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Abstract
The accurate numerical solution of partial differential equations (PDEs) is a central task in
numerical analysis allowing to model a wide range of natural phenomena by employing specialized
solvers depending on the scenario of application. Here, we develop a variational approach for
solving PDEs governing the evolution of high dimensional probability distributions. Our approach
naturally works on the unbounded continuous domain and encodes the full probability density
function through its variational parameters, which are adapted dynamically during the evolution
to optimally reflect the dynamics of the density. In contrast to previous works, this dynamical
adaptation of the parameters is carried out using an explicit prescription avoiding iterative gradient
descent. For the considered benchmark cases we observe excellent agreement with numerical
solutions as well as analytical solutions for tasks that are challenging for traditional computational
approaches.

1. Introduction

The description of nearly all processes in nature is formalized and modelled by means of differential
equations, which dictate the evolution of a system given its initial state. Examples include the Navier–Stokes
equation in fluid mechanics [1–4], the Schrödinger equation in quantum mechanics [5–7], and the
Fokker–Planck equation governing diffusive processes [8–15]. Analytical solutions of these equations are
only available in special cases and, generally, one is forced to resort to numerical techniques. A significant
effort during the last century was made to improve the numerical solutions of differential equations [16–18].
There are numerous properties a numerical solver should ideally fulfil, rendering the field quite diverse, with
many specialized solvers being developed [19].

Here, we focus on modelling the dynamics of d-dimensional probability density functions (PDFs) by
means of an ansatz function, which in our case is given by an artificial neural network (ANN), as illustrated
in figure 1. We consider evolution equations of Fokker–Planck form

∂tp=−
d∑
i

∂xiµip+
d∑
ij

∂xi∂xjDijp, (1)

where µ ∈ Rd is the drift and D ∈ Rd×d is the positive semi-definite diffusion matrix and it is understood
that p, µ and D are evaluated at position x and time t.

PDFs arise naturally across many disciplines, describing, for example, the phase space evolution of
(quantum) matter [20, 21], the positions of particles subject to Brownian motion [11], the density of fluids
[1] or stock prices in finance [15]. For many of these scenarios the PDF evolution is described by a diffusion
process, meaning that the path of a single sampled point evolves according to a stochastic differential
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Figure 1. Illustration of the variational approach for a simple diffusion process in 2D. The parameters θ(t= 0) of the artificial
neural network encode a Gaussian at time t= 0 and are adapted such that they accurately track the time evolution dictated by the
diffusion equation until later times t= 2, representing a Gaussian with increased variance.

equation (SDE) [22]. In the limit of averaging infinitely many stochastic trajectories one recovers the
evolution of the PDF.

Consequently, the temporal evolution of probability densities can be obtained by either directly solving
equation (1) via spatial discretization (grid based solvers), or by solving the corresponding stochastic
dynamics for a large number of sample points (particle based solvers). The former approach, while allowing
to control the discretization error via the grid spacing, suffers from the curse of dimensionality [23, 24] as the
computational cost scales exponentially in the spatial dimension, restricting its applicability to low
dimensional cases. The latter approach solves the SDE associated to the Fokker–Planck equation through the
Feynman–Kac formula for an ensemble of points sampled from the initial distribution [25, 26]. While suited
to compute observables, such as moments of the distribution, in high dimensions, there is no direct way to
obtain estimates for functionals of the distribution as an expression for p is lacking [27–29].

In this work, we present a new tool that overcomes the aforementioned limitations of traditional
methods by combining variational Monte-Carlo (VMC) with normalizing flows (NFs). While VMC is a long
established technique in quantum many-body physics [30–33], NFs are a relatively novel class of ANNs also
known as invertible neural networks (INNs) [34]. They have been applied with remarkable success to long
standing problems in statistical physics [35], inference and data generation [34, 36–40], as well as quantum
field theories [41, 42]. Here, we understand the NF as an ansatz function for the time-dependent density. The
choice of the ansatz-function is a degree of freedom in our approach and can be adapted to the problem at
hand exploiting prior knowledge about the function class the time-dependent density belongs to. Among the
possible choices, ANNs are a promising class of ansatz functions, as they may become universal function
approximators in the infinite parameter limit, which applies to lesser extent to NFs [43, 44]. Adjusting the
parameters of the ansatz function to the dynamics dictated by equation (1) is achieved by a time-dependent
variational principle (TDVP), which maps the dynamics of the PDF onto the variational manifold generated
by the ansatz function [32, 33, 45]. Crucially, the approach is self-contained and at no point relies on data
generated from other solvers, in contrast to prior works using neural networks to solve partial differential
equations (PDEs) [46–49], allowing us to obtain numerical solutions for tasks that are challenging for
grid-based or particle-based solvers. Our approach differs from the popular physics informed neural
networks (PINNs) [50, 51] in that we do not carry out a costly global gradient-descent based optimization in
each time step to update the models’ parameters, but rather follow an explicit, analytically derived time
derivative of the network parameters which is given by the TDVP. We are particularly interested in
high-dimensional scenarios which are infeasible to solve with grid-based methods and in quantities which
are not easily obtainable by modelling many stochastic processes, such as functionals of the PDF. Indeed we
show that, using the developed approach, we can reliably estimate differential entropies in a Monte Carlo
fashion requiring only a few thousand samples. We benchmark our approach for the case of an
eight-dimensional heat equation and a six-dimensional dissipative phase space evolution.

