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ABSTRACT 
 

Soil salinity, a pervasive issue exacerbated by factors like irrigation and climate change, poses a 
significant threat to global food security. The accumulation of salts not only hampers crop growth 
and yield but also jeopardizes the livelihoods of millions who depend on agriculture for sustenance. 
Elevated salt levels in saline soils induce osmotic, ionic, oxidative, and water stress in plants. 
Implementing biological solutions offers the most dependable and sustainable method to safeguard 
food security while reducing reliance on agrochemicals which hampers various physiological and 
metabolic processes in plants. To ensure optimal plant growth under such changing conditions, 
Implementing biological solutions (Rhizobacteria) offers the most dependable and sustainable 
method to safeguard food security while reducing reliance on agrochemicals must be integrated 
into agricultural practices. This chapter concisely explores the mechanisms and utilization of 
beneficial microorganisms in both plants and soil to mitigate salt stress. It also addresses the 
current limitations and suggests potential areas for improvement in future research. 
 

 
Keywords: Saline soil; rhizobacteria; remediation; Pseudomonas spp. 
 

1. INTRODUCTION 
 
The population of Earth reached 8.1 billion 
people in 2010; if growth continues at its current 
rate, that number is predicted to reach 9.7 billion 
people by 2050 (Projections of population 
growth). Additionally, water, air and soil pollution 
are responsible for about 40% of deaths globally 
and environmental deterioration like this, 
together with population growth, are thought to 
be important factors in the rapid rise in human 
disease worldwide. Various abiotic factors such 
as temperature, salinity, drought, pesticide and 
fertilizer usage, soil pH, and heavy                             
metal contamination can impede crop 
productivity [1-3].  Out of all of these, soil 
salinity's worldwide effect on crop productivity 
has emerged as a major barrier. Human activity 
has increased the development of soil 
salinization during the last few decades [4-6]. 
Important soil activities like respiration, residue 
breakdown, nitrification, denitrification, soil 
biodiversity, and microbial activity are all 
impacted by the extreme soil salinization [7]. 
“Increased soil salinity and decreased crop 
output are also observed in areas with excessive 
fertiliser application” [8]. “The technique of 
removing salt from saline soil is labor-intensive 
and expensive” [9]. “For quite some time, the 
rehabilitation of saline soils has primarily relied 
on physical and chemical techniques. Within the 
realm of physical processes, soluble salts within 
the root zone are extracted through methods 
such as scraping, flushing, and leaching” [10]. 
“Nevertheless, chemical methods often involve 
the utilization of gypsum and lime as neutralizing 
agents to mitigate saline soil conditions” [11]. 
“However, these methods are deemed 
unsustainable and are considered inefficient, 

particularly when the salt concentration reaches 
excessively high levels, The common practice of 
cultivating salt-tolerant crop varieties, such as 
barley and canola, on saline soils is widespread” 
[12]. “Nevertheless, due to their limited salt 
tolerance profile, these crops have a restricted 
global distribution and cannot be effectively 
utilized in soils with moderate to high electrical 
conductivity (EC) levels also highlighted that 
despite vigorous efforts from the research 
community, only few salt tolerance                             
genes have been identified having real 
applications in improving productivity of saline 
soils” [13]. 
 
“Therefore, achieving viable crop yields in saline 
soils is imperative. In addition to utilizing salt-
tolerant varieties or chemical neutralization 
methods, it's essential to incorporate sustainable 
approaches. In the last few years, research 
showed that the use of salt-tolerant plant growth 
promoting rhizobacteria (ST-PGPR) and 
halotolerant rhizobacteria (HT-rhizobacteria) in 
saline agriculture can be harnessed for 
enhancing productivity and improving soil fertility 
as well”. As they significantly impact 
biogeochemical cycles, soil fertility, and plant 
health, they play a crucial role in influencing plant 
growth and the uptake of nutrients. This review 
critically examines the role of salt-tolerant plant 
growth-promoting rhizobacteria (ST-PGPR) and 
halo tolerant rhizobacteria in responding to salt-
affected soil and their beneficial effects on key 
crops. It delves into their mechanisms for 
remediating salt-affected soil under diverse 
environmental conditions. The present review 
focuses on the enhancement of productivity 
under stressed conditions and increased 
resistance of plants against salinity stress by 
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application of plant growth promoting 
microorganisms. 
 
The utilization of Plant Growth-Promoting 
Rhizobacteria (PGPR) has been expanded to 
remediate contaminated soils in conjunction with 
plants. Therefore, there is a pressing necessity to 
augment the effectiveness of limited external 
inputs by optimizing the combinations of 
beneficial bacteria within sustainable agricultural 
production systems. This review delves into the 
significance of soil-beneficial bacteria and their 
contributions to promoting plant growth through 
both direct and indirect mechanisms. A deeper 
understanding of these varied mechanisms will 
contribute to establishing these bacteria as 
invaluable allies in the future of agriculture. 
  
2. MECHANISIM OF CROP SALINE STRESS 

TOLERANCE BY SOIL BENEFICIAL 
BACTERIA 

 
Soil salinity poses a significant challenge for 
irrigated agriculture. In hot and arid regions 
across the globe, soils often exhibit high salinity 
levels, resulting in limited agricultural 
productivity. It's worth noting that all soils 
inherently contain some amount of water-soluble 
salts [14]. Soluble salts are a form of essential 
nutrients that plants absorb; nevertheless, an 
overabundance of them can seriously impede 
plant growth. Global natural resources have 
suffered greatly as a result of land degradation 
processes over the past century, whether they 
are physical, chemical, or biological. Compacted 
soil, contamination from both organic and 
inorganic sources, and a decrease in microbial 
variety and activity are a few of these problems 
[15-17]. “Salinity destructively interrupts the 
physical and chemical properties of soil as well 
as affects crop growth to a higher extent” [18]. 
 
