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ABSTRACT 
 

Aims: This study aimed to develop a mathematical model for predicting PM2.5 pollutant 
concentrations in the ambient air of the metal recycling industry. 
Study Design: This research is a quantitative design and utilized a regression and correlational 
analysis. Three models were developed for predicting PM2.5 concentrations: Linear Regression 
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(LRM), Nonlinear Polynomial Regression (NPRM), and Nonlinear Gamma Regression (NGRM) 
models. Error evaluation functions were employed to analyze how these models deviated from the 
experimental data. The applicability of the models was assessed using statistical tools, such as 
correlation coefficient (r), coefficient of determination (R²), coefficient of non-determination (K²), 

student’s t (t-test), equality of variance (F-test), and chi-square (2 ) tests. 
Place and Duration of Study: The study was conducted in the metal recycling industry in Ogijo, 
Southwestern Nigeria, from November 2021 to October 2022. 
Methodology: Daily mean meteorological data including ambient temperature, rainfall, relative 
humidity (RH), wind speed (WS), wind direction (WD), solar radiation, and ultra-violet radiation 
were recorded using an automatic weather monitoring system positioned 2.0m above ground level 
at each sampling location adjacent to the PM2.5 sampler. Data were collected at 5-minute intervals 
and stored in memory, with data retrieval facilitated by the weather-smart program. Data collection 
commenced during the dry season of 2021 through wet season of 2022. 
Results: The analysis of error evaluation functions revealed that the NGRM exhibited the least 
deviation from the experimental data compared to the LRM and NPRM. Statistical analysis further 
demonstrated that the NGRM better represented the experimental data compared to the LRM and 
NPRM, resulting in the rejection of LRM and NPRM in favour of NGRM for predicting PM2.5 
concentration.  
Conclusion: The NGRM proved to be the most suitable model for predicting PM2.5 pollutant 
concentrations in the study area. Temperature and pressure emerged as the most significant 
predictors of PM2.5 levels. 
 

 
Keywords: Concentration; mathematical model; metal recycling; pm 2.5; prediction. 

 
1. INTRODUCTION  
 

“The investigation of outdoor air pollution has 
gained significant attention from researchers in 
recent years due to the severe degradation of air 
quality in both remote and urban areas” [1,2]. 
“Clean air is essential for human health and 
environmental well-being” [3,2]. “However,                 
major anthropogenic activities such as 
overpopulation, industrialization, and 
transportation frequently release toxic 
substances like particulates, heavy metals, and 
gases into the atmosphere at concentrations 
exceeding natural ambient levels, leading to air 
quality deterioration” [2]. 
 

“Fine particulate matter (PM2.5) is a crucial 
indicator of air quality. PM2.5 emissions originate 
from various sources, both natural (e.g., 
windborne dust, sea spray, volcanic activity, 
biomass burning) and anthropogenic (e.g., fuel 
combustion, industrial processes, transportation)” 
[4]. “These fine particles can be characterized by 
their physical attributes and chemical 
compositions. Physical attributes such as mass 
concentration (measured in units of mass per 
unit volume) and size distribution (measured by 
aerodynamic diameter) influence their transport 
and deposition. Aerodynamic diameter refers to 
the equivalent diameter of a spherical particle 
with the same settling velocity as the collected 
particles” [5,6]. 

“The chemical composition of PM2.5 includes 
inorganic compounds, elemental carbon (black 
soot), trace elements, and organic compounds, 
all of which can significantly impact visibility, 
human health, atmospheric chemistry, climate 
change, and agriculture” [7]. “Among these 
inorganic compounds are toxic metals such as 
arsenic (As), cadmium (Cd), chromium (Cr), 
nickel (Ni), vanadium (V), manganese (Mn), lead 
(Pb), iron (Fe), cobalt (Co), copper (Cu), zinc 
(Zn), titanium (Ti), and aluminium (Al), which are 
of serious concern due to their frequent 
occurrence in residential and occupational areas, 
with inhalation being a primary route of exposure. 
The amount of pollutants in a particular location 
can be influenced by meteorological factors and 
pollutant sources” [8]. 
 
“Fine particulate matter (PM2.5) has been a focus 
of attention due to its closer association with 
adverse health effects and its greater hazard 
compared to larger particulate matter, owing to 
its longer residence time in the atmosphere and 
its ability to act as a carrier of harmful trace 
metals into the human lungs” [9-17]. 
 
The Metal Recycling Industrial Estate in Ogijo, 
Sagamu Local Government Area, with 
coordinates 3°30'55.8"N and 6°41'57.9"E, is 
predominantly occupied by metal recycling 
factories situated in densely populated residential 
areas. These factories are well connected by 
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accessible roads and are near one another, with 
similar emission sources. This area hosts one of 
the largest conglomerates of metal recycling 
factories in Nigeria, receiving scrap metal-laden 
trucks from across the country [18]. The recycling 
process generates billets and iron rods, resulting 
in high stockpiles of scrap metal and slag waste, 
and the evolution of toxic fumes. The 
surrounding land use includes road dust from 
unpaved roads, construction activities, industrial 
emissions, commercial activities, refuse burning, 
toxic fumes from factory chimneys, heavy truck 
exhaust, and dust pollution from stockpiled metal 
scraps [19]. 
 
Various statistical methods have been developed 
to determine the relationships between air 
pollution concentrations and meteorological 
parameters. These include multiple linear 
regression analysis [20-22], nonlinear multiple 
regressions [23-26], artificial neural networks 
[27,28], and generalized additive models and 
fuzzy-logic-based models [29-34]. These models 
have been tested for daily or long-term 
forecasting and exploring the relationship 
between O3 and PM. It can be useful to estimate 
unknown PM air concentration values based on 
known air concentrations of other pollutants and 
meteorological variables. General Linear Models 
(GLM) are often used to estimate PM 
concentrations based on known values of other 
air pollutants at the same site [35-45]. 
 