2. Normalizing flows

While we employ neural networks as ansatz functions, we emphasize that the derived TDVP is applicable to
any parameterized density, such as Gaussian mixture models or energy-based estimators. We use NFs [34, 36]
to model densities as they have many desirable properties, among which are (a) a guarantee of normalization
for any set of parameters θ, (b) a tractable likelihood and (c) the ability to generate independent samples
without the need to resort to Markov Chains. NFs parameterize densities by assuming a latent distribution π
which is transformed into the distribution of interest by a trainable and invertible map fθ,

x= fθ(z)with z∼ π. (2)
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Usually, π is chosen to be a ‘simple’ distribution, e.g. a Gaussian, such that its samples z can be generated
easily. The probability associated with the point x is proportional to π(f−1

θ (x)) times the determinant of the
Jacobian of the transformation,

pθ(x) = π(f−1
θ (x))

∣∣∣∣ det(∂f−1
θ (x)

∂x

) ∣∣∣∣ . (3)

The function fθ is composed from a series of invertible transformations fθ =φ1
θ ◦ .. ◦φN

θ which are
explained in detail in the supplemental material (SM). Importantly, the Jacobian of the function is tractable
meaning that its determinant is efficiently inferred when computing a forward pass, an operation carried out
whenever the real space probability is evaluated at some point of interest. By stacking many of these ‘coupling
blocks’ φi, the function fθ becomes an expressive coordinate transform, that is, however, incapable of
changing the tail behaviour of the latent space distribution [52]. We overcome this problem by dynamically
adapting the latent space distribution π to reflect dynamical changes in the tails of the distribution. This is
explained in more detail below and in the SM.

3. Time-dependent variational principle

The idea of the TDVP originated in the context of VMC [30] where it has been applied extensively to solve
problems in quantum-many-body physics, with a growing interest in the use of neural networks as
variational ansatz functions [32, 33, 45, 53]. Its aim is to locally search for the closest approximation to the
dynamics of the density within the variational manifold. Concretely, one aims to solve

argmin
θ̇

D(pθ(t)+τθ̇,pθ(t) + τ ṗθ(t)) (4)

whereD is a suitable distance measure between probability distributions, τ denotes a small time step, ṗθ(t) is

the derivative given by equation (1), and θ̇ is the unknown corresponding parameter time derivative. The
solution to equation (4) can be found by requiring the derivative with respect to θ̇ to be zero. By expanding
equation (4) to second order in τ one finds

Skk ′ θ̇k ′ = Fk. (5)

We defer the details of this derivation to the SM. Here Skk ′ = ⟨Ok(x)Ok ′(x)⟩x∼pθ(t) denotes the Fisher
information metric and Fk = ⟨Ok(x)∂t log(pθ(t)(x))⟩x∼pθ(t) is a force term, where Ok denotes the
(logarithmic) variational derivative Ok(x) = ∂θk log(pθ(t)(x))and ∂t log(pθ(t)(x)) is given by the RHS of the to
be solved PDE. Here ⟨·⟩x∼pθ(t) denotes an expectation value evaluated through Monte Carlo sampling from
the model distribution pθ(t). Notice, that we heavily rely on the differentiability of the ansatz function pθ(t)
with respect to both variational parameters and spatial coordinates. The latter frequently appear on the RHS
of equation (1) and are thus required for computing ṗθ(t). This is in striking contrast to grid-based
techniques which require making grid cells finer for higher accuracy. Here, instead, we have access to the
exact derivatives through automatic differentiation. The choice of distance measure to compare the two
probability distributions is not arbitrary as the form of S and F directly depends on it. In order to obtain
expressions of S and F that can be efficiently estimated through a finite number of samples, we found that
both the Hellinger distanceDH(p,q) = 1− F(p,q) = 1−

´ √
pqdx and the Kullback–Leibler (KL) divergence

DKL(p,q) =
´
p log(p/q)dx yield the same result of the desired form. Care has to be taken when solving

equation (5) for θ̇, as the inverse of Smay not exist. This is the case if directions in parameter space are
present along which the probabilities are stationary, which can be dealt with by regularization procedures
[33, 53].