To address this issue, beneficial microorganisms 
called plant growth-promoting rhizobacteria 
(PGPR) could serve a vital function. These 
rhizospheric bacteria have the ability to efficiently 
colonize plant roots, thereby contributing to soil 
fertility maintenance. They provide a promising 
alternative to traditional inorganic fertilizers and 
pesticides [19]. Previous reports have highlighted 
the efficacy of PGPR in enhancing the growth of 
different crops under conditions of salt stress 
[20,21]. The initial selection of locally-isolated 
salt-tolerant PGPR for addressing salinity is 
essential to guarantee their effectiveness. 
Studies have shown that indigenous strains are 
more proficient in enhancing plant resistance to 

salinity stress compared to PGPR from non-
saline ecosystems [22]. These beneficial 
microbes employ various mechanisms to mitigate 
salt stress, such as regulating the Na+/K+ ratio 
by secreting extracellular polymeric substances 
known as exopolysaccharides (EPS), this 
mechanism enhances their survival in 
unfavorable soil conditions [23,24].  
 
“The previous findings have reported that several 
bacterial genera, including Pseudomonas, 
Bacillus, Burkholderia, Enterobacter, 
Microbacterium, Planococcus, Halomonas could 
produce EPS (Exopolysaccharides) in salt stress 
condition” [25,26]. The exopolysaccharides play 
a vital role in bacterial aggregation or 
flocculation, chelates the various cations 
including Na+ [27,28] facilitating the production 
of yield, this process involves the specific 
adsorption of the polymeric segment and 
polymer bridging between cells [29,30]. 
Additionally, EPS are highly beneficial in the 
formation of bacterial biofilms and enhancing 
bacterial colonization on plant root surfaces [31]. 
“Exopolysaccharides are able to lessen the 
hostile effect of osmotic-stress by augmenting 
fresh weight, dry weight and water content in 
plants were analysed statiscally” [32]. “In addition 
to that, PGPR are able to produce multiple plant 
growth-promoting properties such as indole 
acetic acid production, biological nitrogen 
fixation, solubilization of soil phosphorus (P) and 
potassium (K), and production of siderophores 
and hydrolyzing enzymes under salt stress 
condition” [33-36] “Plants treated with Exo-poly 
saccharides (EPS) producing bacteria display 
increased resistance to water and salinity stress 
due to improved soil structure” [37]. EPS can 
also bind to cations including Na+ thus making it 
unavailable to plants under saline conditions. 
 

 “The SEM observations supported all these salt-
tolerance attributes, revealing the bacterial 
capacity to produce EPS, facilitate flocculation, 
and form biofilms when subjected to saline 
conditions compared to non-saline environments. 
Bacterial cells were observed to associate with 
the plant root system, notably enhancing 
moisture retention capacity and bolstering the 
defense system against various abiotic stresses. 
Previous research also noted a reduction in 
bacterial EPS and biofilm formation with 
increased NaCl concentration” [38]. “The 
detrimental effects of salinity can be mitigated 
through the application of salt-tolerant PGPR, as 
demonstrated in this greenhouse trial. This 
intervention notably enhanced the 
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photosynthesis of all three rice varieties, resulting 
in increased grain yield under saline conditions” 
[39,40] “Soils experiencing salt stress are 
recognized for their ability to inhibit plant growth”.  
“In their natural habitat, plants are colonized            
by both endocellular and intracellular 
microorganisms” [41]. “The rhizosphere 
microorganisms, especially beneficial bacteria 
and fungi, have the potential to enhance plant 
performance in stressful environments, thereby 
directly and indirectly improving yields, Certain 
PGPR can directly stimulate plant growth and 
development by supplying fixed nitrogen, 
phytohormones, iron sequestered by bacterial 
siderophores, and soluble phosphate” [42]. 
“Others indirectly benefit plants by protecting 
them against soil-borne diseases, primarily 
caused by pathogenic fungi” [43]. “Soil 
salinization presents a significant challenge to 
agricultural productivity worldwide. Crops 
cultivated in saline soils face issues such as high 
osmotic stress, nutritional imbalances and 
toxicities, poor soil structure, and decreased crop 
yields. Studies has confirmed that salt-tolerant 
plant growth promoting rhizobacteria (ST-PGPR) 
are capable of producing various 
phytohormones, including auxins, gibberellins, 
and cytokinins” [44]. Additionally, they synthesize 
ACC deaminase [45], secondary compounds 
such as exopolysaccharides [46,47]. and 
osmolytes (proline, trehalose, and glycine 
betaines) [48,49]. “Furthermore, these bacteria 
play a role in regulating plant defense systems 
and activating the plant's antioxidative enzymes 
under salt stress” [50,51].  
 
Numerous studies have highlighted potential 
mechanisms of salt tolerance in PGPR, 
particularly when they function as endophytes. 
However, it's important to note that only a small 
portion of these beneficial bacteria are able to 
penetrate the root cell, and the interaction 
between plants and microbes primarily takes 
place within the 5mm rhizosphere zone [52]. 
Salt-tolerant bacterial strains have demonstrated 
elevated nitrogenase activity in saline 
environments and possess the capability to 
synthesize osmolytes. These osmolytes help 
maintain cell turgidity and support metabolism in 
adverse conditions [53,54].  
 
Salinity-induced nutritional imbalance poses a 
challenge to plant growth and productivity, 
particularly affecting phosphorus (P) uptake and 
transport. To address P deficiency in salt-
affected soils, P fertilizers are commonly 
recommended. However, employing salt-tolerant 

P-solubilizing rhizobacteria can significantly 
enhance P availability in saline soils [55]. In 
recent studies, plant growth-promoting (PGP) 
bacteria have been discovered to boost plant 
tolerance to salinity, particularly those bacteria 
that are associated with plants. Endophytic 
actinomycetes are particularly intriguing due to 
their dual role. Not only do they produce various 
bioactive secondary metabolites, safeguarding 
plants against infectious diseases, but they also 
exhibit the capacity to enhance plant growth. 
They carry several plant growth-promoting (PGP) 
traits, including the production of siderophores 
for iron acquisition, synthesis of plant hormones 
like auxins and cytokinins, and the solubilization 
of phosphate and other minerals to provide 
nutrients [56,57]. Furthermore, they assist in 
plant growth under stressful conditions induced 
by drought, heavy metals, flooding and high 
salinity by alleviating stress associated with 
ethylene through the production of 1-
aminocyclopropane-1-carboxylate (ACC) 
deaminase. [58] correlated the role of proline 
accumulation with drought and salt tolerance in 
plants, Through these studies, we gain insight 
into the role of released hormones, enzymes, 
and other metabolic substances in alleviating salt 
stress conditions with the assistance of 
numerous rhizobacteria. 
 

