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Abstract 

The present study considers mathematical classification of the time differential operators and then applies 
methods of approximation in time such as Galerkin method ( GM ), Galerkin method with weak form 
( /GM WF ), Petrov-Galerkin method ( PGM ), weighted residual method (WRY ), and least squares method 
or process ( LSM  or LSP ) to construct finite element approximations in time. A correspondence is estab-
lished between these integral forms and the elements of the calculus of variations: 1) to determine which 
methods of approximation yield unconditionally stable (variationally consistent integral forms, VC ) com-
putational processes for which types of operators and, 2) to establish which integral forms do not yield un-
conditionally stable computations (variationally inconsistent integral forms, VIC ). It is shown that varia-
tionally consistent time integral forms in hpk  framework yield computational processes for ODEs  in 
time that are unconditionally stable, provide a mechanism of higher order global differentiability approxima-
tions as well as higher degree local approximations in time, provide control over approximation error when 
used as a time marching process and can indeed yield time accurate solutions of the evolution. Numerical 
studies are presented using standard model problems from the literature and the results are compared with 
Wilson’s   method as well as Newmark method to demonstrate highly meritorious features of the pro-
posed methodology. 

Keywords: Finite Element Approximations, Numerical Studies, Time Approximation, Variationally  
Consistent Integral Forms 

1. Introduction, Literature Review and  
Scope of Work 

The quest for better, reliable, stable, accurate and effi-
cient methods of approximation for obtaining numerical 
solutions of the ordinary differential equations ( ODEs ) 
in time resulting from either decoupling of space and 
time or using a lumped parameter approximation in spa-
tial coordinates in initial value problems has been a sub-
ject of writing in the numerical and computational me- 
thods area for over a century. Thus, the published works 
are voluminous. In this section we provide a summary of 
historical perspective of the origins of various methods, 
discuss more recent advances in the various approaches, 
discuss their merits and shortcomings with the objective 

of ultimately narrowing down to a single methodology 
that provides us an infrastructure to treat all ODEs  in 
time in a consistent but rigorous manner without any 
regard to specific applications or their origin. 

1.1. Space-Time Decoupling in IVPs   

We make a few remarks regarding a strategy for space- 
time decoupling in initial value problems ( IVPs ) that 
lead to ODEs  in time. This is helpful in gaining a bet-
ter understanding regarding the origin of the ODEs . 
The IVPs  are generally a system of partial differential 
equations in dependent variables, spatial coordinates and 
time. Thus, these naturally contain spatial as well as time 
derivatives of the dependent variables. In decoupling of 
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space and time, the spatial derivatives are converted into 
algebraic expressions, thereby reducing the original par-
tial differential equations ( PDEs ) to a system of ODEs  
in time. For this purpose we can use finite difference, 
finite volume or finite element method in spatial coordi-
nates. In a finite difference method one discretizes the 
spatial domain into a finite number of points. The spatial 
derivatives are approximated using Taylor series expan-
sions of various orders of truncation errors to obtain al-
gebraic expressions or the finite difference approxima-
tions of the spatial derivatives. One then considers the 
PDEs  at each point of the discretization and substitutes 
the finite difference expressions for the spatial deriva-
tives. The outcome of this process is that spatial deriva-
tives are replaced by dependent variable values (and/or 
their derivatives) at the points of the discretization and 
the time derivatives assume values at the points of the 
discretization and thus we obtain a system of ODEs  in 
time. In principle, the finite volume method of decoup-
ling space and time is similar. In the finite element 
method of decoupling space and time, one constructs a 
spatial discretization of the spatial domain using finite 
elements. We can construct an integral form over the 
discretized spatial domain based on the fundamental 
lemma [1-5]. The time derivatives for this purpose are 
treated as constants. One constructs an approximation 
over the discretized domain and thereby an approxima-
tion over each spatial element of the discretization. This 
approximation, when substituted in the integral form, 
replaces the spatial derivatives with algebraic expres-
sions and what remains is a system of ODEs in time. 

In the following, we present some details of the finite 
element method of decoupling space and time. 

