
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Improving parametric neural networks for high-
energy physics (and beyond)
To cite this article: Luca Anzalone et al 2022 Mach. Learn.: Sci. Technol. 3 035017

View the article online for updates and enhancements.

You may also like
An automated four-point scale scoring of
segmental wall motion in
echocardiography using quantified
parametric images
N Kachenoura, A Delouche, C Ruiz
Dominguez et al.

-

Signal quality in cardiorespiratory
monitoring
Gari D Clifford and George B Moody

-

A preliminary study on machine learning
and google earth engine for mangrove
mapping
Muhammad Kamal, Nur Mohammad
Farda, Ilham Jamaluddin et al.

-

This content was downloaded from IP address 106.213.28.225 on 06/07/2023 at 11:04

https://doi.org/10.1088/2632-2153/ac917c
https://iopscience.iop.org/article/10.1088/0031-9155/55/19/009
https://iopscience.iop.org/article/10.1088/0031-9155/55/19/009
https://iopscience.iop.org/article/10.1088/0031-9155/55/19/009
https://iopscience.iop.org/article/10.1088/0031-9155/55/19/009
https://iopscience.iop.org/article/10.1088/0967-3334/33/9/E01
https://iopscience.iop.org/article/10.1088/0967-3334/33/9/E01
https://iopscience.iop.org/article/10.1088/1755-1315/500/1/012038
https://iopscience.iop.org/article/10.1088/1755-1315/500/1/012038
https://iopscience.iop.org/article/10.1088/1755-1315/500/1/012038

Mach. Learn.: Sci. Technol. 3 (2022) 035017 https://doi.org/10.1088/2632-2153/ac917c

OPEN ACCESS

RECEIVED

27 April 2022

REVISED

29 August 2022

ACCEPTED FOR PUBLICATION

12 September 2022

PUBLISHED

5 October 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Improving parametric neural networks for high-energy physics
(and beyond)
Luca Anzalone1,3,∗, Tommaso Diotalevi1,2,3 and Daniele Bonacorsi1,3
1 Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy
2 European Organization for Nuclear Research (CERN), Geneva, Switzerland
3 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bologna, Italy
∗ Author to whom any correspondence should be addressed.

E-mail: luca.anzalone2@unibo.it

Keywords: parametric neural networks, conditioning mechanism, signal-background classification, high-energy physics

Abstract
Signal-background classification is a central problem in high-energy physics, that plays a major
role for the discovery of new fundamental particles. A recent method—the parametric neural
network (pNN)—leverages multiple signal mass hypotheses as an additional input feature to
effectively replace a whole set of individual classifiers, each providing (in principle) the best
response for the corresponding mass hypothesis. In this work we aim at deepening the
understanding of pNNs in light of real-world usage. We discovered several peculiarities of
parametric networks, providing intuition, metrics, and guidelines to them. We further propose an
alternative parametrization scheme, resulting in a new parametrized neural network architecture:
the AffinePNN; along with many other generally applicable improvements, like the balanced
training procedure. Finally, we extensively and empirically evaluate our models on the HEPMASS
dataset, along its imbalanced version (called HEPMASS-IMB) we provide here for the first time, to
further validate our approach. Provided results are in terms of the impact of the proposed design
decisions, classification performance, and interpolation capability, as well.

1. Introduction

Selecting events that contain interesting processes is a fundamental requirement of high-energy physics
(HEP) experiments and one of the most established areas in advanced computing techniques i.e. machine
and deep learning [1]. Physicists are interested in rare events (yield by the collision of known particles),
following their theoretical assumptions, measuring the fraction of events that contain a specific decay
channel. These rare events—the so-called signal—must be separated out from the background, i.e. anything
else originating from already known processes. The usual way of doing that relies on building an event
selection algorithm, estimating its efficiency on selecting signal and rejecting background, and measuring the
count of events passing it. Being able to effectively separate background events from the signal is a central
problem in HEP, that can help the discovery of new fundamental particles with further analysis. Compared
to traditional, expert-designed algorithms based on single cuts driven by physical considerations, Machine
Learning algorithms, e.g. (boosted) decision trees [2, 3] and neural networks (NNs) [1, 4], have two main
advantages: first of all, they are usually able to deliver an higher selection efficiency; secondly, they save effort,
by replacing an HEP-specific manual algorithm solution with an application of a general method, generally
stolen from an AI research and adopted also in other fields of study. Since, prior to the analysis, a signal event
is not known, these algorithms are trained on synthetic data obtained through expensive Monte-Carlo
simulations, trying to mimic data as coming from real-world collisions of particles in accelerators, like the
CERN Large Hadron Collider [5].

In addition to the above mentioned challenges, some searches do not even have a clear theoretical
prediction on the exact mass values for such potential new particles: for instance, several new physics

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ac917c
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ac917c&domain=pdf&date_stamp=2022-10-5
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0399-8836
https://orcid.org/0000-0003-0780-8785
https://orcid.org/0000-0002-0835-9574
mailto:luca.anzalone2@unibo.it

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

analyses prefer to keep such mass values floating, generatingM different Monte-Carlo samples at different
mass hypotheses and splitting the analysis inM different searches, each one with a fixed mass value [6, 7].

Before the introduction of parametrized neural networks (pNNs) [8] (described in section 2.1),
therefore, the canonical approach for signal-background classification consisted of training a set of individual
and independent classifiers [4], each of them trained on a specific signal mass hypothesismi ∈M (thus, on a
subset of the available data, somehow). The benefit of individual classifiers is that each of them should
maximize the separation of the two classes for a single mass hypothesis. The major drawback is that
researchers have to design, train, tune, evaluate, and maintain |M| of such classifiers, one for each mass4

(mi ∈M), often with different hyperparameters, whose amount can easily be in the order of tens: this can
become quickly unfeasible. The other issue is about classification performance. Specifically talking about
neural networks, they greatly benefit from the sharing of weights and distributed representation [1] for
improved accuracy, reduced training time, and thus increased data efficiency. pNNs aim at mitigating those
issues by means of an additional input (the signal’s generating mass), while also bringing additional benefits
for the sake of more effective research.

The overall contributions of our work are summarized as follows:

• We propose a novel and more challenging benchmark dataset called HEPMASS-IMB [9] (section 3.2), to
overcome the simplicity of HEPMASS [10], trying to emulate real-world scenarios more closely.

• We developed a novel parametrization scheme: the affine parametric neural network (section 4.1).
• We describe and empirically study several design decisions for building effective pNNs (section 4). In this
regard, we address the issue of how to assign (or distribute) the mass feature for the background events
(section 4.2), as well as providing a novel balanced training procedure (section 4.3).

• We attempt a first characterization of the properties that parametric networks have (section 5).
• Regarding interpolation (section 5.1), we study it in depth: showing a failure case, and providing guidelines
for its assessment.

2. Related work

2.1. Parametric neural networks
A pNN [6–8] is a neural network architecture that leverages an additional input (in our case themass of the
hypothetical particle) to replace many individual classifiers, and potentially even improve their classification
performance. Let be x the input features,m the generated mass of the signal (or the signal mass hypotheses),
and θ a set of learnable weights (or parameters). A pNN can be denoted as fθ(x,m), i.e. as a learnable
function of both the input features x and themass feature m. A canonical neural network, instead, would be
denoted as fθ(x), depending only on the input features. The Baldi’s pNN [8] first concatenates x withm, then
applies five dense layers each with 500 units and activated by ReLU, after that a final dense layer with sigmoid
non-linearity outputs the predicted class label. Such architecture results in about 1M learnable parameters.