3. BACTERIAL MICROBES: SALT 
STRESS ALLEVIATION TOOL IN 
IMPORTANT CROPS 

 

“Several strategies have been developed in order 
to decrease the toxic effects caused by high 
salinity on plant growth, including plant genetic 
engineering, and recently the use of plant 
growth-promoting bacteria (PGPB)” [59].“The 
role of microorganisms in plant growth 
promotion, nutrient management and disease 
control is well known and well established. These 
beneficial microorganisms colonize the 
rhizosphere/endorhizosphere of plants and 
promote growth of the plants through various 
direct and indirect mechanisms” [60,61]. 
Previous studies suggest that utilization of PGPB 
has become a promising alternative to alleviate 
plant stress caused by salinity [62] and the role 
of microbes in the management of                              
biotic and abiotic stresses is gaining            
importance.  
 

3.1 Cereal Crops  
 
Cereal crops serve as the primary sources of 
energy and protein in the human diet, cultivated 
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in significantly larger quantities worldwide 
compared to other crops. Major cereal crops 
include wheat, maize, rice, barley, oats, 
sorghum, and millet. Despite their importance, 
only a few of these crops exhibit salt tolerance. 
Traditional methods such as conventional 
breeding, marker-assisted selection, and genetic 
engineering have been successful in enhancing 
yields in saline soils, but primarily for wheat and 
rice over the past decades It has been observed 
that the application of Salt-Tolerant Plant 
Growth-Promoting Rhizobacteria (ST-PGPR) in 
saline soil not only aids in crop survival but also 
enhances yields across a diverse array of cereal 
crops [63,64]. 
 
Similarly, the combination of Pseudomonas 
pseudoalcaligenes, an endophytic bacterium, 
with Bacillus pumilus in the rhizosphere of paddy 
plants was more effective in protecting the plants 
from abiotic stress during early growth stages. 
This combination induced the production of 
osmoprotectant and antioxidant proteins, 
surpassing the effects of either rhizospheric or 
endophytic bacteria alone. The plants inoculated 
with the endophytic bacterium P. 
pseudoalcaligenes exhibited notably elevated 
levels of glycine betaine-like quaternary 
compounds and increased shoot biomass, 
particularly evident at lower salinity levels [51]. 
This study demonstrates that the detrimental 
effects of salinity stress can be mitigated through 
the application of salt-tolerant Plant Growth-
Promoting Rhizobacteria (PGPR). In a 
glasshouse trial, this approach significantly 
enhanced the photosynthetic activity of all three 
rice varieties, resulting in higher grain yields 
under saline conditions [39]. The inoculation of 
endophytic Streptomyces sp. GMKU 336, which 
produces 1-aminocyclopropane-1-carboxylate 
deaminase (ACCD), into rice plants leads to 
improved growth and enhanced salt tolerance. 
This is accomplished by using ACCD activity to 
lower ethylene levels, which aids in the plants' 
ability to scavenge reactive oxygen species 
(ROS), maintain a balanced ion content, and 
control osmotic pressure [65]. The research 
conducted by Ji, et al. [66]. This highlights the 
significant role of Glutamicibacter spp. YD01 in 
mitigating the detrimental effects of salt stress on 
the growth and development of rice plants. This 
is achieved through the regulation of 
phytohormone (ethylene) levels and the 
accumulation of reactive oxygen species (ROS), 
as well as maintaining ion balance, enhancing 
photosynthetic capacity, and promoting the 
expression of stress-responsive genes. 

Similarly, the inoculation of endophytic 
Methylobacterium oryzae CBMB20 into salt-
stressed rice plants, as observed in the study by 
Chatterjee et al. (2019), enhances 
photosynthesis and reduces emissions of stress-
related volatiles. This is attributed to the 
modulation of ethylene-dependent responses 
and the activation of vacuolar H⁺-ATPase. 
Certain strains of Rhodopseudomonas palustris, 
such as TN114, show promise in facilitating the 
easier and more affordable growth of rice in 
saline soil conditions. This is attributed to the 
presence of 5-aminolevulinic acid (ALA) in the 
examined supernatants, which has a positive 
effect on rice growth under such challenging 
conditions [67]. The studies by [68] investigated 
the impact of various Salt-Tolerant Plant Growth-
Promoting Rhizobacteria (ST-PGPR) on 
enhancing the productivity of salt-tolerant rice 
and wheat grown on sodic soils. Their findings 
revealed that Lysinibacillus sp. was particularly 
effective in mitigating the adverse effects of 
salinity. Similarly, [69] discovered the several 
Bacillus sp. as a ST-PGPR with ACC deaminase 
activity were the most dominant in alleviating salt 
stress and enhancing the biomass of rice across 
different agro-climatic zones. Furthermore, the 
siderophore-producing ability of microorganisms 
under stressful conditions presents a promising 
alternative to chemical fertilizers, potentially 
aiding in managing salt stress and iron limitations 
in salt-affected soils. [70] recently reported that 
salt-tolerant siderophore-producing PGPR 
supported rice growth and increase in protein 
content is associated with improved 
photosynthesis, which is indicative of higher 
chlorophyll levels. 
 