Recent studies have significantly advanced our 
understanding of the relationship between PM2.5 
and various environmental and meteorological 
factors. Studies have expanded on these 
findings, providing additional insights into the 
factors influencing PM2.5 concentrations and their 
impacts on human health and the environment. 
For instance, German et al. [37] investigated the 
effects of temperature and humidity on PM 
concentrations in a subtropical climate during 
winter, revealing significant correlations that 
contribute to the understanding of PM dynamics 
in different environmental settings. The 
relationship between meteorological conditions 
and air pollution has also been explored in other 
regions. Christopher et al. [38] examined the 
influence of meteorological parameters on 
particle pollution in the tropical climate of Port 
Harcourt, Nigeria, highlighting the complex 
interactions between local meteorology and 
PM2.5 levels in urban environments. 
 
Furthermore, Zhao et al. [46] explored the impact 
of meteorological conditions on PM2.5 levels 

across different seasons in urban China, 
highlighting significant correlations between air 
pollution and factors such as temperature, 
humidity, and wind speed. They found that these 
meteorological variables influence the 
concentration and distribution of PM2.5 in the 
atmosphere. Guo et al. [47] investigated the 
long-term effects of exposure to PM2.5 on 
respiratory health, emphasizing the critical need 
for effective air quality management strategies to 
mitigate health risks associated with particulate 
matter exposure. Their findings underscored the 
adverse respiratory health impacts of PM2.5 and 
the importance of reducing exposure levels to 
protect public health. 
 
Thangavel et al. [48] discussed the health impact 
of PM2.5. They mentioned that ambient fine 
particulate matter (PM2.5), which is defined as 
particles with an aerodynamic diameter of less 
than 2.5 µm, is widely considered to pose a 
serious risk to human health based on several 
epidemiologic and toxicological studies. The 
respiratory system is primarily responsible for 
absorbing PM2.5, which can then enter the 
bloodstream by penetrating the lung alveoli. 
Reactive oxygen or nitrogen species and 
oxidative stress in the respiratory system cause 
several illnesses by inducing the production of 
pulmonary inflammatory mediators. Based on the 
latest data, cardiopulmonary diseases like heart 
disease, respiratory infections, chronic lung 
disease, cancers, preterm births, and other 
illnesses account for almost 4 million deaths 
worldwide due to fine particulate matter, or 
PM2.5. 
  
Amann et al. [49] discussed the policy 
effectiveness of PM2.5. They mentioned that a 
significant portion of the current 3–9 million 
cases of premature deaths per year could be 
prevented with improved air quality. In addition to 
providing clean air, these actions of regulating 
and reducing PM2.5 would greatly cut greenhouse 
gas emissions and advance several UN 
sustainable development objectives. Also, Tariq 
et al. [50] discussed the policy effectiveness of 
PM2.5. In their work, they concluded that low 
rainfall combined with deforestation and 
agricultural practices worsens air pollution and 
desertification, which increased health risks in 
the study areas. Wei & Li [51], in their study, 
opined that the global COVID-19 lockdowns were 
accompanied by wave-like dramatic changes in 
air quality, and the mortality burden associated 
with these events is also clearly visible. 
Remarkably, only about one-third of all nations 
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reach their pre-pandemic levels of pollution. 
Numerous episodes of air pollution caused by 
nature are also disclosed, including the burning 
of biomass.  
 
In the aspect of modelling, Li et al. [52] 
developed advanced machine learning models to 
predict PM2.5 concentrations, demonstrating 
improved accuracy in air quality forecasting. 
Their study showed that machine learning 
techniques can effectively capture complex 
relationships between PM2.5 levels and various 
environmental and meteorological factors, 
offering valuable tools for air quality management 
and policy-making [52]. Onanuga et al. [53] 
carried out a thorough investigation into seasonal 
shifts in air pollution in communities close to 
scrap metal recycling companies in Ogijo, 
Shagamu South LGA, Ogun State, Nigeria. 
Carbon monoxide, nitrogen dioxide, sulfur 
dioxide, PM2.5, and PM10 concentrations were 
measured during the dry and wet seasons at 20 
key sampling locations and control sites using 
cutting-edge Gary Wolf Environmental Sensing 
and Particulate Counting equipment. With some 
concentrations exceeding Nigerian ambient air 
quality standards, the results showed        
significant seasonal fluctuations in pollutant 
levels, raising serious concerns about 
environmental health.  

 
So far, recent research has expanded our 
knowledge of the environmental and 
meteorological factors influencing PM2.5 
concentrations. These studies have underscored 
the need for effective air quality management 
strategies and provided valuable insights into the 
impacts of particulate matter on human health 
and the environment. These reviews synthesize 
recent studies that have contributed to our 
understanding of PM2.5 and its environmental 
and health impacts, providing a comprehensive 
overview of the current state of research in this 
field. 

 
This work aims to develop a nonlinear               
regression model to predict PM2.5 pollutant 
concentrations in the ambient air of the metal 
recycling industry in Ogijo, Ogun State, 
Southwestern Nigeria. This work serves as a 
valuable tool for regulatory bodies and 
researchers to forecast PM2.5 concentrations, 
aiding in policy formulation and decision-making 
for the benefit of the residents of Ogun State and 
Nigeria, considering the adverse effects of 
particulates on human health and the 
environment. 

2. MATERIALS AND METHODS 
 

2.1 Meteorological Data Collection 
 

The daily mean meteorological data from the 
parameters such as ambient temperature, 
rainfall, relative humidity (RH), wind speed (WS), 
wind direction (WD), solar radiation and ultra-
violet radiation, were recorded through an 
automatic weather monitoring system 
(professional weather station) mounted at 2.0m 
above the ground level at each sampling location 
closely beside the PM2.5 sampler. It was 
programmed to collect data at an interval of 5 
minutes and store it in memory. The recorded 
measurements were downloaded to a computer 
using the weather-smart.  
 

