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Abstract
The unique electronic and mechanical properties of two-dimensional (2D) materials make them
promising next-generation candidates for a variety of applications. Large-scale searches for
high-performing 2D materials are limited to calculating descriptors with computationally
demanding first-principles density functional theory. In this work, we alleviate this issue by
extending and generalizing crystal graph convolutional neural networks to systems with planar
periodicity and train an ensemble of models to predict thermodynamic, mechanical and electronic
properties. We carry out a screening of nearly 45,000 structures for two separate applications:
mechanical strength and photovoltaics. By collecting statistics of the screened candidates, we
investigate structural and compositional design principles that impact the properties of the
structures surveyed. Our approach recovers some well-accepted design rules: hybrid
organic-inorganic perovskites with lead and tin tend to be good candidates for solar cell
applications and titanium based MXenes usually have high stiffness coefficients. Interestingly,
other members of the group 4 elements also contribute to increasing the mechanical strength of
MXenes. For all-inorganic perovskites, we discover some compositions that have not been deeply
studied in the field of photovoltaics and thus open up paths for further investigation. We
open-source the code-base to spur further development in this space.

1. Introduction

Two-dimensional (2D) materials have emerged as attractive candidates for energy applications due to their
unique electronic, mechanical, chemical, optoelectronic and magnetic properties [1–4]. Among their
different prototype structures, MXenes have been explored for applications in battery electrodes, water
purification, catalysis, lubrication, etc. [5–7]. Their structure and composition allows the careful tuning of
properties for these applications [8]. Most device applications of 2D materials require mechanical
integration with the substrate, promoting an interest in their mechanical properties. MXenes are known to
be mechanically stronger compared to other 2D materials resulting in applications in protective coatings,
composites and membranes [9]. 2D materials offer a new way of tuning the properties of their 3D
counterparts like band gaps through exfoliation [10]. 2D counterparts of perovskites have shown promise for
solar cell applications [11] (figure 1).

The existence of a variety of 2D structures and atoms to populate their sites imply that a purely
experimental or computational approach based on first-principles calculations to identify materials for
desired applications is infeasible. For example, an MXene structure of the formMn+1XnTx (X= C, N) when
provided withmmetal possibilities, t functional group possibilities combinatorially explodes: the upper
bound on the number of materials would be∼ 2nmn+1tx; for example, the case, n= 2 (i.e. M3X2) with
m= 10 metal possibilities and t= 3 different terminations (e.g. F, OH, O) on either side of the structure
would yield approximately 35 000 materials, while just doubling the number of metal options from 10 to
m= 20 gives ~ 280 000 possibilities. With the generation of massive amounts of materials data [12],
data-driven techniques offer a new avenue to tackle this problem [13]. Data-driven methods have shown the
promise of not only furthering our fundamental understanding of materials [14] but also provide a platform
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Figure 1. Illustration of 2D materials applications: (a) 2D perovskites whose bandgaps are in the range of 1.5–3 eV have been
demonstrating promise in the field of photovoltaics, ; (b) MXenes can be used in composites to increase their mechanical
strength, here indicated by the material’s response to an external mechanical stress (in grey).

for performing large-scale computational screening through the development of accurate structure–property
relationships [15–19]. Machine learning methods can bypass the use of expensive first-principles calculations
and help accelerate the often time consuming discovery and optimization of materials for various
applications [20–22].

Recently, graph convolution based machine learning models have shown promising generalization
capability for predicting the properties of crystals and molecules [18, 23–25]. These methods encode the
structure of a material as a graph based on the position and coordination of atoms, thus circumventing the
need for carefully handcrafted or engineered structural features. This enables them to be used in a variety of
applications. Here, we extend crystal graph convolutional neural networks (CGCNN) to study materials with
planar periodicity. Using 100 different, randomly generated training sets, we trained an ensemble of CGCNN
models to predict thermodynamic, mechanical and electronic properties. The ensemble of neural networks
shows errors comparable to those from highly accurate first-principles calculations, such as density
functional theory (DFT), as discussed in appendix A. We use this ensemble to screen ~ 45 000 2D monolayer
materials with focus on mechanically strong MXenes (c11, c22 ≥ 175 N/m) and on perovskites whose band
gaps fall within an acceptable range ([1.5, 3] eV) for solar cell applications. The two applications chosen are
quite different from each other and aim to demonstrate the generalizability of our model predictions. With
these models, we recover some well-accepted design rules: for instance, hybrid organic-inorganic perovskites
with either tin or lead as metal components are useful for photovoltaics, as are the organic cations
fomamidinium, imidazolium, or azetidinium. Similarly, we find that titanium based MXenes tend to be
mechanically robust. In addition, incorporating the other main elements of group 4 of the periodic table,
such as zirconium and hafnium, aids in increasing the stiffness of this class of structures. Interestingly, we
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also identify some less commonly investigated principles: all-inorganic perovskites whose band gaps are most
likely to fall within a desirable range for solar cell applications have zirconium, niobium, hafnium, scandium,
or vanadium as metal components.