Let 

 ( ,  ) ( ,  ) 0,

( ,  ) (0,  ) (0,  )xt x t

A x t f x t

x t L




 
      

  (1.1) 

be an initial value problem with some boundary condi-
tions ( BCs ) and some initial conditions ( ICs ). 

Let T e
x x

e

    be a finite element discretization of 

x . Let ( ,  )h x t  be an approximation of ( ,  )x t  over 
T
x  Then based on the fundamental lemma [1-5] of the 

calculus of variations, 
( ( ,  ) ( ,  ),  ) 0T

x
hA x t f x t v


        (1.2) 

in which ( )v v x  is the test function. v  is zero where 
  is specified, thus hv   is admissible. We can 
write (1.2) over ( )T

x  as, 

( ( ,  ) ( ,  ),  ) 0e
x

e
h

e

A x t f x t v


       (1.3) 

where ( ,  )e
h x t  is the local approximation of ( ,  )x t  

over e
x . Consider ( ( ,  ) ,  ) e

x

e
hA x t f v


  over an ele 

ment e  with domain e
x . At this point if the operator 

A has even order derivatives with respect to spatial coor-
dinates, then one could use integration by parts to trans-
fer half of the differentiation from e

h  to v  (Galerkin 
method with weak form in space) and then the resulting 
expression could be arranged as 

( ,  ) ( ,  ) ( ,  ) ( )e e
x x

e e e e
h hA f v B v f v l v 

 
   


 (1.4) 

in which ( )el v


 is the concomitant. It contains the 
boundary terms (secondary variables) due to integration 
by parts. Let the local approximation ( ,  )e

h x t  be given 
by 

1

( ,  ) ( ) ( )
n

e e
h i i

i

x t N x t 


          (1.5) 

Consider Galerkin method with weak form, 
( )e

h jv N x  , 1,  2, ,j n       (1.6) 
Substituting (1.5) and (1.6) into (1.4) we can write 

(assuming that operator A  has first and second order 
derivatives of   in time as well as the function  ) 

     
 

 

1 2 3( ,  ) [ ] [ ] [ ]

( )

( ,  ) ;  1, ,e
x

e e e e e e e e
h

e e

e
j

B v C C C

l v P

F f N j n

   



  

 


  

 




 (1.7) 

 eP  is a vector of secondary variables. Thus, 

         1 2 3

                       ( ,  )

([ ] [ ] [ ] )

e
x

e
h

e e e e e e e e

A f v

C C C P F



  


 

    
 (1.8) 

Substituting from (1.7) into (1.4) we have, 

     
   

1 2 3

                  ( )

([ ] [ ] [ ] )

         0

e
x

e
h

e

e e e e e e

e

e e

e e

A f

C C C

P F



  




  

  





 

      (1.9) 

or 

         1 2 3[ ] [ ] [ ]C C C P F         (1.10) 
in which 

       
1 1 2 2 3 3[ ] [ ],  [ ] [ ],  [ ] [ ],

         ,  

e e e e

e e e

e e

e e

C C C C C C

P P F F

  

 

  

 
 (1.11) 

and 

           ,  ,  e e e

e e e

              (1.12) 

(1.10) are a system of ODEs  in time. A solution of 
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these in time would yield    and thereby  e  for 
each element of the spatial discretization and hence, the 
approximation ( ,  )e

h x t  for an element defined by (1.5) 
completely defines the evolution. 

This paper considers the finite element method of ap-
proximation for a system of ODEs  in time (like (1.10)) 
resulting from space-time decoupling in IVPs . 

1.2. Literature Review 

The published work addressing the methods of approxi-
mation for ODEs  in time is heavily dominated by finite 
difference methods or methods like finite difference 
methods that originate from the use of Taylor series ex-
pansions at discrete points in the time domain to ap-
proximate time derivatives in the ODEs  by algebraic 
expressions containing function values and/or their de-
rivatives at the discrete points in the time domain 

[0,  ]x   . In the following we discuss some of the 
commonly used approaches. 