However, the meteorological data collection 
started in the dry season, which was observed 
from January, February, March, April, November 
and December respectively. The dry season was 
characterized by the following weather 
conditions; clear sky, moderate to high solar 
radiation, moderate to high air temperature, and 
extremely low precipitation. In addition, the 
harmattan period was observed from mid-
November to mid-February. High dry weather 
and dusty weather along with low humidity were 
experienced during this period. This was 
attributed to the contribution of wind-borne dust 
due to the North-east trade wind from the Sahara 
desert. The wet season which was observed 
from May to October was characterized by 
moderate rainfall and highly humid conditions.   
 

2.2 Model Development 
 

The Meteorological data generated in this work 
study from November 2021 to October 2022 
were used to develop a mathematical model for 
the prediction of PM2.5 and toxic metals. The data 
were represented in the form of Equation (1).  
 

𝑦 = 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)                (1) 
 

where 𝑦  is concentration of PM2.5, 𝑥1  is 

temperature, 𝑥2  is humidity, 𝑥3  is pressure, 𝑥4  is 

wind speed, 𝑥5  is wind direction, 𝑥6  is solar 
radiation and 𝑥7 is rainfall. 
 

Three (3) different models were obtained using 
the generated data with the aid of an inbuilt 
solver tool in R Software version 2024 which is 
user-friendly. The obtained models were used to 
predict the experimental data. R was used in this 
work because it is a statistical programming 
software which is very user-friendly, flexible and 
freely available online for download.  
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2.3 Error Functions Analysis  
 
“To validate how well the predicted data agreed 
with the experimental data, error evaluation 
functions analysis models which are 
mathematical representations of a process, 
presented in Equations 2-10 were applied to the 
experimental and predicted data” [54].  
Average Relative Error (ARE) 
 
 

(𝐴𝑅𝐸) =  
1

𝑁
√∑ (

𝑦𝑒𝑥𝑝𝑡− 𝑦𝑝𝑟𝑒𝑑

𝑦𝑒𝑥𝑝𝑡
)

2
𝑁
𝑘=1              (2) 

 
where 𝑦𝑒𝑥𝑝𝑡  is experimental data, 𝑦𝑝𝑟𝑒𝑑  is 

predicted data, and N is the number of 
experimental data.  
 
The sum of Error Square (ERRSQ)   
 

 𝐸𝑅𝑅𝑆𝑄 =  
1

𝑁
∑ (𝑦𝑒𝑥𝑝𝑡 −  𝑦𝑝𝑟𝑒𝑑)

2𝑁
𝑘=1            (3) 

 
Marquard Percent Standard Deviation (MPSD) 

𝑀𝑃𝑆𝐷 =  
1

𝑁− 𝑁𝑃
√∑ (1 − 

𝑦𝑝𝑟𝑒𝑑

𝑦𝑒𝑥𝑝𝑡
)

2
𝑁
𝑘=1            (4) 

 
where Np = number of parameter(s) to be 
determined. 
 
Hybrid fractional error function   HYBRID) 
 

𝐻𝑌𝐵𝑅𝐼𝐷 =  
1

𝑁− 𝑁𝑃
∑ [

(𝑦𝑒𝑥𝑝𝑡− 𝑦𝑝𝑟𝑒𝑑)
2

𝑦𝑒𝑥𝑝𝑡
]𝑁

𝑘=1            (5) 

 
Root Mean Square Error (RMSE) 
 

𝑅𝑀𝑆𝐸 =  
1

𝑁−2
√∑ (𝑦𝑒𝑥𝑝𝑡 −  𝑦𝑝𝑟𝑒𝑑)

2𝑁
𝑘=1           (6) 

Sum of Absolute Error (EABS) 
 

𝐸𝐴𝐵𝑆 =  ∑ (𝑦𝑒𝑥𝑝𝑡 − 𝑦𝑝𝑟𝑒𝑑)𝑁
𝑘=1                            (7) 

 

Chi-square test  𝑥2 =  ∑ [
(𝑦𝑒𝑥𝑝𝑡− 𝑦𝑝𝑟𝑒𝑑)

2

𝑦𝑝𝑟𝑒𝑑
]𝑁

𝑘=1                       (8) 

 

Standard error of estimate (𝑆𝐸𝐸) =  √∑ (𝑦𝑒𝑥𝑝𝑡− 𝑦𝑝𝑟𝑒𝑑)
2𝑁

𝑘=1

𝑁−2
                        (9) 

 

Mean relative percentage error (𝑀𝑅𝑃𝐸) =  
1

𝑁
∑ (

𝑦𝑒𝑥𝑝𝑡− 𝑦𝑝𝑟𝑒𝑑

𝑦𝑒𝑥𝑝𝑡
)𝑁

𝑘=1                      (10) 

 

2.4 Statistical Analysis  
 
Statistical analyses were also investigated on the experimental and predicted data as a 
supplementary tool for the selection of a suitable model which truly represented the experimental data 
to a very high level. The statistical tools used in this work are depicted in Equations 11 – 15. 
 

𝑟 =  
∑ (𝑦𝑒𝑥𝑝𝑡− 𝑦𝑒𝑥𝑝𝑡

−)(𝑦𝑝𝑟𝑒𝑑− 𝑦𝑝𝑟𝑒𝑑
−)𝑁

𝑘=1

√∑ (𝑦𝑒𝑥𝑝𝑡− 𝑦𝑝𝑟𝑒𝑑
−)

2
∑ (𝑦𝑝𝑟𝑒𝑑− 𝑦𝑝𝑟𝑒𝑑

−)𝑁
𝑘=1

𝑁
𝑘=1

                       (11) 

 
where r = Pearson product-moment correlation, 𝑦𝑒𝑥𝑝𝑡 is the mean value of experimental data, 𝑦𝑝𝑟𝑒𝑑  is 

the mean value of predicted data 
 

𝑅2 = 1 − 
∑ (𝑦𝑒𝑥𝑝𝑡− 𝑦𝑝𝑟𝑒𝑑)

2𝑁
𝑘=1

∑ (𝑦𝑒𝑥𝑝𝑡− 𝑦𝑒𝑥𝑝𝑡
−)

2𝑁
𝑘=1

                                                 (12) 

 
where R2 is the coefficient of determination. 
 