Indeed the idea of ‘parametric’ is not new, as in other fields of machine learning, like imitation learning
[11],multi-task and meta-learning [12], unsupervised reinforcement learning [13], and deep generative models
[14], is commonly called ‘conditioning’. Here the general idea is to condition the learning (i.e. output) of a
neural network on some additional representation z, in order to let the network’s output change as z varies.
The vector z—called the task representation—can take various forms: ranging from a one-hot encoding to a
dense embedding, or be a single discrete or continuous variable as well. In our case, the mass feature (i.e. the
task representation) is a single scalarm belonging to a finite setM= {m1,m2, . . . ,mM} of mass hypotheses
about the signal process we are interested in.

This idea, whether called conditioning or parametrization, is promising in HEP since it may enable to
replace (potentially many) individual classifiers with a unique classifier trained on all mass hypotheses. Thus,
leveraging the sharing of weights for more efficient learning, and distributed representations shared among
mass hypotheses for improved predictions, which we also found to be beneficial in low-data regimes:
i.e. when some of the data corresponding to certain masses, is imbalanced compared to the most

4 In this work, the termmass refers to the additional input of the parametric network,m: also calledmass feature by Baldi et al [8]. Bymi

we denote a generic value of the signal generating mass (or signal mass hypotheses), whose set of values is represented byM. In general,
we do not use the term mass to imply the reconstructed (or invariant) mass of the considered particle decay, but at most its theoretical
parameter,mX .

2

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Figure 1. Two popular conditioning mechanism, that tuned out to be complementary. Reproduced from [15]. CC BY 4.0.

representative masses5. The authors also claim that, since the additional input would define a smoothly
varying learning task, a pNN would be able to smoothly interpolate between such learning tasks. Ideally, this
means that a pNN would be able to generalize (correctly classify events) beyond the mass hypotheses it was
trained on, thanks to the additional mass feature.

In this case, our supervised datasetD have the form {(x,m,y)i}Ni=1, in which we have input features x
(i.e. the variables associated to each event), their mass hypothesism, and the target class labels y we aim to
predict. For each signal mass hypothesis,mi ∈M, we can slice our dataset such that only the features and
targets corresponding to massmi are retained, i.e.Dmi = {(x,y)j :mj =mi,∀j= 1, . . . ,N}, where N is the
total number of events6. In this way, we obtain |M| datasets for which each of them can be used to train an
individual classifier (but also to evaluate our pNN at single mass points). The pNN can replace all of them,
and if trained on a subset of the mass hypotheses, M̄ ⊂M, it is, in principle, able to automatically account
for the missing masses (m̃j ∈M∖M̄) thanks to the interpolation capability (discussed in section 5.1),
which should work on novel intermediate mass points as well.

2.2. Conditioning mechanisms
The authors of the original pNN [8] utilize a simple conditioning mechanism: they just concatenate the
features with the mass (or task representation, in general) obtaining a new set of features, x̄= [x,m], going
back to a standard feed-forward neural network formulation, i.e. fθ(x̄), that learns from an extended set of
features x̄. Indeed, many arbitrarily-complex conditioning mechanisms exists, two of them (figure 1) are yet
simple but powerful [15]:

• Concatenation-based conditioning. The task or conditioning representation m (our mass) is first concat-
enated along the last dimension (axis) of the input features x, and then the result is passed through a linear
layer. Notice that in the original pNN, the linear layer after concatenation is missing.

• Conditional scaling. A linear layer first maps the conditioning representation m to a scaling vector s, to
which follows an element-wise multiplication (Hadamard product) with the input features x, i.e. x⊙ s.

These two conditioning mechanisms are widely applicable, although it is not yet clear in which case one
mechanism is preferable to the other(s). Anyway, these two mechanisms can be both combined into a third
one7: a conditional affine transformation [15], which motivates our new parametric architecture (refer to
section 4.1).

3. Datasets

In this section, we provide details about the two datasets we used to conduct our study.

5 This is often the case in practice, since when doing MC simulations to reproduce the data, some kind of events (for certain masses)
are more frequently generated (thus being less rare) than others, naturally resulting in an imbalanced dataset, that is imbalanced not
necessarily with respect the class labels (since the background class is independently produced) but with respect themass feature.
6 From a ML jargon perspective we can equivalently refer to events as (ex)samples or datapoints, of some dataset.
7 An affine transformation, i.e. y= Ax+ b, does not involve concatenation directly: turns out that concatenation-based conditioning is
equivalent to conditional biasing, in which the task representation is first mapped to a bias vector that is then added to the input, element-
wise, effectively replacing a concatenation operation. Further details in [15].

3

https://creativecommons.org/licenses/BY/4.0/

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Figure 2. Feynman diagrams depicting the hypothetical particle decay: X→ t̄t→W+bW−b̄. Reproduced from [8]. CC BY 4.0.

3.1. HEPMASS
The HEPMASS dataset [8, 10] was utilized by the pNN’s authors to demonstrate their novel idea. The dataset
contains 7M training samples, and 3.5M test samples. The physical case under consideration is the search of a
new particle X with an unknown mass. This particle decays into a t t̄ pair, and the final state consists in the
most probable decay product: t t̄→W+bW− b̄→ qq ′blνb̄. The dominant background considered for this
specific signal is the standard model t t̄ production, identical in the final state but different in kinematics due
to the absence of the X resonance. The Feynman diagrams showing the signal and background processes are
shown in figure 2. There are a total of 27 features (without considering the 28thmass feature) already
normalized to have approximately zero-mean and unitary variance. Each datapoint x(i) ∈ D can belong to
either a signal process, with a mass hypotheses (in GeV)mX = {500,750,1000,1250,1500}, or to a
background process, where the mass feature is randomly sampled frommX . Signal (background) samples are
then labeled with class 1 (0). Moreover, the two classes are perfectly balanced, and also eachDmi is balanced:
containing the same amount of events for eachmi ∈mX. As discussed in the previous section, when training
pNNs we want to pay attention to the balance of classes as well as the balanced of eachmi: this dataset avoids
such issue. For further details about the data, refer to [8].

By studying the distribution of each feature we can deduce three major things:

(a) The background is unique and covers the signal, although partially (figure 3(a)).
(b) Consequently, the signal’s events atmX = 500,750GeV are the most difficult to separate out from the

background, since the features distribution is mostly completely overlapped with the background’s one.
This explains why, in figure 3(b), the AUC is considerably lower at 500GeV, while being almost perfect
for 1500GeV.

(c) By only considering some features (figure 4) a classifier (even simple) can easily tell which event
belongs to the signal-class or not, thanks to these features being highly correlated with the class label:
figure 5.

3.2. HEPMASS-IMB
Since the HEPMASS dataset is rather simple, leaving almost no room for improvement, we decided to
imbalance the dataset by hand in order to being able to demonstrate novel methods for improving pNNs: we
call this new dataset, derived from it, HEPMASS-IMB [9]. In particular the dataset is doubly-imbalanced: there
is class-imbalance with respect to the class label, andmass-imbalance with respect the theoretical parameter
(mX), as well. A comparison between the two dataset is depicted in table 1.

The way we imbalance the dataset is as follows. We first take all the background events (without any
change), and sub-sample (without replacement) only the signal, differently at eachmi ∈M. In particular, we
select: 350k (formX = 500), 140k (formX = 750), 35k (formX = 1000), 7k (formX = 1250), and lastly 2k
events formX = 1500; for a total of almost 534k signal events. Indeed, we only imbalance the train-set of
HEPMASS, leaving its test-set as it was provided by the authors [10]. In such way we are able to simulate a
double imbalance of both class-labels and signal mass hypotheses (figure 6), that resembles more the
imbalance found in real-world dataset of Monte-Carlo simulated particle decays.