Reference [6] presents various methods of approxima-
tion (primarily based on the Taylor series expansions) for 
ODEs  in time. In reference [7] the authors present an 
account of the various methodologies for approximating 
solutions of ODEs  in time. These include details for 
first order symmetric systems, second order symmetric 
systems, as well as nonlinear symmetric and nonsym-
metric systems of ODEs . One step algorithms, linear 
multistep ( )LMS  algorithms, Houbolt method,  -me- 
thod and partitioning methods are considered as methods 
of approximation. Some discussion on convergence and 
stability is also presented. Perhaps the most significant 
work amongst the earlier works is due to Newmark [8] 
based on the assumption of linear acceleration in a time 
interval. Another parallel work by Wilson [9], Wilson’s 
  method, is also as significant. This is also based on 
the assumption of linear acceleration in a time interval. 
These two works were strictly aimed at ODEs  from 
decoupling space and time in structural dynamics (sec-
ond order ODEs  in time). In the Newmark method the 
equilibrium is considered at time t t   at which the 
evolution state is not known. In Wilson’s   method the 
linear acceleration assumption is extended to the time 
interval [ ,  ]t t t  , 1  . The equilibrium is consid-
ered at time t t   but the evolution is computed at 
time t t  . The value of   is determined from the 
stability analysis of the method. It is shown that for 

1.37   (generally chosen 1.4), the Wilson’s   
method is unconditionally stable. 

Many works using the two approaches have appeared 
in the literature in which accuracy (amplitude decay, 
base elongation and phase shift of known and specified 
waves) and applications of these methods have been 

discussed. A modification of Newmark method referred 
to as alpha modification is presented in reference [10]. 
The additional parameter alpha is introduced to achieve 
simultaneous second order accuracy, unconditional sta-
bility and positive artificial damping. A family of “one 
step unconditionally stable integration schemes with im-
proved numerical dissipation” is presented in reference 
[11]. The “generalized  -method in structural dynam-
ics” is presented in reference [12] with “user controlled 
numerical dissipation”. Extensions of LMS  methods to 
L -stable optimal integration methods with 0u - 0v  
overshoot properties in structural dynamics are given in 
reference [13]. This approach leads to level-symmetric 
( LS ) integration methods. The LS  methods are cre-
ated as symmetric variants of extended three level LMS  
methods ( 3L - LMS ) with direct use of dynamic equa-
tions to obtain algorithmically simple integration 
schemes that have maximum damping of high frequency 
modes and thereby without overshoots. The analysis of 
generalized  -method for non-linear dynamic problems 
is presented in reference [14]. It is shown that general-
ized α-methods have stability in the energy sense and 
guaranteed energy annihilation. But, these methods ex-
hibit overshoots and heavy energy oscillations in inter-
mediate frequency ranges. The energy-conserving and 
decaying algorithms in structural dynamics based on 
 -method are considered in reference [15]. In a series of 
papers [16-22], exhaustive developments and details are 
presented related to time integration of ODEs . 

A detailed discussion of various aspects, their merits 
and shortcomings are not relevant in view of the ap-
proach presented in this paper and is also too voluminous 
to be included here. However, we do remark that various 
approaches in these papers utilize weighted residual 
concepts, Taylor series expansions, Taylor series expan-
sion in time and /GM WF  and consider single step and 
multistep algorithms. Stability, accuracy and other fea-
tures of the various proposed schemes are presented in-
cluding numerical studies for model problems. 

1.3. Scope of Present Work and Methodology 

We want to take a very pragmatic view i.e., we pose a 
question “What is our objective?” The answer of course 
is, we want to consider a method of approximation for 
ODEs  in time that has the following features. 

1) The methodology must be equally applicable to all 
ODEs , i.e., must be independent of the nature of the 
time operator. 

2) The method must be unconditionally stable regard-
less of the choice of integration time step. 

3) The method must be time marching so that the 
computations of the evolution can be done for an incre-
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ment of time. This is essential for computational effi-
ciency in applications requiring the evolution for long 
periods of time as well as in applications in which a large 
number of ODEs  are involved. 

4) The method must permit higher degree approxima-
tion of the solution in time for an increment of time. 