4. Problem setup

We are interested in solving initial value problems, for which the initial density distribution p(0,x) = u(x) is
given along with the RHS of equation (1) which governs its evolution. To exactly encode the initial
distribution u(x) in the model pθ(t=0), the latent distribution is set to u(x) and the parameters of the map
fθ(t=0) are chosen such that it represents the identity map fθ(t=0)(x) = x. If the initial distribution cannot be
given in closed form and therefore cannot be set analytically as the latent space distribution π, the network
may be trained on its samples to approximately encode it at time t= 0. Then a solver is used which integrates
the parameters according to equation (5).

3
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Figure 2. Evolution of the differential entropy under a heat equation for different initial distributions. While analytical
comparison data is available in the case of a Gaussian initial distribution, we compare to numerical data for the Student-t
obtained with finite differences on a 1D Grid. Inset: adjustment of the latent space distribution π by changing its parameter ν
dynamically in time.

5. Application 1: diffusion in high dimensions

As a first benchmark scenario we consider the heat equation in d= 8 dimensions. The heat equation appears
across many disciplines ranging from engineering [54, 55] and molecular motion [11] to the pricing of
financial derivatives given by the famous Black–Scholes equation [56, 57] and reads

∂tp(t,x) = D∆xp(t,x). (6)

Importantly, an analytical solution exists against which we can benchmark, making the described scenario a
good showcase of the proposed approach. The solution is given by a convolution of the initial distribution
p(0,x) with the ‘heat kernel’ Φ(t,x) = (4πt)−(d/2) exp(−x2/4Dt) [58], which is the Green’s function to
equation (6), such that

p(t,x) =

ˆ
p(0,y)Φ(t,x− y)dy. (7)

We aim to observe the growth of the differential entropy

S(t) =−
ˆ

p(t,x) log(p(t,x))dx=−⟨log(p(t,x))⟩x∼p(t,x) (8)

with time, a task, which is challenging or even intractable using other numerical techniques in high
dimensions for the reasons mentioned above [23, 24, 27–29]. In the case of a Gaussian distribution for
p(0,x) with zero mean and unit covariance matrix, we obtain a Gaussian of larger variance at later points in
time, in which case we observe perfect agreement between the analytical solution and the one obtained using
the INN as shown in figure 2. If we choose a Student-t distribution as initial distribution, i.e.

p(0,x)∝
(
1+

x2

ν

)−(ν+d)/2

(9)

with ν= 2 we can no longer compare to the analytical solution as the involved integrals become infeasible to
solve. However, by exploiting the spherical symmetry of the problem, we can map the evolution to an
effective 1D problem of the radial dependency of p which we can approximately solve on a grid using finite
differences. The grid based solution and that obtained using the INN are generally in good agreement. We
observe a slight difference which we attribute to technical challenges of the grid-based approach, which we
discuss more elaborately in the SM.

6. Application 2: diffusion in classical phase space

As a second demonstration of the proposed approach we consider classical Hamiltonian dynamics in phase
space with additional diffusion. Concretely, we choose the Hamiltonian H to represent coupled harmonic
oscillators (coupling strength k) which are in contact with heat baths of different temperatures T i, such that
the solution does not factorize in the eigenbasis of H. We provide the Hamiltonian and its generated phase
space flow in the SM. The heat baths lead to diffusion in phatse space, which implies that sampled points of
the distribution evolve according to an SDE. We show that the INN faithfully estimates moments of the

4



Mach. Learn.: Sci. Technol. 3 (2022) 04LT02

Figure 3. (a) and (b) Evolution of the first two moments of the phase space distribution ρ estimated from 10.000 samples for
three coupled harmonic oscillators with dissipation given by the temperatures kBT/mω2 = (10,3,1) and all other parameters
chosen to be unity. The initial distribution in phase space is a Gaussian with unit variance centered at the position x= (1,0,0)T

and momentum p= (0,1,0)T. (c) and (d) Three uncoupled oscillators (k= 0) coupled to the same heat bath at temperature
kBT/mω2 = 10. In (c) the value of the six-dimensional integral around a hypersphere with radius r centered at the origin is
shown, while in (d) the estimation of the differential entropy equation (8) using the INN is displayed. Both are shown to converge
to the expected value of the steady state. The initial distribution is a Gaussian with identity covariance matrix centered at
x= (1,1,1)T and zero momentum.

distribution, probabilities (i.e. integrals over finite domains) as well as functionals of the PDF that
correspond to integrals over the entire domain.