4

https://creativecommons.org/licenses/BY/4.0/

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Figure 3. The plot (a) shows the reconstructed mass (mWWbb) of the simulated decay (X→ t̄t→W+bW−b̄), depicted in
HEPMASS. We observe that the background spans the entire mass range, mostly overlapping the signal atmX = 500 and 750GeV.
This fact also motivates why the authors’ results (presented in plot (b), and also our own, exhibit a neat loss in AUC below
750GeV, especially at 500GeV. Reproduced from [8]. CC BY 4.0.

Figure 4. Some features in which we can clearly observe how easily the distribution of each mass hypothesis drifts away from the
background. In particular, the distribution ofmX = 500 almost completely overlaps with the background, each time telling us
that these events are the most difficult to classify (as shown in figure 3(b)). The features shown here are all normalized.

Figure 5. Pearson correlations of the training variables of HEPMASS (train-set).

4. Method

Having the extramass feature as input gives us an additional degree of freedom for the design of classifiers. In
this section we study different design decisions about network architecture, background distribution, and
training procedure.

5

https://creativecommons.org/licenses/BY/4.0/

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Table 1. Datasets comparison. As we can see, our modification of HEPMASS adds more difficulties to be addressed. This allowed us to
discover many weaknesses of pNNs. (∗) Design decisions about how to best distribute the mass of background events are depicted in
section 4.2, going beyond what is fixed in the datasets.

Dataset

Characteristic HEPMASS [10] HEPMASS-IMB (our)

Samples 7M (+ 3.5M test) 4M (+ 3.5M test)
Class imbalance (%) None 13 (signal) / 87 (bkg)
Signal imbalance None up to 166×
Mass hypotheses 5 (equally spaced) //
Variables 27 //
Bkg distribution∗ Identical (fixed) //
Signal process X→ t t̄→W+bW−b̄→ qq ′bℓνb̄ //
Bkg process t t̄→W+bW−b̄→ qq ′bℓνb̄ //

Figure 6. Overall class and mass imbalance of HEPMASS-IMB.

4.1. The affine architecture
Baldi et al [8] utilized a regular feed-forward design for their parametric network, which we will refer to
(vanilla) pNN, by just concatenating the mass featurem with the input features x right after the input layer.
Here we propose a novel conditioning (or parametrization) scheme to better exploitm, that is based on the
two conditioning mechanisms described in section 2.2, namely: conditional scaling, and conditional biasing
(equivalent to concatenation-based conditioning).

We propose an Affine Parametric Neural Network (AffinePNN) architecture, that relies on multiple
affine-conditioning layers (figure 7) instead of simply concatenating the mass at the beginning of the network.
Such a layer takes two vectors h andm as input, where h can be the features x (if the layer is directly applied
on the inputs) or the previous layer’s output, andm is the mass feature. Assuming them to have
dimensionality Dh and Dm (that in our case is just one), respectively, the layer applies an element-wise affine
transformation (scaling and bias addition) on h, such that the output z is a function ofm. Considering
vectors at a generic index i of the input batch, we have:

z(i) = h(i) ⊙ sϕ
(
m(i)

)
+ bψ

(
m(i)

)
, (1)

where the dimensionality of z(i) is the same as h(i), i.e. Dh. The scaling and biasing operations are defined as
linear functions over the mass8: sϕ =Wϕm(i), and bψ =Wψm(i), where the learned weight matricesWψ and

8 In practice, these are implemented as two distinct Dense layers with linear activation.

6

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Figure 7. A schematic representation of the operations that build a single affine-conditioning layer. There are two inputs h andm.
The dimensionality ofm is expanded to match the dimensionality of h through linear combinations, that yield scaling (s) and
biasing (b) vectors that are, respectively, multiplied and added to h in an element-wise fashion, resulting in the conditioned
representation: z.

Figure 8. Diagram of the Affine architecture. In this picture the relation between the inputs and the layers can be better
understood. At the beginning, the input features x are only fed to the first Dense layer; the mass featurem, instead, is only
provided to each AffineConditioning layer. Dropout layer are omitted for clarity.

Table 2. Affine architecture. Each AffineConditioning(m,zi) layer takes two inputs: the massesm input to the network, and the
output zi of the previous Dense layer. For better performance Dropout layers are also included, but only after each
AffineConditioning layer. Basically, the architecture is made of four blocks, in which each block (Dense → AffineConditioning
→ Dropout) have, respectively, 300, 150, 100, and 50 hidden units, activated by ReLU non-linearity.

Layer # Units

Input (x)
Dense+ ReLU 300
Input (m)
AffineConditioning 300
Dropout
Dense+ ReLU 150
AffineConditioning 150
Dropout
Dense+ ReLU 100
AffineConditioning 100
Dropout
Dense+ ReLU 50
AffineConditioning 50
Dropout
Dense+ Sigmoid 1

Wϕ have both shape Dh ×Dm, since the number of linear units have to match the dimensionality of h(i). An
AffinePNN interleaves such layers with ReLU-activated9 dense layers: in figure 8 and table 2, an overview of
the architecture is shown. In principle, the affine layers can be further generalized by introducing non-linear
activation functions (f and g) on the scaling sϕ, and biasing bψ , such that: z= h⊙ f

(
sϕ(m)

)
+ g

(
bψ(m)

)
.

9 ReLU(x) =max(0,x), applied element-wise as usual.

7

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

In our preliminary experiments, we also evaluated some modifications of the network design shown in
table 2. In particular, we tested various combinations of both activation function and weight initializer,
finding that the ReLU activation paired with the default initialization scheme achieves the best performance:
refer to section 6.3 for more details about the hyper-parameters. The last variation we tried, was the
application of batch normalization [16] after each affine-conditioning layer: the resulting trained network
had similar classification performance, but at the cost of a slightly longer training (due to the overhead of the
additional operations). One possible explanation is that since the network is not so deep (there are just four
hidden dense layers), the gradient flow is not affected by either vanishing or exploding gradients, thus
making batch normalization not fully necessary. This fact was confirmed by tracking the magnitude
(l2-norm) of the gradients during training. The same modifications were also tried on the pNN architecture,
showing a similar behavior. Indeed, the choice of architecture-related hyper-parameters, like the activation
function, weight initialization, number of layers (or blocks) and number of units, is usually dataset and
problem dependent: what we found to be working here, is not said to be equally good in other circumstances.

4.2. Background’s mass distribution
In our reference work [8], the background’s mass feature is identically distributed as the signal’s mass. In
other analyses, background events receive a mass that is either: (a) randomly assigned from the distribution of
signal masses (only during training) [17], or (b) uniform in the interval of considered mass hypotheses. In
general, we can analyze two situations: identical and different distribution ofm for background events only.

(a) Identical distribution. The mass feature for the ith background event is assigned exactly to a value of
the finite setM= {m0,m1, . . .mM} of the signal mass hypotheses, selected randomly i.e.m(i) ∼M.

(b) Different distribution. The theoretical parameter (mX) is used to define a probability distribution (e.g.
uniform in the interval [min(M),max(M)], or Gaussian being centered at eachmi ∈M) that is diverse
from (going beyond) the finite set of values thatM encodes. In this work, we only consider a uniform
distribution U(Mmin,Mmax) for the mass feature,m. Therefore, the i-th background event will be
assigned a mass feature by sampling randomly from such distribution, i.e.m(i) ∼ U.