2. Methods

2.1. Databases
The present work utilizes computational data and material structures from (1) the Computational 2D
Materials Database [26] (C2DB), (2) a database of hybrid organic-inorganic perovskites generated by Kim
et al [27] (HOIP), (3) a database of cubic perovskites generated by Castelli et al [28] (Castelli) and (4) a
database of 2D MXenes generated by Rajan et al [29] (aNANt). While all four databases contain DFT
calculations, only values from the C2DB database were used to train the CGCNNmodels. Structures derived
from the other three databases were screened after training the initial models.

We used data from the C2DB database to train the CGCNNmodel. As of August 2019, C2DB consists of
over 3500 structural, thermodynamic, elastic, electronic, magnetic and optical properties calculated using
DFT. Each structure was combinatorially generated from a series of prototype structures that differ in space
group, stoichiometry and thickness. Some example prototypes include BN (space group P3̄m2), BiI3
(P3̄m1), or PbSe (P4/mmm). DFT calculations were performed using the Perdew, Burke and Ernzerhof
(PBE) exchange correlation functional [30] in the projector augmented wave code GPAW [31]. The stability
of each material is evaluated by predicting enthalpy of formation, the elastic constants, and the phonon
frequencies. If a material is stable, its electronic structure and other properties, such as polarizability, are also
calculated. The most relevant properties for screening 2D MXenes and perovskites are the heat of formation;
bandgap; and the c11, c12 and c22 components of the elastic tensor. Using the CGCNNmodels trained from
the C2DB data, we predict the heat of formation, bandgap, and in-plane elastic tensor components of
approximately 20000 2D perovskites and 25 000 2D MXenes. The perovskite structures were taken from two
sources: the HOIP dataset [27] and the Castelli database [28]. The HOIP database contains 1346 structures
that were combinatorially generated from a series of 135 prototypes. The perovskite prototypes were
obtained using the minima-hopping method outlined by Goedecker [32]. The prototypes were then
optimized using a combination of molecular dynamics simulations and DFT calculations, coupled with the
vdW-DF2 [33] exchange correlation functional as implemented in the Vienna Ab Initio Simulation (VASP)
package [34]. Each structure has stoichiometry ABX3, where A is one of 16 organic cations, B is one of {Ge,
Pb, Sn} and X is one of {F, Cl, Br, I}. The Castelli database contains nearly 19 000 cubic perovskites. The
structures were generated combinatorially with each perovskite having stoichiometry ABX3, where A and B
are each one of 52 different metals and X3 is one of seven different anion groups, then optimized using the
RPBE [35] exchange correlation functional as implemented in GPAW [31]. Both the HOIP and Castelli
databases contain only bulk structures. To create 2D lattices for screening, we exfoliate the bulk structures to
generate a (001) monolayer.

The 2D MXenes structures are taken from the aNANt database [29]. This database contains
combinatorially generated 23 870 MXenes with five-layer structures of the form T-M-X-M’-T’ (that is, the
T/T’ occupy the outermost layers in the structure), where T and T’ are each one of 14 termination functional
groups, M and M’ are each one of 11 early transition metals and X is one of {C, N}. Structures were
optimized using the PBE exchange correlation functional in VASP [34].