5) To ensure desired global differentiability of the ap-
proximation over t  we must ensure that the time ap-
proximations of higher degree for each increment of time 
are such that their union indeed yields desired global 
differentiability of the approximation in time. For exam-
ple if an ODE  in time contains up to second order de-
rivatives of the dependent variable and if the theoretical 
solution is analytic, then the approximation of this solu-
tion over t  must at least be of class 2 ( )tC  . 

6) There must be a measure (and not estimation) of 
approximation errors in the computed solution regardless 
of whether we have a theoretical solution of the 

( )ODE s  or not. This feature is essential due to the fact 
that most problems of practical interest do not permit 
determination of a theoretical solution, yet it is essential 
to know the approximation errors in the computed solu-
tion to determine if the computed solution satisfies the 
desired requirements of accuracy. 

7) There must be a mechanism to reduce the approxi-
mation errors to whatever desired level so that a desired 
accuracy is achievable in the computed solution. 

8) The methodology must permit time accurate evolu-
tions. This aspect becomes intrinsic in the approach if 
features 6) and 7) are present. 

The features described above are indeed intrinsically 
present in the mathematical and computational infra-
structure presented in this paper for ODEs  in time. 
Section 2 describes the mathematical details of the for-
mulation, approximations and approximation spaces as 
well as details of the computational infrastructure.The 
requirements 1) - 8) are described in the paragraph above 
are all addressed in Section 2. It is shown that the finite 
element discretization in time in which the local ap-
proximations in time are in hpk  framework permitting 
global differentiability of the approximation of order 
( 1k  ) in time when used with integral forms that are 
variationally consistent provides a mathematical and 
computational infrastructure for ODEs  in time with all 
of the desired attributes. Numerical studies are presented 
in Section 3 for commonly used model problems and the 
numerical results from the present work are compared 
with Newmark and Wilson’s   method. 

2. Finite Element Approximation of ODEs   
in Time 

For presenting the mathematical details and formulations 

it suffices to consider a single ODE  in time. 
0Ad F 

 
 0(0,  ) ( ,  )tt t         (2.1) 

with some initial conditions. A


 is a differential opera-
tor in time or time differential operator. 

2.1. Mathematical Classification of Time  
Differential Operators 

If (2.1) represents totality of all ODEs  regardless of the 
application, then we must classify time differential op-
erators A


 mathematically so that we could consider 

development of the methods of approximation for this 
classification with mathematical rigor.  The simplest 
possible classification of course is where the operator A


 

is either linear or non-linear. 
Definition. 1: The time operator A


 is linear if u , 

Av D


, the domain of definition of the operator A


 and 
 ,  � , the following holds 

( )A u v Au Av     
  

        (2.2) 

Definition. 2: If the time operator A


 is not linear 
then it is non-linear. This classification can be made 
more restrictive by considering symmetry (or lack of it) 
of A


. 

Definition. 3: The time operator A


 is symmetric if it 
is linear and if u , Av D


, the domain of A


 the fol-

lowing holds 

( ,  ) ( ,  )
t t

Au v u Av 
 

         (2.3) 

We note that (2.3) requires differential operator in that 
we transfer all of the time or time differential time dif-
ferentiation from u  to v  (left side of (2.3)) using in-
tegration by parts. In doing so, we obtain the following 
in general, 

( ,  ) ( ,  ) ,  
t t

Au v u A v Au v
  
 

  
     (2.4) 

A


 is called the adjoint of A


 and ,  Au v


 is called 

the concomitant which results as a consequence of inte-
gration by parts. Thus, based on the definition of sym-
metry in (2.3), if A


 is symmetric, then 

A A 
 

               (2.5) 

,  0Au v




            (2.6) 

That is, the adjoint A


 of the time operator must be 

the same as the time operator A


 and the concomitant 
must be zero. When the operator A


 has even order de-

rivatives in time then we could show that (2.5) holds. 
Thus, there are time differential oeprators for which (2.5) 
is possible. (2.6) contains boundary terms and hence it 
can be expanded. 