In both cases, we can fix the values of the mass feature (only for background) in the dataset (e.g. by
samplingm only one time, and writing them to disk), or we can sample them during training, repeatedly and
differently at each mini-batch. So, we have two degrees of freedom (distribution type, and assignment
strategy) that lead us to a total of four unique combinations: (a) identical fixed, (b) identical sampled, (c)
uniform fixed, and lastly (d) uniform sampled. In our experiments we noticed that, without proper
regularization, having a uniform mass feature for the background allowed the network to almost perfectly fit
both the training and validation sets: this may be due to the introduction of an artificial correlation between
the mass feature and the class label, that was exploited during training. Nevertheless, by regularizing the
model enough generalization is still ensured.

We may further discuss an additional assignment strategy where the mass featurem for the background
can be also determined by means ofmass intervals (or bins), based on the underlying reconstructed mass of the
selected decay products. For example, if we consider (150,250) to be a specific mass interval centered around
200GeV, we can assignm= 200 as mass feature for each background event x whose reconstructed mass is
within the mass interval. In this work, such third assignment strategy have not been taken into account.

4.3. Training procedure
Beyond the architecture and regularization of the parametric network, as well as the distribution of the mass
featurem, we can make some further considerations about how to properly train such kind of neural
networks in light of what we already know about the structure of our own data. In general, we known that
the signal is arranged in |M| groups (one for eachmi), and that the background is (eventually) composed of
different processes. Therefore, beyond class labels, our data is naturally divided in sub-classes: in terms of the
signal generating mass (i.e. the variousmi ∈M), and background processes10. We can exploit such
domain-knowledge to design a training procedure that embeds such inductive biases.

In particular, we can further notice that each sub-class may have its own unique frequency, in terms of
how much data samples fall into each sub-class, e.g. due to data imbalance: as shown in figures 3(a) and 6(b).
Such frequencies may bias the (parametric) network towards certain sub-classes, resulting in an overall
sub-optimal fitting of the data.

10 We can think of sub-classes as additional labels in our data.

8

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

We propose to mitigate this simply by balancing each sub-class in a way that an equal number of events
belongs to each of them. We call such approach balanced training, that, without discarding or generating new
data, can be easily implemented by balancing eachmini-batch during training, e.g. by sampling each
sub-class in equal proportion. Specifically, we have:

• No balance. The usual training procedure, in which the network is trained by experiencing the data as it is.
This will be our baseline for comparison.

• Class-only balance. Only the class labels are balanced within each mini-batch. Considering two classes,
we can balance them in two ways: (a) by associating sample or class weights to each event, resulting in a
weighted loss function, or (b) by sampling the events for a mini-batch such that half the batch is populated
with samples belonging to the positive class (i.e. signal), and the other half with background samples (the
negative class). We implement class-balancing by following the second option, as if the class weights were
implicitly provided to weight the loss function.

• Signal balance. Since the entire signal is generated at different values ofmX , we can build mini-batches such
that there is an equal number of events for each mi ∈M. In practice, we take half the size B of a batch, i.e.
Bs = B/2, and then split that in even parts such that eachmX =mi is represented by exactly Bs/|M| events.
This implies that, at each mini-batch, all the signal mass hypotheses are always represented: this may not
occur, especially if the batch size is small, for the case of no class and background balancing.

• Background balance. Similarly to signal balancing, mini-batches are divided into equally-sized parts such
that each part contains events that belong to a certain backgroundprocess.Of course, such balancing strategy
is only meaningful if our background comprises more than one process: not the case of HEPMASS-IMB. Also
in this case, each mini-batch will contain samples coming from all background processes.

• Full balance11. A combination of class, signal, and background balance. A batch is divided into two halves
(each of sizeB/2) to ensure class balance. Then, one half will be signal balanced, and the other one is balanced
according to the background. In this way, the network will always experience mini-batches that comprise all
signal hypotheses, as well as all background processes.

4.3.1. Model selection
For every balancing procedure (even when the training is not balanced) and regardless the background’s
mass feature distribution, we always perform validation in the same way on a 25% split of the original (not
batch-balanced) data. The AUC of the ROC is used as validation metric. The way we perform validation
resembles the way the model is evaluated on the respective test-set (see section 6). In particular, for each
mi ∈M we take the corresponding signal samples s, and all the background b; for the latter only, we sample
their mass featurem fromM: as in the identical (sampled) option, described in the previous section. Thus,
the mass featurem, will bem(s) =mi for the signal events, andm(b) ∼M for the background events. This is
important to do, since: (a) balancing during validation will alter the value of the validation metric(s), as the
original distribution of the data will be changed, and (b) regarding the mass feature distribution for the
background, validating in a different way would lead to sub-optimal generalization performance of the
selected model.

4.4. Preprocessing and regularization
In general, for our models we found out regularization to be beneficial for improved performance, and also
(as we will see later) crucial for good interpolation. We utilize two well known regularization techniques:
dropout [18], and l2-weight decay. For the affine architecture (section 4.1) we insert a Dropout layer after
each affine-conditioning layer, thus zeroing random elements of the conditioned internal representation z:
refer to equation (1). Instead, for the standard pNN architecture the Dropout layer is inserted after each
ReLU activation. In both cases, we use a drop probability of 25%. Lastly we apply l2-regularization on all
learnable parameters of the network, but with different coefficients for weights and biases respectively.

Classification performances can be usually further boosted by properly normalizing the data input to the
network. Recall that our data have the form (x,m,y), in which: x is a multi-dimensional vector of features,m
(the mass feature) corresponds to a one-dimensional vector of values that make the network be ‘parametric’,
lastly y is a vector of class-labels (either 1 for signal or 0 for background, in our case). Discarding y, we can
normalize (or preprocess, in general) both x andm in the same way, as done by [8] by means ofmin-max

11 In our case, with only one background process, the signal-only and fully balanced training (in which half the batch size is reserved for
signal, and the other half for background events) options are equivalent; not true, in general.

9

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

normalization, or differently. In our case, as HEPMASS is already standardized, we only normalizem by just
dividing it by 1000.

5. Properties of PNNs

We believe that parametric networks have many interesting properties beyond interpolation. In this section
we attempt a first characterization of them, trying to better understand such kind of models.

5.1. Interpolation
The interpolation capability of a pNN is its ability to generalize towards novel mass points that lie between
two known mass hypotheses, resulting in effective interpolation of events between them: we also use the term
extrapolation when the missing or novel mass points lie at the two extremes of the mass range, or even
beyond them. In this case the generalization capability should be twofold: the network is requested (a) to
perform well on novel samples belonging to the known masses, and also (b) to correctly classify new events
that belong to the missing hypotheses. This means that a pNN capable of good interpolation should provide
more accurate outcomes compared to the ones that would be obtained by interpolating the results ofM
individual classifiers, instead. We want our pNN to perform well even if some hypotheses are missing. So,
how to be sure and ensure that our model has acquired such capability?

5.1.1. Factors
We investigated several potential factors, including per-mass features distribution,mass imbalance, background
distribution, network regularization, batch size, and training procedure, that may affect the interpolation
capability of pNNs. Here we describe the most impactful:

• Per-mass features distribution. Recalling from figure 4, a shift in the feature distribution has been observed.
This tells us that some mass points are more difficult to classify than others. In fact such behavior is directly
reflected on single-mass interpolation and extrapolation (i.e. when we train our model on just one mass less).
In figure 9 we can observe how extrapolatingD500 (plot d) is way more difficult than the other masses. This
also suggests us that evaluating ourmodel on only onemass less does not necessarily imply that our network
will correctly interpolate or extrapolate everywhere, in general.
Another way to understand how much the similarity among masses helps (or avoids) our network at inter-
polating or extrapolating them, is to stress our model at extrapolating: we train a pNN on just one mass
hypothesis, requesting it to extrapolate all the remaining ones. In figures 10(a) and (b), we observe how
easier is to predict the missing masses, being the model only trained on mX = 750 or mX = 1000. This fact
seems to be (at least, partially) independent from the AUC achieved on suchmass points: although onD1500

the highest AUC is obtained (plot 10(e)), average extrapolation performance are not the highest among the
others mass points.