The described system obeys the following Fokker–Planck equation [59]

∂tρ(t,x,p) =
[
− ∂pH · ∂x+ ∂xH · ∂p+

γ
(
p · ∂p+mkB

∑
i
Ti∂

2
pi

)]
ρ(t,x,p),

(10)

whose corresponding SDE is given by [59]

dxi = ∂piHdt,

dpi =− [γpi + ∂xiH]dt+
√
λidwi.

(11)

Here, λi =
√
2mγkBTi, dwi =Πi

√
dt is the Wiener process with zero average ⟨dwi⟩= 0 and standard scaling

⟨dw2
i ⟩= dt implying that Π is drawn from a standard Gaussian Π∼N (0,1). For simplicity we choose all

quantities except T i equal to unity.
In the case of heat baths of equal temperatures Ti = T and vanishing coupling (k= 0) the system assumes

a thermal steady state of Gaussian form in the long time limit given by the Gibbs-ensemble

ρSS = exp(−H/kBT)/Z

= exp

(
−1

2
(mω2x2 + p2/m)/kBT

)
/Z,

(12)

with Z=
´
exp(−H/kBT)dxdp the partition function, where the Gaussian form allows to compare against

analytical results.
We consider four quantities of interest which we evaluate by drawing 10.000 samples from the INN, see

figure 3. The first two quantities are the means and variances of the distribution evolved for the case of
different T i and k= 1. Here, comparison against estimates from solving the SDE for the same number of
sampled points is straight forward and one observes excellent agreement between both methods. To obtain
an easy benchmark case for integral and entropy estimation, we choose k= 0 and Ti = T such that the steady
state is Gaussian, see equation (12). We choose the integration volumes to be hyperspheres of radius r
centered at the origin allowing for analytical evaluation of the Gaussian integral. The values of these integrals
correspond to the probability of finding the system inside the hypersphere. Using the INN, we can estimate
such integrals in a Monte-Carlo fashion by uniformly sampling points xi from inside the integration domain
and average the associated probabilities pθ(xi), which are shown to converge to the analytically obtained
steady-state value in figure 2(c).

Finally, we again focus on the differential entropy (equation (8)), where figure 3(d) shows that our
method succeeds to predict the differential entropy with low noise while converging to the expected steady
state value.

5
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7. Conclusion and outlook

We have introduced a variational approach to the dynamics of continuous probability distributions using
NFs and demonstrated its power by applying it to paradigmatic benchmark problems. Our method is widely
applicable, even beyond the Fokker–Planck form (1), e.g. to cases with non-local terms [60]. Its unique
strength lies in estimating functionals of probability densities in high dimensions enabled by the availability
of exact samples with tractable likelihood. We emphasize that other approaches such as PINN [50] require
solving a large-scale non-convex optimization problem in each time step, which the TDVP replaces by the
explicit update rule (5) (see SM for further discussion). The form of the ansatz function can be chosen
flexibly and is not required to be a neural network. The only restrictions are that (a) samples from its
distribution may be obtained and (b) derivatives with respect to inputs and parameters are computable.
While building NFs using stacked coupling blocks is a popular approach, other flow architectures exist and it
would be interesting to investigate their potential in solving PDEs in the future. Since the TDVP can also
work with non-normalized probabilities, also energy based models would be viable ansatz functions
although this would mean that samples would have to be obtained by resorting to Markov-chains.

For the utilized architecture we found that challenges exist when trying to solve chaotic dynamics. We
believe this to be caused by the high amount of information of the phase space distribution which needs to
be encoded using comparably few parameters. Additionally, we found it challenging to model distributions
whose tail behaviour deviated from that of the latent space distribution. In the example shown in figure 2
this could be dealt with by elevating ν to be a variational parameter, which would tend to infinity for late
times, representing the exact tail behaviour of the real space distribution. However, if the real space tail
behaviour cannot be accurately modelled in latent space, e.g. because its form is not known beforehand, one
cannot expect to accurately model the distribution on the entire domain.

Data availability statement

The code used for this project is based on the jVMC library [61], making use of flax [62] and jax [63] and is
available under GitHub: RehMoritz/vmc_pde. The repository also contains the data from figures 2 and 3.
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