0
,  ,  ,  

t
Au v Au v Au v

  
 

  
    (2.7) 

In (2.7), 
0t

  and   are the boundaries of the time 

domain at 0t t  (initial conditions) and at t   an 
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open boundary. Let us assume that based on ICs  it is 

possible to show that 
0

,  0
t

Au v





, then for symmetry 

of A


 we must show that ,  0Au v




 so that (2.6) 

will hold.   is an open boundary where neither the 

function nor its time derivatives are known, hence it is 
not possible to show that ,  Au v


 is zero. Since an 

open boundary at t   exists in case of all ODEs  
regardless of whether A


 is linear or non-linear, for 

time differential operators A


, (2.6) can not be satisfied, 

hence the time differential operators can not be symmet-
ric. This leads to the following two categories of mathe-
matical classification for all time differential operators. 

Definition. 4: If a time differential operator A


 is 
linear then it is non-self adjoint 

Definition. 5: If a time differential operator A


 is not 
linear then it is obviously non-linear 

2.2. Methods of Approximation in Time (Based  
on Time Integral Forms) 

Before we consider finite element method of approxima-
tion it is perhaps more prudent to consider classical 
methods of approximation in time (these consider t  
without discretization) for the two classes of operators 
A


 to determine which methods of approximation are 
worthy of consideration in the finite element processes in 
time. We group the methods of approximation (based on 
integral form in time) in two categories: 

1) those based on fundamental lemma [1-5] 
2) those based on minimization of the residual func-

tional [23,24] 

2.2.1. Methods Based on Fundamental Lemma 
The methods such as GM , PGM , WRM  and 

/GM WF  in time are the methods in this category. In 
all these methods we begin by using fundamental lemma 
[1-5] over t . If nd  is the approximation of d  over 

t , then 

( ,  ) 0
tnAd F v  

 
           (2.8) 

in which v  is test function. 0v   on   if 0d d  
(known) on  . In GM  and /GM WF  we consider 

nv  . In PGM  ( ) nv t    and in WRM  also 
( ) nv w t   . We can write (2.8) as 

( ,  ) ( ,  )
t tnAd v F v 

 
 

or 

( ,  ) ( )nB d v l v               (2.9) 

In /GM WF  we also begin with (2.8) i.e., 

( ,  ) ( ,  )
t tnAd v F v 

 
          (2.10) 

but transfer some differentiation from nd  to v  to ob-
tain a weak form in time, 

( ,  ) ( ) ( ,  ) ( )
tnB d v l v F v l v  


    (2.11) 

Thus all these methods of approximation in time yield 
a time integral form ((2.9) or (2.11)). ( )nd t  is ex-
pressed as 

0
1

( ) ( ) ( )( )
n

n i i
i

d t N t N x t c


       (2.12) 

in which ( )iN t  are basis functions. Obviously ( )nd t  
must satisfy all ICs  of the ODE . When (2.12) and 

( ); 1,  2, ,

or ( ) or ( ); 1,  2, ,
n j

j j

v N t j n

v t v w t j n



   

   




  (2.13) 

are substituted in (2.9) or (2.11), we obtain a system of 
linear or non-linear algebraic equations in ic  from 
which we can determine ic . 

Remarks 
1) These methods of approximation result in an inte-

gral form that is converted to an algebraic system upon 
substituting the approximation. The algebraic system is 
used to determine the unknowns ic . Thus in these 
methods we have a “necessary condition” only. 

2) Existence and uniqueness of the solution nd  or the 
coefficients ic  is never addressed, hence must be con-
sidered for each application. 

3) This situation can be corrected by establishing a 
correspondence between the integral forms (necessary 
conditions) and the calculus of variations. 

2.2.2. Variationally Consistent and Variationally  
Inconsistent Time Integral Forms 

Consider extremum of a functional ( )nI d  i.e., assume 
that there exists a functionan ( )nI d  and we wish to 
determine its extremum. Then, 

1) Existence of ( )nI d  is generally by construction. 
2) Necessary condition: 
If ( )nI d  is differentiable in nd  and if the deriva-

tives of all orders are continuous then, based on the 
theorems of calculus of variations ( )nI d  is unique and 

( ) 0nI d   is a necessary condition for the existence of 
the extremum of ( )nI d . 