• Background distribution and regularization. The impact of background distribution (section 4.2) goes
beyond classification performance, as it may also affect interpolation. Figure 14(c) denotes a pNN that
hardly interpolates; such network was trained on a uniformly distributed background, without regulariz-
ation. During training on all the mass points, we noticed that the same network were able to almost classify
perfectly both the training and validation sets: clearly overfitting them. As discussed previously, having a
uniformly distributed mass feature for the background introduces an additional correlation with the class
label, making training ‘easy’. Indeed, by regularizing the model enough and increasing the batch size, gen-
eralization as well interpolation can be achieved with success.

5.1.2. Select mass hypotheses
Another practical aspect to consider is how to select the mass hypotheses to drop for a fair measure of
interpolation. As described earlier, the goodness of training data can mislead us when quantifying
interpolation. So, we suggest to drop almost half of the mass hypotheses, in the following way: let us assume
we have hypotheses [m0,m1,m2,m3,m4,m5], we may drop [m0,m2,m4] or [m1,m3]. Sometimes, it is
interesting (also useful) to see what a parametric network can achieve when trained on only one mass, and
evaluated for extrapolation on all the others: as shown in figure 10. Such a test may resemble the training of
individual classifiers, being different in that also the mass feature is provided. This kind of test can be useful
to better understand the contribution of both network architecture and training data to the quality of the
resulting extrapolation: in this case, we can expect the parametrized network (trained on only one mass) to
perform well on the only training mass, but not too worse on immediately close hypotheses also maintaining
a reasonable accuracy on far masses. This can be an easy way to asses the similarity of features among masses

10

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Figure 9. Single-mass interpolation and extrapolation on HEPMASS. The blue curve (same in all plots) represents the ROC’s AUC
of a pNN trained on all hypotheses. The orange curve depicts AUC performance for a pNN trained on a subset of the masses. The
missing signal mass hypotheses are denoted by a red square. Lastly, below each plot is depicted the ratio between the orange and
blue curves.

(which is an intrinsic property of the training data): if masses are similar, the network should perform almost
the same on each unseen mass.

5.2. Learnedmass representation
From section 1, in our signal-background classification problem, we actually considerMmass hypotheses
for the signal. This means that our original task can be broken down into |M| smaller classification
problems, each of them considering only a specific massmi ∈M. In fact, approaches before the parametric
network [4] used to solve each sub-task by training a neural network solely onDmi (i.e. a slice of the original
datasetD, that selects events whose mass feature ismi), thus obtaining a (disjoint) set ofM individual
networks, which we will call gmi (or g i for short). Somehow each individual network g i, despite being trained
solely on one mass, is able to implicitly relate the input features to the signal hypothesismi they truly belong
to (or even to the underlying invariant mass). This fact seems to be confirmed by the visualization in
figure 11, in which each intermediate representation hi (of network gmi for allmi ∈M) has a precise and
nicely clustered spatial arrangement, that also relates well to the learned class label.

Such kind of visualizations may provide further insights about the relation existent between a parametric
network and a set of individual networks. Intuitively, we may want the intermediate representation of our

11

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Figure 10. Extrapolation on HEPMASS. We can clearly notice how different mass 500 is from all the others, in fact its extrapolation
performance is really poor: the (mean) AUC decreases by more than 30%. The other plots present a mean loss in AUC that is at
most 8%.

Figure 11. Visualization of the intermediate learned representation (i.e. last hidden layer) of each individual network by means of
t-SNE [19, 20] on the HEPMASS dataset. By coloring the points by the mass label (left plot), we notice that representations related
to the same mass are clustered together, meaning that each network g i has indirectly acquired knowledge about its underlying
signal mass hypothesismi (although not given as input). Also a structured part of them clearly depicts the learned class label
(right plot).

12

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Figure 12. Visualization of the intermediate learned representation of a pNN trained on the HEPMASS dataset. Compared to
figure 11, some structure is present although more convoluted, and less clear in general.

pNN to be disentangled along themass ‘axis’ (in the underlying manifold), as seen in figure 11 for
individually trained neural networks (considered as a whole). The situation for the pNN is similarly
structured (figure 12): some mass are well clustered (e.g. at 500 GeV) and for others we can observe a smooth
‘shading’ among them. This means that the pNN has partially recovered the underlying structure about the
individual masses, but there is still some confusion about representing datapoints coming from higher values
of the signal mass hypotheses.

6. Results

Since the datasets we have for signal-background classification can be divided into |M| groups (in order to
be able to ‘parametrize’ a neural network), also evaluation metrics have to be considered in terms of the
available mass hypotheses for the signal. In particular, the models are evaluated on eachmi separately. So we
consider the signal events generated at a certainmi ∈M, along with the whole background: i.e. the
background events that spans the entire mass range. Indeed, the results provided in this section were all
computed only on the test-set of the respective datasets. Moreover, we weight both signal and background
samples (only for evaluation) such that the weighted count of signal events is equal to the weighted count of
background events, i.e: ∑

i

w(i)
s =

∑
j

w(j)
b . (2)

In particular, for both datasets we set the signal weight to one, ws = 1, and for the background as wb = 1/5;
since we have five mass hypotheses for the signal. For such reason, each time we test a particular mass
hypothesismi ∈M, we select the corresponding signal (i.e. all the signal events that havemi as mass feature)
and the whole background: i.e. the mass feature for all background samples b, is set equal tomi; thus,
m(b) =mi. This is to account for the fact that, in HEPMASS, the original background’s mass is assigned
randomly, being sampled from the setM (i.e. the identical fixed strategy, discussed in section 4.2).

6.1. Metrics
We consider standard evaluation metrics for classification tasks, such as the AUC (area under the curve) of
the ROC (receiving operating characteristic) and Precision-Recall curves. In particular, the ROC curve can be
interpreted for HEP as comparing the signal efficiency (y-axis) against the background efficiency (x-axis): in
terms of how much signal is retained when considering a certain fraction of the background. Otherwise, we
can consider the background rejection (i.e. 1− background efficiency): how much signal is retained at a
certain discard of background. The Precision-Recall curve instead, compares the signal efficiency (recall)
with what we call the purity (precision): the number of true signal divided by the number of events classified
as signal (which also contains misclassification of the background).