2.2. Model training
In order to screen the ~ 20 000 perovskites and ~ 24 000 MXenes 2D monolayer structures, as well as to
uncover the underlying design principles for their respective applications, a technique that can predict
properties accurately at a computational cost much lower than DFT is required. We use the CGCNN
framework [23] as a surrogate technique for predicting material properties. This method provides the
accuracy of DFT calculations (discussed in appendix A) but at a fraction of the associated computational
cost: while it can take up to 500 CPU hours to compute the c11 coefficient for one structure with DFT,
CGCNNs can predict the same property for roughly 25 000 structures in under 20 GPU minutes once
trained. This framework has been successfully used in a variety of applications, from selecting solid
electrolyte candidates [18] to screening catalytic materials [36]. At the foundation of the CGCNN is the
undirected multigraph representation of the crystal structure, in which nodes represent atoms by their
respective features and edges encode interatomic bond distances [23]. Iterative convolution layers update
atomic feature vectors based on neighbor information, as further explained in appendix C. A simplified
depiction of the CGCNN can be seen in figure 2.

After optimizing the network architecture (as discussed in appendix B), we used an ensemble of 100
CGCNNmodels, each trained on a random set of 70% of the C2DB data to predict the properties of interest:
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Figure 2. A simple representation of the CGCNN architecture. The atomic structure is first converted into its crystal graph
representation. This graph is then passed as input for the convolutional layers, where the atomic feature vectors are updated based
on neighbor information and bond lengths. Next, a pooling function is employed to produce an overall vector representation of
the crystal, guaranteeing invariance with respect to number of primitive unit cells used in the creation of the original structure.
Finally, a set of fully connected hidden layers maps the simplified vector-represented crystal structure to the property of interest.

band gap, log(c11), log(c22), c12, conduction band minimum (CBM), valence band maximum (VBM) and
heat of formation (Hform).

3. Results and discussion

3.1. Structure screening
In order to evaluate the accuracy of the ensemble of 100 models, we used them to predict the properties of all
the structures in the C2DB database. The results for the ensemble predictions of some of the main properties
of interest can be seen in the parity plots shown in figure 3. An analysis of the usefulness of the uncertainty
quantification of models, as well as an investigation of the outliers of each model, can be found in
appendix A.

As discussed in the Introduction, we screened MXenes in search of structures that are strong
mechanically, with both c11, c22 ≥ 175 N/m, thus exceeding those of graphene oxide [9] and perovskites
whose bandgaps fall in the range [1.5, 3] eV, appropriate for solar cell applications. Since it is also required
that these structures be stable, as well as synthesizable, our filtering procedure included the additional
requirement that Hform≤−2 eV/atom for MXenes and inorganic perovskites and Hform≤−0.5 eV/atom for
hybrid organic–inorganic perovskites. The difference in treatment for the latter stems from the fact that
hybrid perovskites are known to be relatively less stable than their inorganic counterparts [37]. These
threshold values of Hform were chosen as they represent the average of the lowest heats of formation of the
structures in their respective datasets.

We quantify the confidence of our predictions for a given structure s by its c-value (confidence
value) [38] representing the fraction of models in the ensemble that predict structure s to be useful for the
application, based on the aforementioned criterion. It is calculated in the following manner:

c(s) =
1

N

N∑
i=1

Mi(s), (1)

where N = 100 is the number of models used and

Mi(s) =

{
1 if the ith model predicts structure s to be useful
0 otherwise

(2)

This enables us to determine the 2D structures with the highest likelihood of being useful for their
applications, as shown in table 1. It is important to note, however, that the training sets for the band gap
prediction models contained only materials with non-zero band gap, meaning that a further metallic versus
insulator filtering, with subsequent update of the c-values, is needed. The reason for this is that, when given a
conducting material, the CGCNNmodels predict a positive band gap, since they have only been trained on
insulators or semiconductors.
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Figure 3. Comparison of predicted and DFT-calculated (a) log(c11), (b) log(c11), (c) Hform and (d) band gap on C2DB data. The
predictions are made using an ensemble of 100 CGCNNmodels, each trained on randomly selected training data.

Using the same techniques employed in the generation of the C2DB dataset [26], we performed DFT
calculations of the stiffness coefficients of all MXenes with a c-value of 1. All of these structures have both c11
and c22 greater than 175 N m−1. Furthermore, when comparing the logarithm of these coefficients with
those predicted by our model, we get an MAE of 0.117 log(N/m) for c11 and of 0.085 log(N/m) for c22, with
RMSE of 0.128 and 0.093 log(N/m), respectively.