3) The sufficient condition or extremum principle is 
given by 

2

0 minimum  of ( )

( ) 0 saddle point of ( )

0 maximum of ( )

n

n n

n

I d

I d I d

I d






   (2.14) 

When we have a unique extremum principle, then we 
can show that a nd  obtained from ( ) 0nI d   also 
satisfies the Euler’s equation, a differential equation that 
can be obtained from ( ) 0nI d  . Thus, we have a cor-
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respondence between the solutions of differential equa-
tions and the elements of the calculus of variations deal-
ing with extremums of functionals. We proceed as fol-
lows. Let 0Ad F 

 
 be the ODE  in time. Then 

there must exist a functional ( )nI d  such that 
( ) 0nI d   gives the integral form (from any of the 

chosen methods of approximation) and 2 ( )nI d  yields 
a unique extremum principle and the Euler’s equation 
from ( ) 0nI d   is the ODE , then a nd  that yields a 
unique extremum of ( )nI d  is also a unique solution of 

0Ad F 
 

. 
Definition. 6: Variationally consistent (VC ) integral 

forms. A time integral form resulting from a method of 
approximation is termed VC  if there exists a functional 

( )nI d  such that ( ) 0nI d   gives the integral form 
and 2 ( )nI d  yields a unique extremum principle. 

Definition. 7: Variationally inconsistent (VIC ) time 
integral forms. A time integral form resulting from a 
method of approximation is termed VIC  if it is in vio-
lation of one or more elements of the calculus of varia-
tions. It is sufficient to show the following. Let there 
exist a functional ( )nI d  such that ( ) 0nI d   gives 
the desired integral form. Then 2 ( )nI d  i.e. the first 
variation of the integral form must yield a unique extre-
mum principle. 

It is straight forward to show (see [24]) that the time 
integral forms resulting from GM , PGM , WRM  and 

/GM WF  are all variationally inconsistent. Variation-
ally consistent integral forms yield algebraic systems in 
which the coefficient matrices are symmetric and posi-
tive definite and uniqueness of the solution nd  is en-
sured. VIC  integral forms, on the other hand, yield 
non-symmetric coefficient matrices that are not always 
ensured to be positive definite. See references [23,24] for 
more details. Thus, GM , PGM ,WRM  and /GM WF  
in time are not worthy of consideration for finite element 
processes in time as a general computational methodol-
ogy for ODEs  in time as these do not ensure uncondi-
tionally stable computations due to VIC  integral forms 
in time. 

2.2.3. Methods of Approximation Based on Minimiza-  
tion of Residual Functional 

In this category of methods we consider least squares 
method or process ( LSM or LSP ) in time based on 
residual functional. Let 

nE Ad F 
 

 tt          (2.15) 

define residual E  over the time domain t . 
1) Existence of a functional ( )nI d  (residual func-

tional) is by construction. 

( ) ( ,  )
tnI d E E            (2.16) 

( )nI d  is a convex function of E , regardless of the 

mathematical classification of A


 
2) Necessary condition 

( ) 2( ,  ) 0
tnI d E E           (2.17) 

or ( ,  ) ( ) 0
t nE E g d           (2.18) 

3) Sufficient condition or extremum principle 
2 2( ) 2( ,  ) 2( ,  )

t tnI d E E E E         (2.19) 
In the following we consider the two categories of the 

mathematical classification of A


 i.e., when A


 is 
non-self adjoint and when A


 is non-linear, and deter-

mine variational consistency or variational inconsistency 
of the time integral form given by (2.18). 

Case (a): When 

A  is non-self adjoint 

In this case the operator A


 is linear, hence 2 0E   
and the extremum principle 2I  given by 

2 ( ) 2( ,  ) 0
tn nI d E E d           (2.20) 

Thus, we have a unique extremum principle. (2.20) im-
plies that a nd  obtained from (2.18) minimizes ( )nI d  
in (2.16) 

Case (b): When 

A  is non-linear 

In this case 2 E  is not zero. We note that 
( ) 0nI d   yields 

( ) ( ,  ) 0
tng d E E          (2.21) 

in which ( )ng d  is a non-linear function of nd . Thus, 
we must find nd  iteratively such that (2.21) is satisfied. 
We choose Newton’s linear method. Let 0

nd  be an as-
sumed or guess of nd  then, 

0( ) 0ng d               (2.22) 
Let nd  be a change or a correction to 0

nd  such that 
0( ) 0n ng d d             (2.23) 

Expanding 0( )n ng d d   in Taylor series about 0
nd  

and retaining only up to linear terms in nd . 