13

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Along usual classification metrics, we also consider the Approximate Median Significance (AMS) [21, 22]
but in the following form:

AMS(t) =
st√

st + bt
, (3)

in which st and bt is the (weighted12) number of true signal and true background events, respectively, that
passed the classification threshold t. This quantity is useful to determine an optimal classification threshold
for our networks, called the best cut t⋆, that is the threshold that maximizes the significance:
t⋆ = argmaxtAMS(t). Since the value of the AMS depends on the number of events from which is calculated,
we propose a new metric the significance ratio (σratio) that is normalized in [0,1], thus being very intuitive to
interpret. The significance ratio is defined as the ratio between the best (maximum) AMS by the largest
possible significance (only achievable ideally, by means of a perfect classification when st = smax, i.e. equal to
all the true signal, and bt = 0):

σratio =
maxtAMS(t)

smax/
√
smax

=max
t

{
st ·

√
smax

smax ·
√
st + bt

}
=

s⋆ ·
√
smax

smax ·
√
s⋆+ b⋆

, (4)

where s⋆ = st⋆ , and b⋆ = bt⋆ . Such metric can be also used to compare how well the same model classifies
different mass hypotheses: this is now possible since the number of events belonging to a certainmi does not
affect the scale of the metric (as happens for the regular AMS, instead), anymore. We can further say that the
best cut t⋆, apart from telling us which classification threshold is the best to determine the positive class, is
also an useful quantity to monitor because it can provide additional information about the goodness of the
classification. In particular, by plotting the best cut versus the mass we may observe failure cases in which t⋆

is either 0 or 1, depicting a situation in which the network is unable to correctly separate out the background
(t⋆ = 0) or to retain a significant amount of signal (t⋆ = 1). A special failure case can be observed when
s⋆ = smax and s⋆ = b⋆, i.e. the signal is equal in number to all the true signal, which is also equal to the true
classified background (e.g. due to applied weights). In this case we would obtain σratio = 1/

√
2≈ 0.707,

since:

s⋆ ·
√
smax

smax ·
√
s⋆+ b⋆

=

√
s⋆√

s⋆+ s⋆
=

1√
2
. (5)

Indeed, measuring σratio ≈ 0.707 also implies having an AUC of 0.5, corresponding to nonsense

classification. Moreover, if the best cut t⋆ is such that s⋆ = smax but b⋆ > 0, then σratio =
√
s⋆√

s⋆+b⋆
decreases

toward zero (in the limit), as b⋆ approaches bmax (i.e. the weighted count of all true background events).

6.2. Baselines
To first assess the advantages brought by pNNs we should compare them to their ‘non-parametric’
counterparts, namely single and individual neural networks. What we call a single-NN is just a neural
network that is trained without the mass feature (m) as input but on allM hypotheses at the same time; so, it
has only one input: the features x. Instead, the individual networks are, as the name suggests, a set of single
networks, gϕi , each of them trained to target a specific mass hypothesismi ∈M. Since each gϕi is trained in
isolation on onemi against the whole background, we expect the individual networks to easily beat the single
network as it should face a harder learning problem. Moreover, both kind of networks can provide baseline
performance for interpolation: the single network is trained to fit all data regardless of the mass (not given as
input), whereas each individual network gϕi will interpolate by means of the similarity between the
hypothesismi it was trained on, and themj to interpolate.

Finally, to assess the effectiveness of the various decision choices described in section 4, we apply them
(whether possible) to the non-parametric baselines, and also (of course) to the parametric baseline: a vanilla
pNN, as intended by Baldi et al [8]. Results for classification performance are shown in figure 13.

12 In general, the weights ws and wb are introduced with the only aim of balancing the occurrences of the two classes when testing for a
particular mi: they have no physical meaning, as we want to keep our study as general as possible, without assuming any luminosity and
signal cross section weights during training and evaluation.

14

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Figure 13. Comparison among (tuned) baselines on HEPMASS-IMB. As we can see, the best classification performance (in terms
of AUC of both ROC and PR curves, and σratio as well; for eachmi ∈M) are achieved by the individual NNs, as well as the
parametric baseline (with identical-fixed distribution for the background’s mass feature).

Table 3. Per-mass ROC’s AUC metric computed on the test-set of HEPMASS: all AUC values are in percentage, higher is better. Best
results are shown boldface. Options for mass distribution are described in section 4.2. We have also included a third baseline, a
parametric network with linear activation: as we can see it underperforms even the single-NN, despite leveraging the additional
information provided by the input mass feature.

Model Mass (GeV)

Kind Mass distribution 500 750 1000 1250 1500 AUC (average)

Single-NN None 68.55 89.37 96.38 98.07 98.69 90.21%
Individual-NNs None 77.35 92.59 97.42 98.89 99.45 93.14%
pNN (linear) Identical (fixed) 63.42 89.36 96.08 97.90 98.58 89.07%
pNN Uniform (fixed) 70.95 91.80 97.26 98.79 99.37 91.63%
Affine Uniform (fixed) 71.24 90.81 96.94 98.64 99.26 91.38%
pNN Uniform (sampled) 71.63 91.71 97.25 98.82 99.39 91.76%
Affine Uniform (sampled) 70.16 91.61 97.16 98.75 99.34 91.40%
pNN Identical (fixed) 76.78 92.56 97.46 98.92 99.46 93.04%
Affine Identical (fixed) 77.34 92.80 97.55 98.96 99.49 93.23%
pNN Identical (sampled) 76.77 92.60 97.48 98.92 99.46 93.05%
Affine Identical (sampled) 77.31 92.77 97.55 98.96 99.49 93.22%

6.3. Evaluation
6.3.1. Hyperparameters
All the neural networks used for comparison are built using the TensorFlow 2.X [23] framework along with
the Keras [24] library for Python. To improve reproduce our results we fix the random seed to be 42. All the
networks use the same hyperparameters: ReLU activation, [300,150,100,50] units for each hidden layer,
sigmoid output, binary-crossentropy loss, Adam optimizer [25], batch size of 1024 (except when told
otherwise), and default initialization: glorot_uniform [26] for weights, and constant zero initializer for
biases. It results in about 70k learnable parameters. The learning rate is never decayed, and set to 3× 10−4. In
general, we always use regularization by means of both dropout (with drop rate of 25%), and l2-weight
decay. The weight decay is applied differently, with a strength of 10−4 for weights (or 10−5), and 10−5 for
biases (or 10−6). Also, the same hyperparameters are kept for both datasets, as well as the training budget
fixed at 25 epochs. In general, the hyperparameters we use were initially tuned for the vanilla pNN
architecture on HEPMASS.

6.3.2. HEPMASS
Results about classification performance (with baseline models), background’s mass feature distribution, and
model architecture are presented in table 3. Whereas further results for interpolation are showed in
figures 14(a) and (b).

6.3.3. HEPMASS-IMB
Results on interpolation are presented both in table 4 and figure 14(c). Furthermore, an exhaustive
comparison among baseline models, parametric and affine architectures, background’s mass distribution,

15

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Figure 14. In figure (a) and (c) the models have been trained solely on two mass hypotheses: at 500 and 1500GeV. Instead, the
networks depicted in plot (b), were trained on mass 750 and 1250GeV. The title of each plot denotes the missing masses by M̄. In
particular, in figure (c) we can seen how the lack of proper regularization prevents the network (depicted by the red line) to
interpolate the signal at the missing mass hypotheses. Moreover, the affine network outperforms by a large margin the two
competent pNNs.

Table 4. Per-mass and averaged, ROC’s AUC and significance ratio (equation (4)) metrics computed on HEPMASS-IMB, showing
interpolation capabilities. The missing signal mass hypotheses are M̄= {750,1000,1250}. Best results are shown in boldface. The
identical (sampled) distribution strategy is described in section 4.2, and the balanced training is detailed in section 4.3.

Model Mass (GeV) Average (%)

Kind Mass distribution 500 750 1000 1250 1500 AUC σratio

pNN Identical (sampled) 76.65 76.66 93.93 97.92 98.93 88.82
74.38 74.78 88.38 93.40 91.52 84.49

pNN (class) Identical (sampled) 77.41 71.25 94.60 98.48 99.29 88.21
74.81 73.23 89.16 94.55 96.32 85.61

pNN (full) Identical (sampled) 76.88 73.68 93.85 98.21 99.17 88.36
74.56 75.38 88.39 93.67 93.82 85.16

Affine Identical (sampled) 76.49 88.79 96.39 98.44 99.13 91.85
74.33 82.66 91.07 93.86 89.90 86.36

Affine (class) Identical (sampled) 77.16 88.67 96.51 98.63 99.31 92.05
74.70 83.10 91.30 94.80 96.43 88.07

Affine (full) Identical (sampled) 76.20 84.68 94.87 97.87 98.89 90.50
74.26 80.28 89.04 92.91 89.84 85.27

and training procedure is detailed in table 5. Finally, outcomes about classification performance in terms of
class separation are detailed in figure 15.