3.2. Identifying design principles
To uncover the compositional and structural commonalities of useful candidates, we applied an analogous
concept to study the design principles that can increase the c-values of different MXene and perovskite
materials. First, for each dataset used, we establish the following functions of the design principle (DP): the
subset of all structures satisfying the DP,DDP = {structures that satisfy the DP}; the proportion of the dataset
that contains the DP, PDP = NDP/Ndataset, where NDP = |DDP| is the cardinality of setDDP (the number of
elements in this set) and Ndataset is the total number of structures in the dataset; and the average of c-values of
all structures inDDP

cDP =
1

NDP

∑
s∈DDP

c(s), (3)

which can be interpreted as the chance of an arbitrary model predicting that a random structure inDDP is a
useful candidate.

Next, we introduce a minimum threshold, ccut , to distinguish the best candidate structures from the
others. The subset composed of these materials can be expressed as a function of ccut as
B(ccut) = {structures with c-value≥ ccut}. From this definition, we can examine how the presence of a
specific design rule in a material influences its existence among the best candidates in set B(ccut), as well as
the c-values of these structures. For this purpose, we will define a few quantities, all functions of ccut . One of
the simplest indicators that a given DP is effective at making a structure useful for the application in a
combinatorially generated dataset is the proportion of the set of best candidates B that is comprised of
materials satisfying the DP, PDP|best = |B ∩DDP|/|B| and how it compares with PDP. Additionally, it is helpful
to examine the difference between the likelihood of a random material being amongst the best candidates
Pbest|All = |B|/Ndataset and the chance of that happening given that the structure contains the DP,
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Table 2. Design principles with five highest values of ratio
PDP|best
PDP

. The cutoff c-values used in computing values displayed for MXenes

was ccut = 0.95 and for both inorganic and organic perovskite cases, ccut = 0.80.

Design principle cDP PDP [%] PDP|best [%] Pbest|All [%] Pbest|DP [%] PDP|bestPDP

MXenes Hf*O-O-N 0.729 0.046 12.069 0.243 63.636 261.897
Ti*O-O-N 0.683 0.046 10.345 0.243 54.545 224.483
Hf*O-O 0.560 0.092 18.966 0.243 50.000 205.776
Zr*O-F-C 0.448 0.046 8.621 0.243 45.455 187.069
Hf*O-F 0.570 0.092 17.241 0.243 45.455 187.069

Inorganic Perovskites A= Sc-B= Cr 0.264 0.037 10.526 0.100 28.571 284.632
A= Zr-B= Sc 0.406 0.037 10.526 0.100 28.571 284.632
A= Sc-B= V 0.320 0.037 5.263 0.100 14.286 142.316
A= Sc-B= Nb 0.274 0.037 5.263 0.100 14.286 142.316
A=Hf-B= V 0.294 0.037 5.263 0.100 14.286 142.316

Organic Perovskites A=HC(NH2)2-X= F 0.817 0.446 13.333 2.229 66.667 29.911
A= C3H5N2-X= F 0.790 1.560 43.333 2.229 61.905 27.775
A= C3H8N-X= F 0.629 2.675 30.000 2.229 25.000 11.217
A= C3H5N2-B= Sn 0.282 2.452 26.667 2.229 24.242 10.877
A= C3H5N2-B= Pb 0.255 1.783 16.667 2.229 20.833 9.347

Figure 4.One of the top design principles for MXenes: hafnium (Hf) bonded with oxygen (O) termination and with a fluorine (F)
termination bonded to any other metal. The likelihood that any arbitrary model predicts that a random material satisfying this
DP is a useful candidate is of ~ 57%, as indicated by cDP . Choosing ccut = 1.0 shows that the chance of a structure satisfying the
DP being among the best candidates is of nearly cchanceDP = Pbest|DP ∼ 20% and these candiates contribute to approximately 30%
of cDP , as shown by ccontribDP . Note that, for this specific DP, PDP|best almost steadily increases with the value of ccut , indicating that,
the more confident we want to be in our set of useful candidates, in general, the more prevalent this DP becomes in this B set.

cchanceDP = Pbest|DP = |B ∩DDP|/|DDP|. Besides these quantities, it is also important to measure our
confidence in these candidates, members of B∩DDP, by averaging their c-values:

cbestDP =
1

|B ∩DDP|
∑

s∈B∩DDP

c(s). (4)