𝐾2 =
∑ (𝑦𝑒𝑥𝑝𝑡− 𝑦𝑝𝑟𝑒𝑑)

2𝑁
𝑘=1

∑ (𝑦𝑒𝑥𝑝𝑡− 𝑦𝑒𝑥𝑝𝑡
−)

2𝑁
𝑘=1

                                               (13) 

 
where K2 is the coefficient of non -determination 
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𝑡 − 𝑡𝑒𝑠𝑡 =  
(𝑦𝑒𝑥𝑝𝑡− 𝑦𝑝𝑟𝑒𝑑

−)

√𝑠2(
1

𝑁1
+ 

1

𝑁2
)

                                                       (14) 

 
where s2 is the standard error, and N1 and N2 are the numbers of experimental and predicted data 
respectively. 
 

𝐹 − 𝑡𝑒𝑠𝑡 =  

∑ (𝑦𝑒𝑥𝑝𝑡− 𝑦𝑒𝑥𝑝𝑡
−)

2𝑁
𝑘=1

𝑁−1

∑ (𝑦𝑝𝑟𝑒𝑑− 𝑦𝑝𝑟𝑒𝑑
−)

2𝑁
𝑘=1

𝑁−1

                      (15) 

 

3. RESULTS AND DISCUSSION 
 
Three models were developed, namely, Linear 
regression model (LRM), nonlinear polynomial 
regression model (NPRM) and nonlinear        
gamma regression model (NGRM) with the aid of 
in- built solver tool in R-Software version 2024 as 
shown in equation (16) – (18). The developed 
models were used to predict the experimental 
data.   
 
Table 1 provides an overview of the monthly 
meteorological data for Ogijo, Southwestern 
Nigeria, including temperature, relative humidity, 
pressure, wind speed, wind direction, solar 
radiation, and rainfall. Temperatures range from 
a low of 26.7°C in July to a high of 33.8°C in 

January. The dry season (November to April) has 
higher temperatures, averaging 31.2°C, 
compared to the wet season (May to October) 
which averages 27.8°C. Relative humidity varies 
between 67.5% in December to 85.0% in July. 
The wet season exhibits higher relative humidity 
(average 82%) compared to the dry season 
(average 71.08%). Pressure readings range from 
902.6 mm/Hg in February to 925.6 mm/Hg in 
August. The wet season shows slightly higher 
pressure (average 923 mm/Hg) compared to the 
dry season (average 922 mm/Hg). Wind speeds 
are generally low, ranging from 1.84 km/h in 
December to 3.5 km/h in October. There is a 
slight increase in wind speed during the wet 
season (average 2.96 km/h) compared to the dry 
season (average 2.66 km/h). 

  
Table 1. Average monthly values of meteorological parameters generated 

 

Months Temperature 
(°C) 

Relative 
Humidity 
(%) 

Pressure 
(mm/Hg) 

Wind 
speed 
(Km/h) 

Wind 
direction 
(°) 

Solar 
radiation 
(W/m2) 

Rainfall 
(mm) 

January 33.8±0.4 68.4±4.8 920.4±0.8 2.54±0.6 96±21 760±64 1.8±0.2 

February 32.4±0.6 71.2±2.0 902.6±1.4 2.94±0.7 164±32 740±52 2.0±0.1 

March 30.6±0.8 72.4±5.1 918.3±1.2 3.10±0.2 172±18 680±38 2.2±0.4 

April 31.2±0.4 73.1±3.6 919.4±0.2 3.42±0.4 184±24 810±42 2.6±0.3 

May 28.5±1.2 82.0±2.8 920.5±0.8 2.8±0.2 254±16 98±26 360±32 

June 27.4±0.7 83.0±4.4 921.2±0.3 2.7±0.4 262±22 84±32 484±46 

July 26.7±0.8 85.0±3.4 923.3±0.6 2.7±0.4 268±28 86±24 540±48 

August 28.0±0.5 84.0±6.5 925.6±0.1 2.9±0.3 246±34 140±21 284±26 

September 27.8±0.6 78.4±1.8 924.2±0.5 3.2±0.8 210±15 260±38 210±41 

October 28.4±0.3 78.8±5.5 924.7±1.5 3.5±0.8 168±26 280±45 148±22 

November 29.6±0.4 69.3±2.4 925.2±2.4 2.15±0.3 84±14 810±58 1.4±0.14 

December 30.3±1.2 67.5±4.8 925.4±0.3 1.84±0.5 88±17 780±46 0.6±0.1 

Dry 
Season 
Mean 

31.2 7.08 922 2.66 131 764 1.76 

Wet 
Season 
Mean 

27.8 82 923 2.96 207 158 337.7 

Annual 
Mean 

29.5 76.3 76.3 2.81 169 461 256.8 

Mean ± S.E.M = Mea values ± Standard error of means of six experiments 
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Wind direction shows significant variability, with 
angles ranging from 84° in November to 268° in 
July. The mean wind direction is higher in the wet 
season (207°) compared to the dry season 
(131°). Solar radiation is highest in April at 810 
W/m² and lowest in June at 84 W/m². The dry 
season experiences much higher solar radiation 
(average 764 W/m²) compared to the wet season 
(average 158 W/m²). Rainfall ranges from a low 
of 0.6 mm in December to a high of 540 mm in 
July. The wet season sees substantially more 
rainfall (average 337.7 mm) than the dry season 
(average 1.76 mm). Seasonal Averages, for the 
dry season mean, temperature: is 31.2°C, 
relative humidity is 71.08%, pressure is 922 
mm/Hg, wind speed is 2.66 km/h, wind direction 
is 131°, solar radiation is 764 W/m², rainfall is 
1.76 mm. For the wet season mean, temperature 
is 27.8°C, relative humidity is 82%, pressure is 
923 mm/Hg, wind speed is 2.96 km/h, wind 
direction is 207°, solar radiation is 158 W/m², and 
rainfall is 337.7 mm. The annual means, 
temperature is 29.5°C, relative humidity is 
76.3%, pressure is 923 mm/Hg, wind speed is 
2.81 km/h, wind direction is 169°, solar radiation 
is 461 W/m², and rainfall is 256.8 mm. 
 