6.4. Discussion
In our empirical comparison among network architectures, background distribution, and training
procedure, we can conclude that:

(a) The affine-conditioning mechanism is able to better exploit the information brought by the mass
feature, resulting in improved classification performance.

(b) The balanced training procedure, that yields balanced mini-batches, can further improve performance,
even without changing the network architecture.

(c) The way the mass feature is distributed has a profound impact on how the model classifies and
interpolates the missing masses. In general, the uniform distribution tends to easily overfit resulting in
lower performance.

(d) Finally, the right combination of network architecture, background distribution, and balanced training,
allowed us to greatly improve on both imbalanced classification and interpolation, almost recovering
the classification performances achieved on the original, full, and not-imbalanced dataset.

16

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Table 5. Comparison of baselines, model architecture, background’s mass feature distribution, and training procedure on
HEPMASS-IMB. Performances are evaluated in terms of ROC-AUC and significance ratio. Options for mass distribution are described in
section 4.2. The words class and full, refer, respectively, to class- and fully-balanced training (section 4.3). Best results are shown boldface.

Model Mass (GeV) Average (%)

Kind Mass distribution 500 750 1000 1250 1500 AUC σratio

Single-NN None 72.62 86.56 92.68 93.83 94.06 87.95
73.52 79.51 85.59 86.85 86.86 82.47

Individual-NNs None 76.81 92.28 96.98 98.44 98.93 92.69
74.43 85.91 91.75 92.07 90.04 86.84

pNN Identical (fixed) 76.71 92.46 97.35 98.80 99.35 92.93
74.46 86.17 92.43 95.09 93.94 88.42

pNN (class) Identical (fixed) 76.93 92.56 97.41 98.85 99.39 93.03
74.67 86.34 92.55 95.32 96.64 89.11

pNN (full) Identical (fixed) 76.29 92.33 97.33 98.79 99.34 92.82
74.31 86.14 92.44 95.17 96.47 88.91

Affine Identical (fixed) 77.19 92.62 97.43 98.86 99.40 93.10
74.70 86.30 92.52 95.31 95.61 88.89

Affine (class) Identical (fixed) 77.19 92.64 97.46 98.88 99.42 93.12
74.76 86.38 92.62 95.37 96.77 89.18

Affine (full) Identical (fixed) 76.45 92.46 97.38 98.78 99.31 92.88
74.42 86.24 92.50 95.07 95.07 88.66

pNN Identical (sampled) 76.73 92.44 97.34 98.80 99.35 92.93
74.47 86.11 92.37 94.96 93.76 88.34

pNN (class) Identical (sampled) 76.88 92.51 97.40 98.86 99.40 93.01
74.61 86.29 92.51 95.33 96.70 89.09

pNN (full) Identical (sampled) 76.38 92.39 97.34 98.79 99.34 92.85
74.35 86.17 92.47 95.16 96.52 88.93

Affine Identical (sampled) 77.26 92.64 97.43 98.87 99.40 93.12
74.71 86.34 92.55 95.33 95.74 88.93

Affine (class) Identical (sampled) 77.24 92.66 97.46 98.88 99.42 93.13
74.78 86.39 92.60 95.39 96.77 89.19

Affine (full) Identical (sampled) 76.41 92.43 97.37 98.80 99.34 92.87
74.37 86.19 92.47 95.10 95.23 88.67

pNN Uniform (fixed) 76.67 92.41 97.33 98.79 99.34 92.91
74.48 86.15 92.39 95.15 94.70 88.57

pNN (class) Uniform (fixed) 71.00 91.56 97.14 98.75 99.32 91.55
72.71 85.64 92.22 95.09 96.45 88.42

pNN (full) Uniform (fixed) 72.19 91.41 97.11 98.70 99.25 91.73
73.06 85.42 92.16 94.93 96.23 88.36

Affine Uniform (fixed) 77.26 92.62 97.43 98.86 99.41 93.11
74.73 86.31 92.52 95.25 94.65 88.69

Affine (class) Uniform (fixed) 77.29 92.68 97.47 98.89 99.43 93.15
74.82 86.42 92.64 95.40 96.80 89.22

Affine (full) Uniform (fixed) 66.67 91.15 97.08 98.70 99.30 90.58
70.75 85.46 92.05 94.88 96.34 87.90

pNN Uniform (sampled) 72.21 91.48 97.17 98.72 99.29 91.77
73.14 85.55 92.15 94.88 95.17 88.18

pNN (class) Uniform (sampled) 71.48 91.68 97.16 98.75 99.32 91.68
72.80 85.61 92.20 95.10 96.47 88.44

pNN (full) Uniform (sampled) 71.35 91.53 97.18 98.73 99.31 91.62
72.57 85.44 92.20 94.98 96.44 88.33

Affine Uniform (sampled) 67.52 91.13 97.01 98.64 99.26 90.71
72.73 85.47 91.90 93.90 90.49 86.78

Affine (class) Uniform (sampled) 66.97 90.99 97.06 98.69 99.28 90.60
71.60 85.29 92.01 94.84 96.29 88.01

Affine (full) Uniform (sampled) 66.08 90.37 96.82 98.51 99.14 90.18
72.46 84.87 91.57 94.41 95.91 87.84

17

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

Figure 15. Comparison of classification performance on HEPMASS-IMB, between a pNN (uniform, sampled) and affine model
(identical, sampled). We can notice how the two models opt for rather different classification thresholds.

7. Conclusions

In this study we first discussed the concept of ‘parametrization’ which is really a re-brand of the widely used
conditioning mechanisms in deep learning. Establishing such connection allows us to brought ideas and
methods from such area, to improve pNNs in HEP. Another proposed intuition is about the structure of the
data we use for signal-background classification: we know the contribution of the background(s), and at
which mass the signal is generated. In fact we leverage the latter information to build a mass feature that
parametrizes a neural network, allowing the model to replace a set of individual classifiers, as well as to
interpolate beyond events seen during training. By studying the general structure of the data, we can exploit
the inductive biases it provides by embedding them in the network design, and training as well. Lastly we
demonstrated that pNNs are able to interpolate under real-world assumptions. We hope the ideas proposed
here to be inspirational for further work about parametric networks, but also to be useful in other fields
beyond HEP that have a similar problem setting and requirements.

7.1. Open questions
Our work is a first step towards a full understanding of parametric networks. We believe more properties and
extensions to what is presented here to exist. In particular, we may suggest further research directions:

18

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

• Real-world datasets are imbalanced, so either self-supervised learning, class- or mass-specific data augment-
ation, or (parametric) generative modelsmay provide a major improvement in classification performance.

• The signal is generated at few discrete mass hypotheses, what about parametrizing on the whole, continuous
mass range?

• The output of a pNN is a single number, why not letting the network output or discover a classification rule
that can be easily interpreted by physicists to further increase their knowledge about a certain phenomena?

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
https://zenodo.org/record/6453048. The code used to produce our experiements is openly available on
GitHub: https://github.com/Luca96/affine-parametric-networks.

Acknowledgments

The authors gratefully acknowledge the CMS Bologna analysis team - in particular Federica Primavera,
Stefano Marcellini and Gianni Masetti - for the constructive discussions, and Andrea Perrotta for the
valuable feedback and support.