Similarly, numerous studies have investigated 
the enhancement of saline tolerance in maize 
through various mechanisms employed by 
rhizobacteria to promote the growth and yield of 
the crop. The coinoculation of Rhizobium and 
Pseudomonas in Zea mays led to increased 
proline production, reduced electrolyte leakage, 
maintenance of leaf relative water content, and 
selective uptake of potassium ions, resulting in 
enhanced salt tolerance [47]. The [71] 
discovered that inoculating salt-stressed maize 
with P. syringae [72], Enterobacter aerogenes 
and P. fluorescens containing ACC deaminase, 
Azospirillum [73] resulted in higher K+/Na+ 
ratios. This combination also led to elevated 
relative water content, chlorophyll levels, and 
reduced proline content [74], indicating enhanced 
salt tolerance mediated by various mechanisms. 
“The role of trehalose as an osmoprotectant 
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under salt stress is well-documented, with 
numerous ST-PGPR discovered to possess 
genes for trehalose biosynthetic pathways” [75-
77]. Aslam et al. [78] also reported that “ACC                
deaminase activity in halotolerant bacterial 
genera such as Arthrobacter, Bacillus, 
Brevibacterium, Gracilibacillus, Virgibacillus, 
Salinicoccus, and Pseudomonas, as well as 
Exiguobacterium isolated from the rhizosphere 
and phylloplane of Suaeda fruticosa (L.) Forssk,                              
stimulated the growth of maize under saline 
conditions”. 
 
“The effect of ST-PGPR S. sciuri SAT-17 strain 
on anti-oxidative defense mechanisms and 
modulation of maize growth under salt stress 
was studied by” Akramet al.  [79] “They reported 
that inoculation of maize with SAT-17 improved 
plant growth and decreased the ROS levels by 
increasing the cellular antioxidant enzyme 
activities (CAT, POD, and proline) under salinity 
treatments (75 and 150 mM NaCl). Likewise [45] 
studied the impact of PGPR inoculation on 
growth and antioxidant status of wheat under 
saline conditions and reported that co-inoculation 
with B. subtilis and Arthrobacter sp. could 
alleviate the adverse effects of soil salinity on 
wheat growth with an increase in dry biomass, 
total soluble sugars and proline content”. [60] 
studied “the effect of inoculation of Azospirillum 
strains isolated from saline or non-saline soil on 
yield and yield components of wheat in salinity 
and they observed that inoculation with the two 
isolates increased salinity tolerance of wheat 
plants; the saline-adapted isolate significantly 
increased shoot dry weight and grain yield under 
severe water salinity”. Similarly, [80] studied “the 
plant growth promoting activity of an auxin and 
siderophore producing isolate of Streptomyces 
under saline soil conditions and reported 
increases in growth and development of wheat 
plant. They observed significant increases in 
germination rate, percentage and uniformity, 
shoot length and dry weight compared to the 
control. Applying the bacterial inoculam 
increased the concentration of N, P, Fe and Mn 
in wheat shoots grown in normal and saline soil 
and thus concluded that Streptomyces isolate 
has potential to be utilized as biofertilizers in 
saline soils”. More recently [61] studied “the 
effect of five plant growth promoting halotolerant 
bacteria on wheat growth and found that 
inoculation of those halotolerant bacterial strains 
to ameliorate salt stress (80, 160 and 320 mM) in 
wheat seedlings produced an increase in root 
length of 71.7% in comparison with uninoculated 
positive controls. In particular, Hallobacillus sp. 

and B. halodenitrificans showed more than 90% 
increase in root elongation and 17.4% increase 
in dry weight when compared to uninoculated 
wheat seedlings at 320 mM NaCl stress 
indicating a significant reduction of the 
deleterious effects of NaCl. These results 
indicate that halotolerant bacteria isolated from 
saline environments have potential to enhance 
plant growth under saline stress through direct or 
indirect mechanisms and would be most 
appropriate as bioinoculants under such 
conditions. The isolation of indigenous 
microorganisms from the stress affected soils 
and screening on the basis of their stress 
tolerance and PGP traits may be useful in the 
rapid selection of efficient strains that                        
could be used as bioinoculants for stressed 
crops”. 
 
Similarly, [45] investigated “co-inoculation with B. 
subtilis and Arthrobacter sp. could alleviate the 
adverse effects of soil salinity on wheat growth, 
leading to an increase in dry biomass, total 
soluble sugars, and proline content. [60] they 
observed that inoculation with these isolates of 
Azospirillum strains isolated from saline or non-
saline soil increased the salinity tolerance of 
wheat plants, with the saline-adapted isolate 
significantly enhancing shoot dry weight and 
grain yield under severe water salinity”. The [80] 
explored “the plant growth-promoting activity of 
an auxin and siderophore-producing isolate of 
Streptomyces under saline soil conditions, 
including significant improvements in germination 
rate, shoot length, and dry weight in wheat, also 
increased the concentration of nitrogen, 
phosphorus, iron, and manganese in wheat 
shoots grown in normal and saline soil, indicating 
the potential of the Streptomyces isolate as a 
biofertilizer in saline soils”. 
 
More recently, [61] investigated the effect of five 
halotolerant bacteria (Hallobacillus sp. and B. 
halodenitrificans) inoculation in wheat which 
mitigated salt stress in wheat seedlings, resulting 
in a significant increase in root length compared 
to uninoculated controls. These findings suggest 
that halotolerant bacteria isolated from saline 
environments have the potential to enhance plant 
growth under saline stress conditions through 
direct or indirect mechanisms. Utilizing 
indigenous microorganisms from stress-affected 
soils and screening them based on their stress 
tolerance and Plant Growth-Promoting (PGP) 
traits could expedite the selection of                        
efficient strains for use as bioinoculants in 
stressed crops. 
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3.2 Legumes and Oil Yielding Crops 
 
“Along with cereals, legumes maintain their 
significance as vital sources of protein in the 
human diet. Salinity poses challenges to the 
production of grain and food legumes in various 
regions worldwide. In legumes, salt stress 
negatively impacts root-nodule formation, 
symbiotic relationships, and ultimately, nitrogen 
fixation capacity” [81]. “The symbiotic association 
of rhizobia with legumes under salinity stress 
remains a focal area of research” [82-84]. “Many 
studies suggest that the application of salt-
tolerant rhizobia offers a sustainable solution for 
enhancing the productivity of legume crops 
grown under salinity stress” [85]. “Several 
researchers have demonstrated that the adverse 
effects of salinity on legumes such as soybean, 
pigeon pea, common bean, mung bean, 
groundnut, and even tree legumes can be 
mitigated by the application of salt-tolerant 
rhizobial strains” [86-90]. “The role of ACC 
deaminase produced by Salt-Tolerant                              
Plant Growth-Promoting Rhizobacteria (ST-
PGPR) in nodule formation in legume crops is 
also well-documented” [91]. “During the 
nodulation process, ACC deaminase is crucial for 
enhancing the persistence of infection                     
threads, which are negatively impacted by 
ethylene levels. Thus, ACC deaminase                
aids in nodule  formation under saline conditions” 
[92]. 
 