The data indicates significant seasonal variations 
in meteorological parameters, with higher 
temperatures, lower humidity, and greater solar 
radiation during the dry season, contrasted by 
higher humidity, increased rainfall, and slightly 
higher wind speeds during the wet season. 
These variations are critical for environmental 
and health assessments, particularly in predicting 
pollutant concentrations like PM2.5. The monthly 
average  
 
Table 2 presents average monthly PM2.5 values 
over a year, it is evident that there are significant 
variations in PM2.5 concentrations across 
different months. High PM2.5 concentrations were 
recorded in the dry season, January is 389.60 
µg/m³, February is 320.44 µg/m³, March is 
299.25 µg/m³, April is 281.65 µg/m³, November is 
310.39 µg/m³ and December is 329.54 µg/m³. 
These months correspond to the dry season, 
characterized by minimal rainfall and higher 
temperatures. The lack of precipitation likely 
leads to less removal of particulate matter from 
the air, resulting in higher PM2.5 levels. Lower 
PM2.5 concentrations were recorded in wet 
season, May is 78.22 µg/m³, June is 57.44 
µg/m³, July is 46.33 µg/m³, August is 65.61 
µg/m³, September is 92.45 µg/m³ and October is 
109.84 µg/m³. The wet season, with increased 
rainfall and relative humidity, shows significantly 

lower PM2.5 levels. Rain helps wash away 
particulate matter from the atmosphere, leading 
to reduced concentrations. The annual mean 
PM2.5 concentration is 198.40 µg/m³ with a 
standard deviation of 132.26 µg/m³, indicating 
high variability in PM2.5 levels throughout the 
year. 
 
Elevated PM2.5 levels in the dry season may 
pose serious health risks, including respiratory 
and cardiovascular problems, due to prolonged 
exposure to high concentrations of fine 
particulate matter. Lower PM2.5 levels during the 
wet season suggest improved air quality, which 
may reduce the risk of health issues related to air 
pollution. The observed seasonal trend in PM2.5 
concentrations correlates with meteorological 
parameters such as rainfall, temperature, and 
relative humidity. Understanding these 
relationships can aid in developing strategies to 
mitigate air pollution. The sharp decline in PM2.5 
levels from April to May, and the subsequent low 
values during the wet season, highlight the role 
of increased rainfall in reducing air pollution. The 
high PM2.5 levels in the dry season might be 
attributed to increased industrial activities, 
vehicular emissions, and dust from dry 
conditions. Implementing stricter pollution control 
measures during the dry season could help 
manage and reduce PM2.5 concentrations, 
improving overall air quality. 
 

Table 2. Average monthly PM2.5 values 
generated in the year 

 

Months PM2.5 

January 389.60±0.00 

February 320.44±0.01 

March 299.25±0.8 

April 281.65±0.01 

May 78.22±0.01 

June 57.44±0.14 

July 46.33±0.01 

August 65.61±0.25 

September 92.45±0.14 

October 109.84±0.01 

November 310.39±0.01 

December 329.54±0.01 

Annual Mean 198.40±132.26 
Mean ± S.E.M = Mean values ± Standard error of 

means of six experiments 
 

The correlation matrix in Fig. 1 provides insights 
into the relationships between PM2.5 
concentrations and various meteorological 
parameters. There is a moderate positive 
correlation between PM2.5 levels and 
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temperature. Higher temperatures are associated 
with higher PM2.5 concentrations. There is a 
weak negative correlation between PM2.5 levels 
and humidity. Higher humidity tends to be 
associated with lower PM2.5 concentrations. 
There is a moderate negative correlation 
between PM2.5 levels and atmospheric pressure. 
Higher pressure is associated with lower PM2.5 
concentrations. There is an extremely weak 
negative correlation between PM2.5 levels and 
wind speed, suggesting wind speed has little to 
no direct impact on PM2.5 concentrations. There 
is a very weak negative correlation between 
PM2.5 levels and wind direction, indicating 
minimal impact of wind direction on PM2.5 
concentrations. There is a weak positive 
correlation between PM2.5 levels and solar 
radiation. Higher solar radiation is slightly 

associated with higher PM2.5 concentrations. 
There is a weak negative correlation between 
PM2.5 levels and rainfall. Higher rainfall tends to 
be associated with lower PM2.5 concentrations, 
likely due to the washout effect of rain removing 
particulate matter from the atmosphere. These 
correlations help us understand how different 
meteorological factors impact PM2.5 
concentrations, which is crucial for                 
developing strategies to manage and mitigate air 
pollution. The moderate to strong correlations 
between PM2.5 and factors like temperature, 
pressure, and solar radiation indicate that these 
variables are significant predictors of PM2.5 
levels. 
 
Tables 3, 4 and 5 show the experimental and 
predicted data for each of the developed models. 