Note that, by construction, cbestDP is a monotonically increasing function of ccut while the set B∩DDP is
not empty. Finally, although redundant with all previously described measures, we also studied, for
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Figure 5. One of the top design principles for inorganic perovskites: A-site occupied by hafnium (Hf), with vanadium (V) in the
B-site. The likelihood that any arbitrary model predicts a random material satisfying this DP is a useful candidate is of ~ 29%, as
indicated by cDP . Choosing ccut = 0.80 shows that the chance of a structure from setDDP to be among the best candidates is of
cchanceDP = Pbest|DP = 14% and these candidates contribute to approximately 50% of cDP , as shown by ccontribDP . Additionally, for
this specific DP, PDP|best almost steadily increases with the value of ccut , indicating that, the more confident we want to be in our set
of useful candidates, in general, the more prevalent this DP becomes in this B set. Finally, an examination of the behavior of cbest
reveals that, for values of the cutoff ccut > 0.6, all of the structures in set B∩DDP have a c-value of nearly 1.0.

Figure 6. Top design principle for Khazana perovskites: A-site occupied by fomamidinium (HC(NH2)2), with fluorine (F) in all
X-sites. The likelihood that any arbitrary model predicts a random material satisfying this DP is a useful candidate is of ~ 82%, as
indicated by cDP . Choosing ccut = 0.80 shows that the chance of a structure from setDDP to be among the best candidates is of
cchanceDP = Pbest|DP =∼ 65% and these candidates contribute to approximately ~ 70% of cDP , as shown by ccontribDP .

8
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Figure 7. Summary of uncovered design rules for: (a) MXenes, where hafnium (Hf), zirconium (Zr), or titanium (Ti) must be
bonded to an oxygen termination, regardless of the central X component or the metal M2 on the opposite side of the structure,
which should have either an oxygen or a fluorine termination; (b) inorganic perovskites, in which the A-site must be occupied by
scandium (Sc), zirconium (Zr), or hafnium (Hf), the B-site has to contain chromium (Cr), scandium (Sc), niobium (Nb), or
vanadium (V) and, as discussed in the main text, all X-sites should be occupied by oxygen; (c) organic-inorganic hybrid
perovskites, where all X-sites must be occupied by fluorine, the B-site can be occupied by either tin (Sn) or lead (Pb) and the
A-site possibilities are fomamidinium (HC(NH2)2), imidazolium (C3H5N2) and azetidinium (C3H8N). Note: in the inorganic
perovskite case, even though all X-site occupations should be the same, we represented them by different colors for completeness,
since changing the value of ccut used in the analysis allows for other possibilities where all three distinct types of X-sites can be
populated by a different atom.

completeness, how the elements from B∩DDP contribute to cDP:

ccontribDP =

∑
s∈B∩DDP

c(s)∑
s′∈DDP

c(s′)
=

|B ∩DDP|cbestDP
|DDP|cDP

= Pbest|DP
cbestDP
cDP

. (5)

Since the higher the value of the cutoff, the fewer elements are in the set B∩DDP, both ccontribDP and
cchanceDP are monotonically decreasing with ccut . A full dependency of all these variables with the value of the
cutoff ccut , for chosen design principles, can be seen in figures 4, 5 and 6. Note that, for all three of the design
rules chosen, PDP|best is almost a monotonically increasing function of ccut , indicating that, the more
confident one wants to be on the B set, the more predominant these design principles become in this set.
Additionally, prior to the value of ccut for which none of the materials in B contains the design principles, the
chance of finding a member of B among the setDDP is of roughly 15% for all three design principles. (Note:
values for ccut = 0 omitted in the interest of ease of graphical visualization.) This approach of understanding
the effect of design principles is best suited for combinatorially generated datasets. Therefore, we used it to
study all of the data mentioned in the Datasets section, including that from HOIP [27]. We constructed a list
of all possible design principles using the same combinatorics applied in the creation of the respective
datasets. These design principles were then ordered by highest to lowest PDP|best/PDP ratio at a cutoff value of
ccut = 0.95 for MXenes and ccut = 0.80 for both inorganic and organic perovskites. Our choice for cutoff
values was guided by the results from table 1: we wanted to make sure that the set of best candidates B was
sizeable enough for a meaningful analysis of the design principles. Furthermore, for the MXenes, we
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excluded the design rules whose PDP≤ 0.008% due to their high specificity. We would like to note the
following interesting equality, which establishes a relationship between the two most intuitive criteria of
gauging the effectiveness of a given DP discussed previously:

PDP|best
PDP

=
|B ∩DDP|

|B|
Ndataset

|DDP|
=

|B ∩DDP|
|DDP|

Ndataset

|B|
=

Pbest|DP
Pbest|All

(6)

The results of this analysis are shown in table 2. We have also chosen one of the top design principles for
MXenes (figure 4), inorganic (figure 5) and organic perovskites (figure 6) to represent the dependency
between the metrics discussed above and the cutoff ccut , which determines the minimum confidence level of
the structures in the set of best candidates B.