“In chickpea (Cicer arietinum L.), delayed 
flowering has been directly associated with 
higher concentrations of Na+ in the laminae of 
fully expanded leaves” [93]. “The inoculation of 
chickpea plants with P. putida (MSC1) or P. 
pseudoalcaligens (MSC4) isolates demonstrated 
an enhancement in various parameters such as 
phosphate solubilization, siderophore production, 
and IAA (indole-3-acetic acid) production,                 
which are indicative of improved plant growth 
under salt stress conditions compared to 
uninoculated controls” [94]. Research by [95] on 
chickpea highlighted the significant role of              
Plant Growth Promoting Rhizobacteria                        
(PGPRs) in regulating growth under salt               
stress. Increased concentrations of proline, 
malondialdehyde (MDA), as well as enhanced 
activities of antioxidant enzymes such as 
ascorbate peroxidase (APX), superoxide                                  
dismutase (SOD), and catalase (CAT) were 
observed under saline conditions,                       
suggesting that inoculated PGPR strains can 
mitigate salinity stress by enhancing salt 
tolerance. 

A study by [96] suggested, for the first time, the 
potential use of native Pantoea dispersa strain 
PSB3 as a biofertilizer to mitigate the adverse 
effects of salt stress on chickpea plants. P. 
dispersa exhibited notable production of IAA 
(218.3 µg/ml), siderophores (60.33% SU), 
phosphate solubilization (3.64 µg/ml), and ACC 
(1-aminocyclopropane-1-carboxylate) deaminase 
activity (207.45 nmol/mg/h) even in the presence 
of 150 mM NaCl under laboratory conditions. The 
coinoculation of ACC+ Mesorhizobium and 
rhizobacterial isolates showed more stimulatory 
effect on nodulation and plant biomass under 
normal and salt amended treatments. Results 
revealed that positive response of PGPR on 
productivity of chickpea but more enunciated 
response about grain yield was observed with 
the combined application of SA and PGPR 
compared to control. Growth parameters i.e root 
length, root mass, number of nodules and shoot 
mass were highly affected where SA was applied 
along with PGPR. From the study, it is proposed 
that under salt stress the combination of SA + 
PGPR can be a suitable practice for more 
production of chickpean Pakistan. 
 
Similarly the coinoculation of 1-
aminocyclopropane-1-carboxylate (ACC)-utilizing 
Mesorhizobium and rhizobacterial isolates 
demonstrated a more pronounced stimulatory 
effect on nodulation and plant biomass under 
both normal and salt-amended conditions 
[97].The results underscored the positive impact 
of Plant Growth Promoting Rhizobacteria 
(PGPR) on chickpea productivity, with a 
particularly enhanced effect on grain yield 
observed when salicylic acid (SA) was combined 
with PGPR compared to control treatments. 
Notably, growth parameters such as root length, 
root mass, nodulation, and shoot mass were 
significantly influenced by the application of SA in 
conjunction with PGPR. This study suggests that 
the combined application of SA and PGPR could 
be a promising approach for enhancing chickpea 
production, especially in salt-stressed conditions, 
offering potential benefits for chickpea cultivation 
in [98- 101].   
 
“The enhanced mung bean growth under saline 
conditions, due to bacterial inoculation, might be 
attributed to bacterial IAA activity, which has a 
tremendous effect on root growth, and water and 
nutrient absorption from a greater soil volume” 
[102]. “Inoculation/co-inoculation with rhizobia 
and plant growth promoting rhizobacteria 
(PGPR) containing 1-Aminocyclopropane-1-
carboxylic acid (ACC) deaminase improve the 
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plant growth by reducing the stress induced 
ethylene production through ACC-deaminase 
activity” [103]. “Cronobacter (two isolates) and 
Enterobacter (two isolates) Inoculation of PGP 
bacteria under 2 and 10% salinity stress showed 
enhanced plant growth parameters in Vigna 
radiata compared to both salinity and non-salinity 
control plants” [104,105]. “Soil salinity poses a 
significant threat to plant health, impacting 
various aspects of their growth and development. 
Salinity disrupts the flowering and fruiting 
patterns of plants, leading to abnormalities in 
reproductive physiology, ultimately resulting in 
decreased crop yields and biomass. In the case 
of pigeon pea, salinity can cause a reduction in 
flowering by as much as 50% (Cajanus cajan L. 
Mill)” [106].  
 

3.3 Other Crops  
 
Salt stress profoundly impacts plant both 
vegetative and reproductive physiology. 
According to [107] in tomato plants, exposure to 
salinity stress leads to the accumulation of Na+ 
in various reproductive organs such as the style, 
ovaries, and anther intermediate layers. This 
accumulation contributes to an increase in flower 
abortion rates, a decrease in pollen number, and 
a reduction in pollen viability. Additionally, high 
salt stress levels, such as 150 mM NaCl, can 
delay flowering transition and hinder the growth 
of shoots and roots in tomato plants. 
 