 

 
 

Fig. 1. Correlation between PM2.5 and the Meteorological Parameters 
 

Table 3. LRM parameter estimation of PM2.5 

  
Estimate Std. Error t-stat P-value 

Intercept -1172.02 7260.294 -0.161 0.8796 

Temp (x1) 69.5499 31.9917 2.174 0.0954 

Humid (x2) -38.2725 32.247 -1.187 0.3010 

Pressure (x3) 1.8065 7.4553 0.242 0.8205 

WindSpeed (x4) 42.0393 112.8568 0.373 0.7284 

WindDirection (x5) 2.3677 1.8914 1.252 0.2788 

Radiation (x6) -0.1999 0.4042 -0.495 0.6468 

Rainfall (x7) 0.6108 0.6168 0.99 0.3781 
 

Table 3 shows that all the parameters are not significant at the 5% level using the linear regression 
model (LRM). The developed LRM model is fitted thus 
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𝑦 =− 1172.018 + 69.549𝑥1 − 38.273𝑥2 + 1.807𝑥3  + 42.039𝑥4 + 2.368𝑥5 − 0.2𝑥6 + 0.611𝑥7     (16) 
 

Table 4 shows that all the parameters are not significant at the 5% level using a nonlinear polynomial 
regression model (NPRM). The developed NPRM model is fitted thus 
 

𝑦 =575300 − 12350𝑥1 − 440.2𝑥2 − 616𝑥3 − 52840𝑥4 + 0.204𝑥1𝑥2 + 13.22𝑥1𝑥3 + 68.96𝑥1𝑥4 +
0.443𝑥2𝑥3 + 11.4𝑥2𝑥4 + 54.04𝑥3𝑥4                                                                (17) 

 

Table 5 shows that all the parameters and their two-way interactions are significant at a 5% level, 
except for x2 and x2x3 using the nonlinear Gamma regression model (NGRM).  
 

The developed NGRM model is fitted thus 
 

𝑦 = 1/(−58.3+ 1.011𝑥1 + 0.142𝑥2 + 0.062𝑥3 + 6𝑥4 + 0.0002𝑥1𝑥2 − 0.0011𝑥1𝑥3 − 0.015𝑥1𝑥4 −
0.00015𝑥2𝑥3 − 0.0038𝑥2𝑥4 − 0.0057𝑥3𝑥4)                                                        (18) 

 

Table 4. NPRM parameter estimation of PM2.5 

  
Estimate Std. Error t-stat P-value 

Intercept 5.75E+05 8.06E+05 0.714 0.605 

x1 -1.24E+04 1.15E+04 -1.078 0.476 

x2 -4.40E+02 4.55E+03 -0.097 0.939 

x3 -6.16E+02 8.57E+02 -0.719 0.603 

x4 -5.28E+04 7.84E+04 -0.674 0.622 

x1:x2 2.04E-01 4.37E+00 0.047 0.97 

x1:x3 1.32E+01 1.23E+01 1.079 0.476 

x1:x4 6.90E+01 1.68E+02 0.411 0.752 

x2:x3 4.43E-01 4.85E+00 0.091 0.942 

x2:x4 1.14E+01 4.72E+01 0.241 0.849 

x3:x4 5.40E+01 7.70E+01 0.702 0.610 
 

Table 5. NGRM parameter estimation of PM2.5 

  
Estimate Std.Error t-stat P-value 

Intercept -5.83E+01 3.01E+00 -19.412 0.0328 

x1 1.01E+00 3.86E-02 26.178 0.0243 

x2 1.42E-01 1.62E-02 8.767 0.0723 

x3 6.15E-02 3.15E-03 19.495 0.0326 

x4 5.99E+00 3.18E-01 18.864 0.0337 

x1:x2 1.55E-04 1.11E-05 14.007 0.0454 

x1:x3 -1.07E-03 4.02E-05 -26.47 0.0240 

x1:x4 -1.50E-02 7.23E-04 -20.735 0.0307 

x2:x3 -1.47E-04 1.69E-05 -8.678 0.0730 

x2:x4 -3.80E-03 2.14E-04 -17.709 0.0359 

x3:x4 -5.70E-03 3.06E-04 -18.599 0.0342 

 
Table 6 displays the experimental values and the 
predicted values using the three models. The 
result shows that NGRM predicted values for 
January to April coincide with that of the 
experimental values.  
 
Error evaluation functions analysis is a 
mathematical tool useful for extracting worthwhile 
information from the experimental values 
because there is the possibility of experimental 
values deviating from their true values. The 
several error evaluation functions used to 

estimate the error deviation when the developed 
models were applied to fit the experimental data 
are shown in Table 7. The error evaluation 
functions analysis was used in the selection of 
the best model among the developed models, 
which best represents the experimental data. 
 
Table 7 shows that the values for the error 
function models were ARE .2069, .0492 and 
.0017 for LRM, NPRM and NGRM respectively. 
A”RE is used to evaluate the goodness of fit of 
predicted data with the experimental data. It 
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minimizes the fractional error distribution across 
an inclusive range of data” [55]. The lower the 
value of ARE, the better the prediction. NGRM 
has the lowest value of ARE, which indicates the 
best prediction of the experimental data among 
the developed models. ERRSQ is a tool that is 
used to identify the spread of data and how well 
certain data will fit a model in regression 
analysis. It is one of the error evaluation 
functions commonly used. The ERRSQ values 
were 3199.29, 348.86 and .4350 for LRM, NPRM 
and NGRM respectively. The smaller the ERRSQ 
value, the better the model predicts the 
experimental data. This revealed that NGRM was 
the best fit for predicting experimental data due 
to its lowest value of ERRSQ.  
 
The MPSD values were .0578, .0552 and .03072 
for LRM, NPRM and NGRM, while HYBRID 
values were 99.673, -14.6753 and -.0183 for 
LRM, NPRM and NGRM. The lower the MPSD 
and HYBRID values, the better the goodness fit 
hence NGRM has the best goodness fit among 
the developed models. RMSE provides 

information about the performance of a model. 
However, the drawback is that a few large errors 
in the sum are likely to produce a noticeable 
increase in RMSE. Large values of RMSE 
indicate large errors which means models with 
large RMSE must be avoided. In this work, 
NGRM has the lowest value of RMSE which 
means NGRM has the lowest error in predicting 
the experimental data. SEE measures variation 
between experimental and predicted data. It is 
important to check the accuracy of prediction. 
The smaller the SEE values, the better the 
prediction. The SEE values for the developed 
models were 61.9608, 20.4605 and .7225 LRM, 
NPRM and NGRM respectively. 
 