3.3. Interpreting design principles
Our study was able to identify some known design rules: for example, we see that titanium (Ti) basedMXenes
tend to have high stiffness coefficients, as suggested by figure 4 and table 1 in [8]. Interestingly, however, we
discovered that the other main elements of group 4 of the periodic table, namely, zirconium (Zr) and
hafnium (Hf), can also increase the mechanical strength of this class of materials, as long as these elements
are bonded with oxygen and the opposite side of the monolayer is either oxygen or fluorine terminated.

Similarly, our model was able to recognize that, in order for hybrid organic-inorganic perovskites to have
a band gap in the range of [1.5, 3] eV, the B-sites should be occupied by either lead (Pb) or tin (Sn), a
relatively well-known design principle in the photovoltaics community. [39–42] We have also found that the
organic A-sites should be composed of fomamidinium (HC(NH2)2), imidazolium (C3H5N2), or
azetidinium(C3H8N). Curiously, for these hybrid perovskites, our method suggests that the X-sites be
populated by fluorine, rather than the usual iodine. A deeper investigation suggests that the reason for this is
the enhanced stability of the fluorinated structures: while fluorinated structures have an average band gap of
~ 3 eV and ⟨Hform⟩ ≈ −1.1 eV/atom, iodined perovskites have an average band gap of 2.6 eV, but a much
higher ⟨Hform⟩ ≈ −0.3 eV/atom.

Finally, for purely inorganic perovskites, we find that the A-sites should be occupied by scandium (Sc),
hafnium (Hf), or zirconium (Zr). When analyzing the atomistic features used by the CGCNNmodel for
these elements, we find that all of them have a covalent radius of ~ 170 pm, a first ionization potential in the
neighborhood of 640 kJ mol−1 and a 1.3 electronegativity in Pauling units. At the same time, the B-sites
should be populated with vanadium (V), niobium (Nb), or chromium (Cr), all with atomic radii of
~ 130 pm, first ionization potential of roughly 650 kJ mol−1 and an electronegativity of approximately 1.6 in
the Pauling scale. Surprisingly, in the field of all-inorganic perovskites for photovoltaics applications, none of
these compositions has been deeply investigated; focus has been more directed towards caesium-lead systems
(CsPbX3, where X can be I, Br, or Cl) [43], indicating our work may contain new potential directions for
further research in this area of science. Figure 7 contains a graphical summary of the top design principles
uncovered in this work.

The collection of design rules we uncovered shows the capability of our model to both identify
established criteria to attaining material performance, as well as to find new, unexplored avenues for
application-focused material discovery, since it can be considered a basis for reverse engineering of 2D
structures. We believe that machine learning methods such as CGCNN, coupled with a study of structural
and compositional design rules, can open up paths for material innovation in a myriad of fields, including
photovoltaics, electrochemistry, batteries, mechanically robust materials, among others. In the interest of
further accelerating the discovery and screening of more 2D monolayer materials, we have open-sourced our
code base on GitHub.

4. Conclusions

In this work, we have extended the CGCNNs to describe materials with planar symmetry. Using this model,
we screened large combinatorially generated datasets of MXene and perovskite materials in search of those
with high likelihood of having properties of interest, as determined by the ensemble of trained CGCNN
models. Using the results from the screening process, we were able to uncover the underlying molecular
design principles for their respective applications.

Some of the identified design rules have already been recognized in other literature and are well-accepted,
further demonstrating the robustness of the developed methodology. One such example is identifying hybrid
organic–inorganic perovskites with lead or tin as good candidates for solar cell applications [39–42], while
titanium based MXenes as mechanically robust materials [8]. On the other hand, other design principles
identified could open up new avenues for material exploration. One such design rule is that MXene
monolayers with elements from group 4 of the periodic table are likely to have high stiffness coefficients.
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Finally, the design rules we uncovered can be used as guidance for both experimental and computational
testing at different confidence levels. By combining design principles together, as well as by combinatorially
populating their unspecified structural sites, datasets of potential high-performance materials can be created.
This reverse engineering approach of using design rules as a generative basis can lead to the discovery of even
better materials, along with more effective design principles.