The [108] demonstrated that certain Plant 
Growth Promoting Rhizobacteria (PGPR) 
capable of phosphate solubilization, 
phytohormone production, and siderophore 
secretion can enhance the growth of tomato 
plants under 2% NaCl stress conditions. 
Moreover, [109] found that Bacillus velezensis 
FMH2, which produces indole-3-acetic acid 
(IAA), significantly promotes root length and 
lateral root production, thereby enhancing tomato 
plant growth under salt stress. These findings 
align with the results of studies by Habib et al. 
110] which demonstrated that PGPR inoculation 
increases the activities of reactive oxygen 
species (ROS)-scavenging antioxidant enzymes 
in okra and tomato plants under salt stress 
conditions. 
 
Similarly [62] demonstrated that inoculation with 
P. putida Rs 198 promotes cotton growth and 
germination even under conditions of salt stress. 
In Arabidopsis, the impact of salinity was 
investigated in a hydroponic solution, revealing 
various symptoms such as reduced fertility, 

decreased fruit length, transient wilting, and fruits 
predominantly containing aborted ovules and 
embryos, which were narrower and smaller in 
size [111]. Similarly, salt stress affects early 
flowering and the male gametophyte of canola 
(Brassica napus), resulting in a reduction in 
pollen grain numbers and abnormal growth of 
anthers, ultimately leading to decreased crop 
yield [112]. [113] found that under saline 
conditions, the growth, yield, and biomass of 
pearl millet are adversely affected, including 
reductions in germination percentage, plant 
height, leaf area, total biomass, and grain yield 
per plant. Pea plants also suffer from the adverse 
effects of salinity on growth, yield, and biomass 
[114,115] reviewed the impact of salt stress on 
grain legumes, noting that salinity can reduce 
crop yield by 12–100% in various legume 
species. [116] investigated the salt tolerance of 
black cumin (Nigella sativa L.) and found that 
increasing salinity levels from 0.3 to 9 dS m−1 
resulted in reduced average seed and biological 
yield. 
 
Similarly, Alam et al. 2015 studied the                 
effect of different salinity levels on the weed plant 
Portulaca oleracea L., which holds nutritional 
importance and is utilized similarly to spinach 
and lettuce in many countries. They observed 
reductions in biomass and yield, as well as 
changes in physiological attributes and 
alterations in stem and root structure. 
 

4. SOIL REMEDIATION WITH 
PHYTOBENEFICIAL BACTERIA 

 

The industrialization of the past century has led 
to a significant increase in the release of 
anthropogenic chemicals, such as 
Polychlorinated biphenyls (PCBs) and persistent 
organic pollutants (POPs), into the              
environment. This has resulted in detrimental 
effects on human health and soil ecosystems, as 
highlighted by Vergani et al. [117]. Soil 
degradation further exacerbates these issues, 
stemming from factors like continuous cropping, 
excessive use of chemical fertilizers and 
pesticides, and contamination by heavy metals. 
Microorganisms, being the predominant biota in 
soil, play a crucial role in restoring land 
ecosystems. The microecology of the 
rhizosphere directly or indirectly influences the 
growth, development, metabolic regulation, and 
accumulation of active ingredients in medicinal 
plants (MPs).  [118] they suggested that, the use 
of microbial resources as a promising alternative 
to traditional fertilizers and pesticides due to their 
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economic efficiency, environmental safety, and 
non-toxic nature. 
The deterioration of soil quality is accelerated by 
emissions from industrial waste, widespread 
fertilizer and pesticide use, and sewage 
irrigation, leading to issues like soil hardening, 
salinization, and accumulation of heavy metals 
and organic contaminants [119,120]. A national 
survey in China revealed that 16.1% of soil sites 
investigated had excessive levels of pollutants, 
including both inorganic and organic 
contaminants [121].  Despite attempts at soil 
amelioration through chemical and physical 
methods, these approaches are often inefficient, 
complex, and costly [122]. Therefore, there is a 
growing need for more effective, economical, and 
environmentally friendly methods and 
technologies to remediate degraded soils and 
promote sustainable ecological and agricultural 
development. 
 
Rhizoremediation has emerged as a promising 
strategy for in situ removal of organic 
contaminants, facilitated by various processes 
performed by different species of soil bacteria. 
Write your own words 
 

4.1 Soil Remediation from Saline Stress 
through Rhizobacteria 

 
“The presence of an excess amount of salt in soil 
shows cumulative and far- reaching effects on 
crops. Salt stress triggers ionic imbalance in 
plants, causes nutrient deficiency, perturbations 
in carbon (C) and nitrogen (N) assimilatory 
pathways, lowered rate of photosynthesis, 
generation of reactive oxygen species (ROS), 
osmotic and oxidative stress, thereby retarding 
growth and yield of crops” [123, 124]. 
 
Salt stress also poses negative impacts on soil 
processes, pH, decomposition rate, nutrient 
composition, microbial biodiversity and water 
availability, leading to the prevalence of drought-
like conditions. According to [125] “in several 
agro-ecosystems, particularly in arid and semi-
arid regions, drought and salinity occur 
simultaneously resulting in overlapping 
symptoms of both the stresses in the plants”. 
“Physical methods of treatment of saline soils, 
that include flushing, leaching, scraping and 
chemical amendments e.g. addition of gypsum 
and lime, are not sustainable” [126]. “These 
methods are time-consuming, costly and above 
all, cause genetic erosion of indigenous species” 
[127,128]. “Application of plant growth promoting 
rhizobacteria (PGPR) has the potential of 

alleviating salt stress in plants through elicitation 
of several physiological and molecular 
mechanisms. This includes modification in root 
systems, inducing antioxidant machinery, 
production of exopolysaccharides (useful in soil 
aggregate formation, humification, increase in 
water retention, quorum sensing, nodulation and 
establishing microbial diversity in saline soils) 
and siderophores, modulation of phytohormones, 
synthesis of osmolytes, uptake of minerals and 
control of phytopathogens” [129-131]. Several 
species of halotolerant soil bacteria such as 
Arthrobacter, Azospirillum, Alcaligenes Bacillus, 
Burkholderia, Enterobactor, Flavobacterium, 
Pseudomonas and Rhizobium, have been 
reported to ameliorate salt stress in crops 
[132,133]. 
 