Statistical evaluation tools were also used to 
analyse the experimental and predicted with a 
view of investigating the applicability of            
the developed models to adopt the best           
among the developed models which truly 
represents the experimental data. The statistical 
evaluation tools employed in this study are 
presented in Table 8. 

 
Table 6. Experimental and predicted values of PM2.5 

 

Months yexpt LRM ypred NPRM pred NGRM ypred 

January 389.60 406.89 388.06 389.54 

February 320.44 352.14 319.20 320.40 

March 299.25 247.17 313.84 299.77 

April 281.65 280.22 271.22 281.28 

May 78.22 254.11 335.21 311.27 

June 57.44 233.87 286.52 328.02 

July 46.33 160.44 107.10 79.24 

August 65.61 82.45 46.41 57.05 

September 92.45 138.52 30.93 45.79 

October 109.84 37.15 77.27 66.02 

November 310.39 33.96 99.32 92.69 

December 329.54 153.85 105.66 109.69 

 
Table 7. Error evaluation function values of the PM2.5 developed models 

 

Error Function Model LRM ypred NPRM ypred NGRM ypred 

ARE 0.20686 0.0492 0.0017 

ERRSQ 3199.29 348.8617 0.4350 

MPSD 0.57576 -0.0061 -0.0002 

HYBRID 99.6729 -14.6753 -0.0183 

RMSE 19.5937 6.4701 0.2284 

EABS -7.297e-12 -4.46e-10 -2.68e-08 

SEE 61.9608 20.4605 0.7225 

MRPE -0.1919 -0.0010 -3.6278e-05 
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Table 8 shows the error function criteria for the 
models.   In Table 8, the r value for LRM, NPRM 
and NERM were .8947,.9890 and .9990 
respectively. The r values indicate the degree of 
correlation of the linear relationship between the 
experimental and predicted data. The values 
range between -1 and +1 which shows the 
degree of linearity. The value r close to -1 and +1 
indicates a strong negative and positive 
relationship between the experimental and 
predicted data. In this study, the NGRM has the 
highest value of r in the study location which 
revealed NGRM to be the best model amongst 
the developed models. Therefore NGRM was 
accepted while LRM and NPRM were rejected.  
 

The R2 is the proportion of the variation in the 
predicted data that is predictable from the 
experimental data. R2 provided more information 
than ERRSQ, MPSD, RMSE and SEE in 
regression analysis evaluation as the former can 
be expressed as a percentage while the latter 
measures have arbitrary ranges. A high R2 value 
indicates that the model is a good fit for the data. 
The R2 values in this study were 8005,.9782 and 
.9990 for LRM, NPRM and NGRM. NGRM had 
the highest values of R2 in the study area. This 
indicated that NGRM is the best model amongst 
the developed models as it predicted 90.72 per 
cent of the experimental data. Therefore the 
NGRM can be selected as the best model for the 
prediction of PM pollutant concentrations in the 
Metal recycling industry in the Ogijo area of 
Sagamu local government in Ogun state.  
 

The K2 explains the amount of unexplained and 
unaccounted for, between experimental and 
predicted data. The smaller the K2 value, the 
better the model. The K2 values in this work were 
.1995, .0217 and.00002713. NGRM had the least 
K2 values from the study area amongst the other 
developed models which revealed that less than 
10 per cent of experimental data were not 
accounted for by the NGRM. This implied that 
NGRM best represented the experimental data 

when compared with LRM and NPRM. The t-test 
is a type of inferential statistics for determining if 
there is a significant difference between the 
means of two groups. It is used when the sample 
size is less than 30.  

 
The t-test values in this work were 2.858e-14, -
1.6944e-12 and -1.014e-10 for LRM, NPRM and 
NGRM. The t-test values were obtained at 2 tails, 
1 pair and at P = .05. The critical value was 2.07. 
All the t-test values were less than the critical 
values which implied the null hypothesis cannot 
be rejected that is the mean values of the 
experimental and predicted data are statistically 
significantly equal. However, the model with the 
least t-test value normally gives the best 
representation of the experimental data. Based 
on this, NGRM was chosen while LRM and 
NPRM were ignored. 

 
The F-test is a statistical tool in which the test 
statistic has an F-distribution under the null 
hypothesis. It is widely and often used when 
comparing and analysing statistical models which 
have been fitted to a data set to select the model 
that best fits the experimental data. The F–test 
values obtained were 1.2492, 4.497 and 1.0015 
for LRM, NPRM and NGRM. The critical value 
was 2.28. This showed that the F-test values 
were less than the critical value which indicated 
that the null hypothesis which was that the 
means of experimental and predicted data were 
statistically significant and equal at a 5 per cent 
significant level cannot be rejected. Since the 
entire developed model passed the F–test, the 
model with the lowest value of the F-test will give 
the representation of the experimental data. 
Therefore NGRM was adopted as the best model 

while LRM and NPRM were jettisoned. The  2 
test is a test which measures how a developed 
model compares to experimental data. It 
compares the size of discrepancies between the 
experimental and predicted data. The 2-test 
shows whether the experimental and predicted  

 
Table 8. Statistical evaluation values of the PM2.5 developed models 

 

Criteria  LRM ypred NPRM ypred NGRM ypred 

R 0.8947 0.9890 0.9999867 

R2 0.8005 0.9782 0.9999867 

K2 0.1995 0.0217 2.7132e-05 

t-test -2.858e-14 -1.6944e -1.014e-10 

F-test 1.24923 4.497 1.0015 

2 12.3734 29.8611 0.0365 

AIC 148.9027 128.3106 55.8950 
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data are related or not and can also be                       
used to test the goodness fit between 
experimental and predicted data. The                       

2-test values in this study were 12.373, 29.8611 
and 0.0365 for LRM, NPRM and NGRM.                   
This implies that the null hypothesis which was 
that no significant difference between the 
experimental and predicted data cannot be 
ignored. This means there is no significant 
difference between the experimental and 
predicted data from the developed models. Since 

the developed models scaled through the 2-test, 

the model with the lowest value of the 2-test, 
which is NGRM, was chosen as the best model 
that represented the experimental data at                  
P =.05. 