ORCID iDs

Luca Anzalone https://orcid.org/0000-0002-0399-8836
Tommaso Diotalevi https://orcid.org/0000-0003-0780-8785
Daniele Bonacorsi https://orcid.org/0000-0002-0835-9574

References

[1] Goodfellow I, Bengio Y and Courville A 2016 Deep Learning (Cambridge, MA: MIT press)
[2] Friedman J et al 2001 The Elements of Statistical Learning (Springer Series in Statistics vol 1) (New York: Springer)
[3] Chatrchyan S et al 2012 Observation of a New Boson at a mass of 125 GeV with the CMS experiment at the LHC Phys. Lett. B

716 30–61
[4] Baldi P, Sadowski P and Whiteson D 2014 Searching for exotic particles in high-energy physics with deep learning Nat. Commun.

5 4308
[5] Evans L and Bryant P 2008 LHC machine J. Instrum. 3 S08001
[6] Sirunyan A M et al 2020 Search for a charged Higgs boson decaying into top and bottom quarks in events with electrons or muons

in proton-proton collisions at
√
s= 13 TeV J. High Energy Phys. 01 096

[7] Sirunyan A M et al 2018 Search for resonant and nonresonant Higgs boson pair production in the bbℓνℓν final state in
proton-proton collisions at

√
s= 13 TeV J. High Energy Phys. 01 054

[8] Baldi P, Cranmer K, Faucett T, Sadowski P and Whiteson D 2016 Parameterized neural networks for high-energy physics Eur. Phys.
J. C 76 1–7

[9] Anzalone L, Diotalevi T and Bonacorsi D 2022 HEPMASS-IMB (https://doi.org/10.5281/zenodo.6453048)
[10] Baldi P, Cranmer K, Faucett T, Sadowski P and Whiteson D 2015 HEPMASS dataset—UCI machine learning repository (available

at: http://archive.ics.uci.edu/ml/datasets/HEPMASS)
[11] Codevilla F, Müller M, López A M, Koltun V and Dosovitskiy A 2018 End-to-end driving via conditional imitation learning 2018

IEEE Int. Conf. on Robotics and Automation (ICRA 2018) (Brisbane, Australia, 21–25 May 2018) (IEEE) pp 1–9
[12] Finn C, Abbeel P and Levine S 2017 Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Proc. 34th Int. Conf. on

Machine Learning (ICML 2017) (Sydney, NSW, Australia, 6–11 August 2017) (Proc. Machine Learning Research) vol 70, ed D Precup
and Y W Teh (PMLR) pp 1126–35

[13] Eysenbach B, Gupta A, Ibarz J and Levine S 2019 Diversity is all you need: learning skills without a reward function 7th Int. Conf.
on Learning Representations (ICLR 2019) (New Orleans, LA, USA, 6–9 May 2019) (OpenReview.net)

[14] Mirza M and Osindero S 2014 Conditional generative adversarial nets arXiv:1411.1784
[15] Dumoulin V, Perez E, Schucher N, Strub F, Vries H d, Courville A and Bengio Y 2018 Feature-wise transformations Distill

(available at: https://distill.pub/2018/feature-wise-transformations)
[16] Ioffe S and Szegedy C 2015 Batch normalization: accelerating deep network training by reducing internal covariate shift Proc. 32nd

Int. Conf. on Machine Learning (ICML 2015) (Lille, France, 6–11 July 2015) (JMLR Workshop and Conf. Proc.) vol 37, ed F R Bach
and D M Blei (JMLR.org) pp 448–56

[17] Aad G et al 2021 Search for charged Higgs bosons decaying into a top quark and a bottom quark at
√
s= 13 TeV with the ATLAS

detector J. High Energy Phys. 06 145
[18] Srivastava N, Hinton G E, Krizhevsky A, Sutskever I and Salakhutdinov R 2014 Dropout: a simple way to prevent neural networks

from overfitting J. Mach. Learn. Res. 15 1929–58
[19] Van der Maaten L and Hinton G 2008 Visualizing data using t-SNE J. Mach. Learn. Res. 9 11
[20] Wattenberg M, Viégas F and Johnson I 2016 How to use t-SNE effectively Distill 1 e2
[21] Adam-Bourdarios C, Cowan G, Germain C, Guyon I, Kégl B and Rousseau D 2015 The Higgs Boson Machine Learning Challenge

NIPS 2014 Workshop on High-Energy Physics and Machine Learning (PMLR) pp 19–55

19

https://zenodo.org/record/6453048
https://github.com/Luca96/affine-parametric-networks
https://orcid.org/0000-0002-0399-8836
https://orcid.org/0000-0002-0399-8836
https://orcid.org/0000-0003-0780-8785
https://orcid.org/0000-0003-0780-8785
https://orcid.org/0000-0002-0835-9574
https://orcid.org/0000-0002-0835-9574
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1007/JHEP01(2020)096
https://doi.org/10.1007/JHEP01(2020)096
https://doi.org/10.1007/JHEP01(2018)054
https://doi.org/10.1007/JHEP01(2018)054
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.1140/epjc/s10052-016-4099-4
https://doi.org/10.5281/zenodo.6453048
http://archive.ics.uci.edu/ml/datasets/HEPMASS
https://distill.pub/2018/feature-wise-transformations
https://doi.org/10.1007/JHEP06(2021)145
https://doi.org/10.1007/JHEP06(2021)145
https://doi.org/10.23915/distill.00002
https://doi.org/10.23915/distill.00002

Mach. Learn.: Sci. Technol. 3 (2022) 035017 L Anzalone et al

[22] Cowan G, Cranmer K, Gross E and Vitells O 2011 Asymptotic formulae for likelihood-based tests of new physics Eur. Phys. J. C
71 1–19

[23] Abadi M et al 2016 TensorFlow: a system for large-scale machine learning 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16) pp 265–83

[24] Chollet F et al 2015 Keras: Deep Learning for Humans Keras.io
[25] Kingma D P and Ba J 2015 Adam: a method for stochastic optimization 3rd Int. Conf. on Learning Representations (ICLR 2015)

(San Diego, CA, USA, 7–9 May 2015) (Conf. Track Proc.) ed Y Bengio and Y LeCun
[26] Glorot X and Bengio Y 2010 Understanding the difficulty of training deep feedforward neural networks Proc. 13th Int. Conf. on

Artificial Intelligence and Statistics (AISTATS 2010) (Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010) (JMLR Proc.) vol 9, ed
Y W Teh and D M Titterington (JMLR.org) pp 249–56

20

https://doi.org/10.1140/epjc/s10052-011-1554-0
https://doi.org/10.1140/epjc/s10052-011-1554-0

	Improving parametric neural networks for high-energy physics (and beyond)
	1. Introduction
	2. Related work
	2.1. Parametric neural networks
	2.2. Conditioning mechanisms

	3. Datasets
	3.1. HEPMASS
	3.2. HEPMASS-IMB

	4. Method
	4.1. The affine architecture
	4.2. Background's mass distribution
	4.3. Training procedure
	4.3.1. Model selection

	4.4. Preprocessing and regularization

	5. Properties of PNNs
	5.1. Interpolation
	5.1.1. Factors
	5.1.2. Select mass hypotheses

	5.2. Learned mass representation

	6. Results
	6.1. Metrics
	6.2. Baselines
	6.3. Evaluation
	6.3.1. Hyperparameters
	6.3.2. HEPMASS
	6.3.3. HEPMASS-IMB

	6.4. Discussion

	7. Conclusions
	7.1. Open questions

	References