The mitigation of salt stress by halotolerant plant 
growth-promoting rhizobacteria (HT-PGPR) likely 
involves a three-tiered association: the survival of 
bacteria under hyperosmotic conditions, the 
induction of salt tolerance mechanisms in plants, 
and the improvement of soil quality through 
various mechanisms. EPS, in particular, 
contribute significantly to these processes by 
enhancing soil structure, moisture retention, and 
microbial interactions. 
 

4.2 HT-PGPR as Soil Ameliorators 
 
“The involvement of microbial mechanisms in 
addressing saline soil through enhancements in 
structure and composition is equally significant. 
The presence of HT-PGPR in saline soil greatly 
influences soil quality and fertility parameters. 
Studies have confirmed that HTPGPR improve 
nutrient status, soil structure, organic matter, pH, 
EC, and deposition of ionic salts in soil” 
[134,135]. “HT-PGPR mitigate ionic toxicity 
through cation bridging, hydrogen bonding, and 
anion adsorption. There are reports where 
application of HT-PGPR has improved salt index 
of saline soil Mitigating the nutrient status, HT-
PGPR improve N, C, P, Fe and Zn content of 
saline soils, thereby reviving the lost vegetative 
index and accelerating the agricultural 
sustainability. Under saline conditions the N 
content and population of nitrogen fixers are 
found to be decreasing. Thus, acting as an 
efficient reclamation strategy, the symbiotic and 
asymbiotic biological nitrogen fixation by salt 
tolerant microbes enhances the N content as well 
as improves fertility of soil The enrichment of 
saline soil using nitrogen fixing PGPR 
Pseudomonas aeruginosa, along with N compost 
stimulated the level of nitrogen as compared with 
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un-inoculated control” [136]. “Revival of arid and 
saline soil by utlizing salt-tolerant rhizobia can 
help in improving the fertility and productivity of 
these stressed agro-ecosystems” [137] utilized 
“root powder of a halophyte Cenchrus ciliaris as 
carrier to develop inoculant from HT-PGPR B. 
cereus, P. moraviensis and Stenotrophomonas 
maltophilia. The developed bioinoculant when 
applied in field improved growth of wheat and 
simultaneously resulted in better texture, EC, pH 
and organic matter of saline-sodic soil. Along 
with N, HT-PGPR can stimulate the P, Zn and Fe 
content of saline soils. P. moraviensis reclaimed 
saline sodic soil by improving P, nitrate (NO3 –), 
N and K content by almost 18– 35%” [133-137]. 
 
Microbial mechanisms play a crucial role in 
addressing saline soil issues by enhancing both 
its structure and composition. The presence of 
halotolerant plant growth-promoting rhizobacteria 
(HT-PGPR) significantly influences soil quality 
and fertility parameters and various aspects of 
soil health, including nutrient status, soil 
structure, organic matter content, pH levels, 
electrical conductivity (EC), and the deposition of 
ionic salts. HT-PGPR mitigate ionic toxicity 
through mechanisms like cation bridging, 
hydrogen bonding, and anion adsorption, as 
indicated by research conducted by Saghafi et al. 
[138]. Additionally, applications of HT-PGPR 
have been shown to enhance the salt index of 
saline soil, as demonstrated by. 
 
By improving the nutrient status, HT-PGPR 
enhance the levels of nitrogen (N), carbon (C), 
phosphorus (P), iron (Fe), and zinc (Zn) in saline 
soils, thus revitalizing the vegetative index and 
promoting agricultural sustainability. In saline 
conditions, the nitrogen content and populations 
of nitrogen-fixing organisms tend to decrease. 
Efficient reclamation strategies involving 
symbiotic and asymbiotic biological nitrogen 
fixation by salt-tolerant microbes, as shown by 
Mishra et al. [139, 140] help enhance N content 
and improve soil fertility. 
 
Enriching saline soil with nitrogen-fixing PGPR, 
such as P. aeruginosa, along with nitrogen 
compost, can stimulate nitrogen levels compared 
to un-inoculated controls. Innovative approaches 
like using root powder of halophytes as carriers 
for developing bioinoculants from HT-PGPR, as 
demonstrated by Arora et al. [136], show promise 
in improving soil conditions and crop growth. 
These bioinoculants have been shown to 
enhance wheat growth and improve soil texture, 
EC, pH, and organic matter content in saline-

sodic soil. Furthermore, HT-PGPR can stimulate 
the levels of phosphorus, zinc, and iron in saline 
soils. For instance, P. moraviensis has been 
shown to reclaim saline sodic soil by improving 
P, nitrate (NO3 –), N, and K content by 
significant margins, as evidenced by Hassan et 
al.[141]. 
 
The increase in P content of saline soil was 
observed by inoculation with phosphate 
solubilizing B. licheniformis MH48 strain. 
Reduction in soil pH, EC and enhanced 
availability of macro-nutrients (NPK), 
micronutrients (Fe, Zn, Mn and Cu) and organic 
matter was reported when saline soil was 
inoculated with HT-PGPR and phosphogypsum 
[142]. “Besides nutrition, aggregation is also an 
important soil quality which promotes water 
percolation, root penetration, aeration and 
micropore formation. The establishment of 
biofilm in soil aggregates or on root surface is 
characterized by high concentration of root 
exudates, signaling molecules, organic matter 
and water content. This complex acts as a 
dragging force in selecting and establishing 
microbial diversity. The primary content of biofilm 
(EPS) regulates the organic matter by serving as 
C source and coagulating soil particles thereby 
ensuring the formation of humic substances 
which are stable organic carbon form. 
Improvement of C cycling in saline soil is 
reported when inoculated with PGPR. Another 
mechanism of action reported by highlights that 
bacterial inoculation increases the 
dehydrogenase activity which is suggested to be 
directly correlated with soil microbial biomass 
which described increase in microbial biomass 
carbon and dehydrogenase activity in saline soil 
upon inoculation with HT-PGPR B. cereus Pb25. 
Research thus clearly shows the role and 
possible utilization of HT-PGPR in improving the 
quality of soils impacted with abiotic stresses 
such as salinity” [143-147]. 
 
