKL 

10% 

0.85 

0.850 308.986 11.906 3.303 0.478 31.183 1.376 0.228 0.086 

0.950 877.050 31.691 8.893 1.293 87.718 1.982 0.287 0.060 

0.990 4282.485 150.756 44.251 6.223 425.057 5.638 0.653 0.140 

0.95 

0.850 459.819 16.240 11.025 0.437 53.712 1.882 1.082 0.084 

0.950 1307.266 43.502 32.974 1.184 151.123 2.642 1.663 0.052 

0.990 6394.542 209.355 173.342 5.742 734.682 7.696 6.390 0.107 

0.99 

0.850 557.076 18.715 88.386 0.502 75.620 2.149 20.858 0.090 

0.950 1581.620 50.379 301.128 1.342 210.583 3.009 66.985 0.061 

0.990 7744.104 243.897 1614.668 6.352 1025.636 8.976 360.192 0.128 

20% 

0.85 

0.850 352.139 3.512 3.599 0.550 108.772 0.070 0.217 0.076 

0.950 692.130 11.233 9.793 1.504 199.716 0.356 0.269 0.048 

0.990 2470.559 58.952 48.906 7.288 286.574 1.505 0.535 0.109 

0.95 

0.850 434.085 10.854 10.843 0.505 157.267 0.208 0.928 0.074 

0.950 836.789 34.068 35.608 1.385 281.413 0.649 1.029 0.044 

0.990 2968.028 178.258 187.066 6.636 391.511 3.509 2.551 0.091 

0.99 

0.850 540.588 18.135 85.730 0.573 182.732 0.399 7.513 0.078 

0.950 1111.345 56.295 323.806 1.568 322.203 1.050 14.677 0.050 

0.990 4259.578 293.370 1762.933 7.535 445.604 5.866 72.310 0.104 

30% 

0.85 

0.850 3799.922 15.326 4.864 0.623 568.242 1.470 0.196 0.090 

0.950 9643.451 38.055 13.936 1.719 1188.895 1.667 0.321 0.055 

0.990 43511.083 172.345 68.672 8.231 3666.614 5.092 0.735 0.109 

0.95 

0.850 5570.979 6.025 12.250 0.593 813.682 1.577 1.002 0.088 

0.950 13702.031 10.895 48.773 1.641 1567.413 0.976 1.309 0.051 

0.990 60378.220 42.256 226.121 7.996 3564.847 0.971 2.838 0.099 

0.99 

0.850 6345.727 3.451 69.480 0.699 988.942 2.077 9.293 0.099 

0.950 15292.814 3.600 380.153 1.911 1857.800 1.207 10.343 0.062 

0.990 66328.908 12.439 1705.136 9.258 3639.382 0.713 27.781 0.116 
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Table 10. The value of the Kurtosis for the residuals 

 

𝜶 K 𝒏   𝒑   𝑭(𝟑,𝟏𝟐)  𝑹𝟐    �̂�𝟐  𝒅𝒍  𝒅𝒖 𝑫𝑾    

0.05 3.248 16 3 19.950 0.833 7564.42 0.860 1.730 0.803 133.709 37.380 41.928 

 

Table 11. Coefficient estimates, MSE, and ranks of the proposed and considered estimators 

 

Estimator 
Coefficients Estimates 

AMSE Rank     

OLS 151.916796 1.9391019 -0.3409638 0.09901955 3223.63517 8 

HL 44.0793292 0.27069863 0.40093283 0.0379899 57.8128197 3 

KL 132.205018 2.65452496 -0.6078002 -0.9097097 2439.3762 7 

LAD 53.91659 5.992997 -1.63648 -6.89525 481.907 6 

HLKL 42.8024969 0.28411587 0.39876059 0.03093152 213.532204 4 

LADHL 33.78182 0.110542 0.469087 0.398365 49.703 2 

LADKL 19.7427914 7.22685362 -2.0970903 -8.631091 352.453154 5 

HLLADKL 32.5811165 0.11802228 0.46912318 0.39889461 40.1687232 1 

1
VIF

2
VIF

3
VIF
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4 Conclusion 
 

The assumptions of the absence of multicollinearity among the regressors, independent and normally distributed 

residuals are sometimes jointly violated in multiple linear regression models, yet have not been sufficiently 

studied. 

 

In this research, we introduced a Robust Feasible Generalized Kibria-Lukman (LADHLKL) estimator to 

mitigate the joint effect of multicollinearity, autocorrelation, and heavy-tail outliers in residuals in the linear 

regression models. We derived the statistical properties of the proposed estimator. We compared the 

performance of the proposed LADHLKL estimator with other existing estimators based on the mean square 

error (MSE) criterion through simulation and real-life application. Both the results from the numerical example 

and the simulation study showed that our proposed estimator outperformed other estimators. The proposed 

estimator is, therefore, recommended for researchers in handling the joint effect of multicollinearity, 

autocorrelation, and heavy-tail errors in a linear regression model. For future research, we plan to extend this 

study to generalized linear models. 
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