0
0 0( ) ( ) 0

n
n n n nd

n

g
g d d g d d

d


     


  (2.24) 

From (2.24), we can solve for nd . 

0

1

0( )
n

n nd
n

g
d g d

d


 

     
       (2.25) 

We note that 

2 2

( ,  )

1
     ( ,  ) ( ,  ) ( )

2

t

t t

n

n

g
g E E

d

E E E E I d

  

   



 


 



  

 (2.26) 

If 
n

g

d

 
  

 is positive definite in (2.25), then we are 
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ensured a unique solution nd  Based on (2.26), this is 

possible if we approximate 2 ( )nI d  by [25-31] 

2 ( ) 2( ,  ) 0,

a unique extremum principle
tnI d E E    

      (2.27) 

Rationale for the approximation in (2.27) has been 
discussed by Surana et.al. [23-27,32,33]. Thus, with 
(2.27) the LSP  in time for ODEs  in time in which the 
differential operator A


 is non-linear is variationally 

consistent. 
Once we find a nd  using (2.25), it is helpful to 

consider the following for obtaining an updated solution 

nd  
0

n n nd d d               (2.28) 
in which   is a scalar generally between 0 and 2 and 
assumes the largest value between 0 and 2 for which 

0( ) ( )n nI d I d  holds. This is referred to as line search. 
The entire process of solving for nd  that satisfies 

( ) 0ng d   is called Newton’s linear method with line 
search. 

2.2.4. Remarks on Methods of Approximation in  
Time Based on Integral Forms in Time 

1) The determination of variational consistency or 
variational inconsistency of an integral form in time al-
lows us to determine unconditional stability of the re-
sulting computations which helps in deciding which in-
tegral forms in time are worthy of consideration for the 
development of finite element method in time for the 
ODEs  in time. 

2) The time integral forms resulting from GM , 
PGM , WRM  and /GM WF  in time are all varia-
tionally inconsistent regardless of whether the time op-
erator A


 is non-self adjoint or non-linear. 

3) The time integral form resulting from the LSP  in 
time based on residual functional is variationally consis-
tent when the time differential operator A


 is non-self 

adjoint. 
4) The time integral form resulting from the LSP  in 

time based on residual functional for non-linear time 
operators is also variationally consistent provided a) nd  
in ( ) 0ng d   is determined using Newton’s linear 
method, and b) the second variation of the residual func-
tional is approximated by 2 ( ) 2( ,  )

tnI d E E     
5) Based on (1-4), it is obvious to conclude that only 

LSP  in time based on the residual functional is merito-
rious of consideration as a general numerical solution 
methodology for developing finite element processes in 
time for ODEs  in time. This would be applicable to the 
totality of all ODEs  as it yields VC  integral forms for 

both non-self adjoint and non-linear operators in time. 

2.3. Finite Element Processes in Time Based on  
Minimization of a Residual Functional:  
Least Squares Finite Element Process 

In this section we present details of finite element proc-
esses in time based on least squares method using the 
residual functional. Consider an ODE  in time, 

0Ad F 
 

 0(0,  ) ( ,  )tt t       (2.29) 

with some initial conditions. Let ( )T e
t t

e

    be a 

time discretization of t  in which e
t  is a typical 

element e  (for example a three node p -version ele-

ment). Let ( )hd t  be the approximation of ( )T
td t    

and ( )e e
h td t t   be the local approximation of ( )d t  for 

an element e  of the discretization such that 

( ) ( )e
h h

e

d t d t            (2.30) 

We consider the residual functional E  over the dis-
cretization ( )T

t . 

nE Ad F 
 

 ( )T
tt         (2.31) 

1) Least squares functional over ( )T
t   

( )
( ) ( ,  ) ( ,  ) ( )T e

t t

e e e e
n h

e e

I d E E E E I d
 

     (2.32) 

2) Necessary condition 

( ) ( ) ( ,  )

         2 ( ,  ) 2 ( ,  )