5. Data availability

The CGCNNmodified code base can be found on GitHub, as well as instructions on how to download it, set
up a virtual environment and run it. Further details that support the findings of this study are available from
the corresponding author, V Viswanathan, upon reasonable request.
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Appendix A. CGCNN Ensemble Performance

In order to measure the performance of our model ensemble, we apply some of the metrics introduced by
Kuleshov et al [44] and Tran et al [45], namely, calibration and sharpness, besides mean absolute error
(MAE) and root mean square error (RMSE).

In their work, the authors institute the concept of a calibration plot, which compares, for each predicted
data point, the standard deviation of the ensemble predictions (y-axis) and the residual between the mean of
the predictions and the true value of the data point—the mean error of the predictions (x-axis). In the
regions where the observed estimation interval is greater than the expected interval (green), the model
ensemble is called underconfident, since the true value falls within the error bars of the ensemble prediction.
On the other hand, in the regions where the observed estimation interval is smaller than the expected
interval (red), the model is called overconfident, since the standard deviation of the ensemble predictions
does not encompass the true data value. The calibration plot for our 100 model ensemble trained to predict
conduction band maximum is shown in figure A1.

However, measuring calibration is not sufficient, though necessary, for effective uncertainty
quantification. For instance, a well calibrated model with large uncertainty estimates is less useful than a
similarly calibrated model with smaller uncertainties. Thus, the concept of sharpness is introduced: a sharper
model is that whose prediction standard deviations are smaller. Alternatively, sharpness can be interpreted as
a measure of the precision of the model (while MAE/RMSE can be understood as the accuracy); the smaller
its value, the more precise the model is. This metric is measured in the following manner [45]:

sharpness=

√
1

Ndataset

∑
structure

Var[M(structure)]

Figure A2 illustrates histograms of the mean prediction errors (blue) and ensemble standard deviations
(red) of the models trained over band gap data. The values of prediction mean absolute error (MAE) and
root mean square error (RMSE), as well as ensemble sharpness, are also represented. Table A1 contains some
of these metrics for all predicted properties. Taking as example our band gap and heat of formation
predictions, one can see that our approach performs better than some first-principle simulations: for band
gap, the accepted DFT errors are between 0.25 and 0.4 eV [46, 47], while both our MAE and sharpness fall on
the lower end of this range; for Hform, DFT errors are of usually 0.1 eV atom−1 [23], while all our uncertainty
metrics are below this value by a safe margin.

CGCNN is a direction-agnostic framework for machine learning and since the material stiffness only
depends on the relative positions of the atoms in the crystal, we can use them to predict the elastic constants
as seen from the low MAE and RMSE (table A1). We regressed over the log of c11 and c22 since they are
positive and want to avoid overweighing elastic constants of very stiff materials.
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Figure A1. Calibration plot [44, 45] of CGCNN ensemble CBM prediction. In general, the ensemble of model predictions
captures the true values of CBM within one standard deviation.

Figure A2.Histograms of errors on band gap prediction and of standard deviation of ensemble predictions.
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Table A1.Metrics for uncertainty quantification of model ensembles.

Property MAE RMSE Sharpness Unit

log(c11) 0.182 0.263 0.188 log(N/m)
c12 8.241 12.497 14.079 N/m
log(c22) 0.174 0.250 0.172 log(N/m)
CBM 0.193 0.264 0.310 eV
VBM 0.180 0.251 0.286 eV
Band gap 0.231 0.311 0.278 eV
Hform 0.066 0.090 0.072 eV/atom
Speed of sound x 385.703 552.147 366.810 m s−1

Speed of sound y 372.015 548.619 351.624 m s−1

Figure A3. Distribution of C2DB structures by prototype for log(c11). All prototypes whose total representation accounts for less
than 5% of the entire C2DB dataset are binned together under the label ‘Other’.