HT-PGPR play a crucial role in enhancing soil 
structure and aggregation by producing 
extracellular polymeric substances (EPS), 
particularly under stressful conditions. This 
process leads to the formation of 
microaggregates, facilitating water percolation, 
root penetration, aeration, and micropore 
formation, as highlighted by Burns et al. [148]. 
The establishment of biofilms in soil aggregates 
or on root surfaces is characterized by a high 
concentration of root exudates, signaling 
molecules, organic matter, and water content. 
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This complex acts as a driving force in selecting 
and establishing microbial diversity.  
 
Improving the productivity of saline soils holds 
the promise of not only bolstering food security 
but also enriching the content and quality of soil 
organic matter in these inherently nutrient-
deficient agricultural systems. This endeavor 
offers multifaceted benefits in terms of soil 
Organic Matter Enrichment, Nutrient Retention, 
Food Security, Soil Structure Improvement, 
Carbon Sequestration and achieving the 
sustainability. 
 

4.3 Future Prospects 
 
A deep study on appropriate measure for 
Effective way to overcome traditional 
phytoremediation limitations when it comes to 
PCB removal, taking advantage also of the 
degrading ability of soil microorganisms and its 
effiency in field application and a crucial issue to 
evaluate the concrete feasibility of this 
technology. Further detailed studies on “omic” 
approaches might act as powerful tools to unveil 
taxonomic and functional diversity of 
microorganisms, overcoming their limited 
cultivability, allowing the identification of the best 
plant-microbe combination involved in the saline 
stressed soil remediation under different 
environmental conditions. 
 
An additional strategy to study salt tolerant 
bacteria is the exploitation of resuscitation 
promoting factor active on those bacteria that 
cannot be cultivated in vitro due to their 
occurrence in the soil in a viable but not 
culturable (VBNC) state in response to stress 
conditions, like high pollution levels. The 
resurgence promoting factor (Rpf, a cytokine 
from the bacterium Micrococcus luteus) was 
applied on an enrichment culture established 
from PCB-contaminated soil, supplying biphenyl 
as unique carbon source. stated that the 
understanding of regulatory networks of ST-
PGPR in inducing salt tolerance in plants, could 
serve as a promising measure to alleviate salt 
stress and improve global food production 
suggested that identification of the dominant 
indigenous microflora from the highly saline soil 
and their possible adaptation mechanisms may 
provide a better understanding for exploring 
ecological and evolutionary responses in 
ecosystems. The role of metagenomic and 
metabolomic approaches becomes very 
important in case of harnessing and identifying 
novel ST-PGPR, along with the key genes and 

metabolites involved in salt tolerance. especially 
at field scale. In particular, the potential of plants 
and the application of PCB-degrading endophytic 
bacteria remains unexplored and constitutes a 
big challenge due to their hydrophobic and 
recalcitrant chemical nature [149] which will be a 
in turn benefit the plant by assimilating nutrients 
and increasing survival/ adaption rate [150]. 
 
An in-depth exploration into overcoming the 
traditional limitations of phytoremediation for 
PCB removal involves leveraging the degrading 
capacity of soil microorganisms, especially in 
field applications. A critical aspect to assess the 
feasibility of this approach is to delve into "omic" 
techniques, which can unravel the taxonomic and 
functional diversity of microorganisms, 
circumventing their restricted cultivability. These 
studies, as highlighted by Canfora et al. 149], aid 
in identifying optimal plant-microbe combinations 
for remediating saline-stressed soils across 
various environmental conditions. 
 
A complementary strategy involves investigating 
salt-tolerant bacteria, utilizing resuscitation-
promoting factors to revive bacteria in a viable 
but non-culturable state induced by stressors like 
high pollution levels, as elucidated by Islam et al. 
[151]. Understanding the regulatory networks of 
salt-tolerant plant growth-promoting rhizobacteria 
(ST-PGPR) in enhancing plant salt tolerance, as 
proposed by Ramakrishnan et al. [152], offers 
promising avenues to mitigate salt stress and 
enhance global food production. Furthermore, 
uncovering the dominant indigenous microflora in 
highly saline soils and their adaptation 
mechanisms, as suggested by Ramakrishnan et 
al.[152], provides insights into ecological and 
evolutionary responses in ecosystems. 
Metagenomic and metabolomic approaches play 
pivotal roles in identifying novel ST-PGPR, along 
with the key genes and metabolites involved in 
salt tolerance, particularly at the field scale. 
However, the potential of plants and PCB-
degrading endophytic bacteria remains largely 
untapped due to the hydrophobic and recalcitrant 
nature of PCBs, Nonetheless, exploring this 
avenue presents opportunities for plants to 
assimilate nutrients, thereby enhancing their 
survival and adaptation rates under various 
climatic condition [153-157]. 
 

5. CONCLUSION 
 
The study aimed to assess the positive impacts 
of locally isolated salt-tolerant plant growth-
promoting rhizobacteria (PGPR) on various crop 
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growth. These enhancements likely stem from 
the salt tolerance and growth-promoting 
attributes of the chosen bacterial strains. 
Consequently, this promising isolate could serve 
as a biofertilizer source, offering potential to 
enhance current rice cultivation methods and 
address salinity challenges in coastal salt-
affected regions. However, it's essential to 
complement this initial discovery with extensive 
field trials for future research, ensuring suitability 
for large-scale implementation. Moreover, 
comprehensive investigations focusing on gene 
expression and functional traits of salt-tolerant 
PGPR involved in promoting plant growth under 
salinity stress are imperative. These studies will 
facilitate the development of tailored 
bioformulations for saline soil systems, which are 
increasingly prevalent worldwide. The adoption 
of such green biotechnology holds multifaceted 
positive implications for agro-ecosystems and 
rural environments. Revolutionizing agricultural 
resilience by harnessing the power of 
phytobeneficial bacteria to combat saline stress 
and restore degraded soils, offering sustainable 
solutions for food security and environmental 
conservation. 
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