 
Based on the error evaluation functions analysis 
carried out in this work to evaluate the error 
deviation of the developed models, it is clear that 
NGRM has the least deviation from the 
experimental data when compared with LRM and 
NPRM. This was also the case in the work of 
Bing et al. [56] which used error functions for the 
section of the best model among the developed 
models. Therefore LRM and NPRM were 
jettisoned NGRM was adopted as the 
mathematical model for the prediction of PM 
pollutant concentrations in the study area. 
Moreover, it is obvious based on the statistical 
evaluation tools used to investigate the 
applicability of the developed models, that 
NGRM truly represented the experimental data 
than LRM and NPRM, which further justified               
the adoption of the NGRM model for the 
prediction of PM concentrations in Ogiju.in Ogun 
State.  

 
Licheng et al. [57] used nonlinear regression to 
predict the exposure of air pollutants. The 
nonlinear model predicted the air pollutants 
exposure up to 90 per cent. His work also stated 
that nonlinear models are more accurate than 
linear models. This is in support of this work in 
adopting a nonlinear regression model. However, 
Licheng et al., [57] did not indicate which non-
linear model is better between NPRM and NERM 
which this work has established. This work has 
shown that NGRM is better predicted more 
accurately than other models. However, Salami 
[58] selected a non-exponential regression model 
NERM as the best model but in this study, 
NGRM is the best model which is a substitute for 
NERM. This is because the data at hand is more 
of a gamma distribution than an exponential 
distribution. 

4. CONCLUSION 
 

In conclusion, findings highlight the seasonal 
variability in PM2.5 concentrations, with higher 
levels during the dry season and lower levels 
during the wet season, underlining the influence 
of meteorological conditions on air quality. These 
insights are crucial for devising effective air 
pollution management strategies to safeguard 
public health. The findings from the               
correlation suggest that temperature, humidity, 
pressure, and solar radiation are significant 
predictors of PM2.5 concentrations, with 
temperature and solar radiation having positive 
influences, while humidity, pressure, and rainfall 
help in reducing PM2.5 levels. These insights can 
inform strategies for managing air quality in the 
metal recycling industry, particularly in mitigating 
PM2.5 pollution during hotter, drier periods. 
 

The mathematical model for the prediction of 
PM2.5 pollutants concentrations in Ogijo town in 
Ogun state has been developed using the in-built 
solver tool in R Software version 2024. LRM, 
NPRM and NGRM were developed and 
subjected to error evaluation functions analysis 
to determine the deviation of the developed 
models from experimental data. The applicability 
of the developed models was also investigated 
using statistical tools. The NGRM showed the 
least deviation from the experimental data when 
compared with LRM and NPRM. Furthermore, 
NGRM has the highest accuracy in the prediction 
of the experimental data in terms of statistical 
analysis when compared with LRM and NPRM 
hence LRM and NPRM were jettisoned and 
NGRM was adopted for the navigation of the 
experimental data generated for PM2.5 pollutants 
concentrations in Ogijo town. It was concluded 
that the NGRM can be used to predict the PM 
pollutant concentrations in Ogijo, Ogun state. 
Southwestern Nigeria.   
 

Based on the results obtained and conclusions 
drawn from the study, here are the policy 
implications. The nonlinear gamma regression 
model (NGRM) was found to be the best model 
for predicting PM2.5 concentrations in Ogijo, 
Ogun State. This implies that policymakers and 
environmental agencies should consider 
adopting NGRM for predicting and monitoring 
PM2.5 levels in the area due to its superior 
accuracy and statistical robustness compared to 
linear and polynomial regression models. The 
NGRM demonstrated high accuracy and 
reliability in predicting PM2.5 concentrations, with 
the highest values for R² and the lowest error 
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metrics (RMSE, SEE) compared to LRM and 
NPRM. This suggests that NGRM can provide 
more precise estimates of PM2.5 levels, crucial 
for effective air quality management and health 
risk assessments. 
 

The findings underscore the importance of 
continued environmental monitoring efforts, 
especially in areas near metal recycling 
industries like Ogijo. Regular monitoring using 
accurate predictive models like NGRM can 
provide early warning of potential health risks 
associated with PM2.5 pollution, enabling timely 
interventions and policy adjustments. 
Policymakers should encourage the adoption of 
NGRM for air quality management purposes, 
providing support for its integration into 
environmental monitoring frameworks. There is a 
need to enhance the existing air quality 
monitoring infrastructure in Ogijo and similar 
industrial areas, ensuring comprehensive 
coverage of PM2.5 pollution levels. Policies 
should include provisions for public health 
awareness programs to inform residents about 
the health risks associated with PM2.5 pollution 
and the measures they can take to minimize 
exposure. Strengthen regulations governing 
metal recycling industries to reduce               
emissions of PM2.5 and other pollutants, aiming 
for compliance with international air quality 
standards. 
 

Further research and development encourage 
further research into refining the NGRM and 
other predictive models to improve their accuracy 
and applicability in different environmental 
conditions and geographic areas. Support 
research into the impacts of PM2.5 pollution on 
vulnerable populations, including children, the 
elderly, and individuals with pre-existing health 
conditions. International collaboration to foster 
collaboration with international environmental 
agencies and research institutions to leverage 
global expertise and best practices in air quality 
management and predictive modelling. 
 

Thus, the adoption of the NGRM for predicting 
PM2.5 concentrations in Ogijo, Ogun State, can 
significantly enhance environmental and public 
health outcomes. These policy implications aim 
to guide decision-makers in developing effective 
strategies to mitigate the adverse effects of PM2.5 
pollution and improve air quality in the region. 
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