Indirectly related to the ensemble performance are its outliers. For each property of interest, we
considered the structures whose mean prediction error was more than two standard deviations away from
the average of all residuals, that is, those who would be at the trailing ends of the blue distribution on figure
A2. We then categorized these outliers by their prototypes in the C2DB dataset and studied how the outlier
prototype distribution compares to the prototype distribution in the entire dataset, as shown in figure A3
(for the property log(c11)). As one might expect, for all properties, the outlier prototype distribution
somewhat follows the data distribution: the prototypes with higher representation in the data also have
higher representation among the outliers. While that is true in general, there exist, however, a few prototypes
that deviate from this rule, which can be seen by normalizing the number of outliers in each prototype bin by
the total number of structures of said prototype in the data, as can be seen in figure A4. In doing so, we were
able to evaluate what are the most problematic prototypes for each property. Some trends emerged from our
analysis: for nearly all mechanical properties (namely, c11, c22 and speed of sound on x and y directions), the
FeSe prototype proved to be the one with highest ratio of outliers (~ 16%), while, for electronic properties
(CBM, VBM and band gap), ‘Other’ prototypes were always among the five prototypes with highest outlier
percentage. The latter is not particularly surprising, since ‘Other’ contains all prototypes with little
representation among the data, which makes them more difficult for a neural network to learn.
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Figure A4. Percentage of log(c11) outliers by prototype. For most mechanical properties, FeSe is the prototype with highest ratio
of outliers.

Figure B1. Example of root mean square (RMSE) and mean absolute error (MAE) curves used in optimization of network
architecture and hyperparameters. These curves were used to evaluate the prediction performance of models using different
number of convolution layers, hidden layers, epochs, number of neighbors used in convolution operations, among others.
Represented here, we have the results from training a model to predict Hform using a mean pooling function, 300 epochs, 1 hidden
and 2 convolution layers.

Appendix B. CGCNNNetwork Optimization

In this work, we apply CGCNN’s power of accurately predicting properties of periodic materials to
investigate 2D materials, namely, MXenes and perovskites. Using a 70:15:15 training:validation:test split ratio
on the C2DB database for the heat of formation property (Hform), we first optimized the network
architecture, including number of convolution and hidden layers, learning rate and number of epochs to be
used in training and the models’ performances were evaluated as shown in figure B1. For example, keeping

14



Mach. Learn.: Sci. Technol. 1 (2020) 035015 V Venturi et al

Figure B2.Mean square error (MSE) of Hform predictions during training for learning rates of (a) 0.1, (b) 0.01, (c) 0.001 and (d)
0.0001. The lowest errors are obtained with a learning rate of 0.01.

Figure B3. Evaluation of how pooling functions, as well as number of neighbors used in convolution operations affect RMSE and
MAE in log(c11) prediction. We also implemented higher order norm functions as pooling operators.

all other hyperparameters fixed, learning rates of 0.1, 0.01, 0.001, 0.001 were used for training and, of those,
the one that yielded the best model performance was chosen, as can be seen in figure B2. The number of
epochs and of both convolution and hidden layers were optimized in a similar manner. Different possibilities
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of pooling functions (mean, max and min) were also tested, as shown in figure B3. The final architecture
used in the models was composed of 2 convolution layers and 1 hidden layer post-pooling. The networks
were trained with a learning rate of 0.01 and a mean pooling function over 300 epochs.

Appendix C. Graph convolution description

As briefly described in the main text, the core of CGCNN is in the representation of a crystal structure as an
undirected graph G, with a set of nodes V and edges U. Each node vi∈V corresponds to an atom in the
crystal structure and is represented by the atom’s feature vector, which includes properties such as group
number, period number, electronegativity, number of valence electrons, among others. Similarly, each edge
u(i,j)k ∈ U corresponds to a bond in the crystal structure between atoms i and j and is represented by a bond
feature vector. Here, the subscript k indicates the possibility of there being multiple bonds between atoms i

and j. We denote the atomistic feature vectors at convolution step t by v(t)i and the bond vectors by u(t)(i,j)k .
From convolution layer t to t+ 1, the atomistic feature vectors are updated in the following manner:

v(t+1)
i = v(t)i +

∑
j,k

σ
(
z(t)(i,j)k ·W

(t)
f + b(t)f

)
⊙ g

(
z(t)(i,j)k ·W

(t)
s + b(t)s

)
,

where z(t)(i,j)k = v(t)i ⊕ v(t)j ⊕ u(i,j)k (⊕ indicating concatenation between vectors), σ is a sigmoid function,⊙
denotes element wise multiplication, g is a non-linear activation function and theW(t)

f ,W(t)
s and b(t)f , b(t)s are

the weights and biases of the convolutional operation from layer t to layer t+ 1.
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