          2 { ( )} 2 ( ) 0

e
t

e e
t t

e e e e
h h

e e

e e e e

e e

e e
h h

e

I d I d E E

E E E E

g d g d

  

 



 

 

 

  

 

 



 (2.33) 

or ( ) ( ) 0e e
h h

e

g d g d         (2.34) 

We find a hd  that satisfies (2.34), i.e., (2.34) is used to 
solve for hd  and thereby e

hd . 
3) Sufficient condition or extremum principle: 

2 ( )hI d  gives the the extremum principle. 
2

2

( ) ( ( )) ( ( ))

           2 ( ( ,  ) )

          2 ( ,  ) 2 ( ,  )

e
t

e e
t t

e e
h h h

e

e e

e

e e e e

e e

I d I d I d

E E

E E E E

    

 

  



 

 



 





 

 (2.35) 

Case (a): When 

A  is non-self adjoint 

In this case, A


 is linear, hence, 
( )e e

hE Ad F Av   
  

 e
tt     (2.36) 
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2 ( ) ( ) 0e eE E Av     


     (2.37) 
Hence, the necessary condition becomes 

( ) ( ,  ) e
t

e e
h

e e

g d E E


   

( ,  ) 0e
t

e
h

e

Ad F Av


  
  

       (2.38) 
and the extremum principle, 

2 ( ) 2 ( ,  )

           2 ( ,  ) 0

e
t

e
t

e e
h

e

e

I d E E

Av Av

  






 




 

      (2.39) 

Hence, a unique extremum principle. Consider the lo-
cal approximation ( )e

hd t . 

1

( ) ( ) ;  ( ) ( );

                      1,  2, ,

n
e e e
h i i n j

i

d t N t d v d t N t

j n




  






  (2.40) 

Consider ( ,  ) e
t

e
hAd F Av




  
 in (2.38) for an element  

e . 

( ,  ) ( ,  )e e
t t

e e
h hAd F Av Av Ad F

 
  

     
   (2.41) 

( ( ))jAv A N t
 

; 1,  2, ,j n       (2.42) 
or { }eAv E


            (2.43) 

1

( ( )) { } { }
n

e e e t e
h i i

i

Ad A N d E 


 
 

    (2.44) 

Substituting from (2.43) and (2.44) into (2.41) and 
noting that, 

( ,  ) ( ,  ) ( ,  )e e e
t t t

e e
h hAv Ad F Av Ad F Av

  
  

      
 (2.45) 

or 

( ,  ) ({ },  { } { })

({ },  { } ) { } ( ,  { })

e e
t t

e e
t t

e e e t e
h

e e t e e

Av Ad F E E

E E F E

  

   
 

 

 

 
  



  (2.46) 

or 
( ,  ) [ ]{ } { }e e e e

hAv Ad F K F  
  

     (2.47) 
in which e

ijK  of [ ]eK  and e
iF  of { }eF  in are given 

by 

( ( ( )),  ( ( )))
,  1,  2, ,

( ,  ( ( )))

e
t

e
t

e
ij i j

e
i i

K A N t A N t
i j n

F F A N t





  
 

  

 

 (2.48) 

e e
ij jiK K , i.e., [ ]eK  is symmetric, a consequence of 

VC  integral forms in time resulting from LSP  in time 
based on the residual. Substituting from (2.47) into 
(2.38), we obtain the following for the discretization 
( )T

t . 

( ) ([ ]{ } { }) 0e e e
h

e

g d K F        (2.49) 

or 
[ ]{ } { }K F               (2.50) 

where 

[ ] [ ], { } { }

and { } { }

e e

e e
e

e

K K F F

 

 



 


 


      (2.51) 

Case (b): When 

A  is non-linear 

In this case A


 is a function of d , hence 

( ) ( ) ( )

     ( ),  in which v=
h h h

h h

E Ad F A d A d

Av A d d

   
 

   

 
   

 

   (2.52) 

and 

( ) ( ) ( )

      ( ),  in which =

e e e e
h h h

e e
h h

E Ad F A d A d

Av A d v d

   

 

   

 
   

 

   (2.53) 

( ) ( ,  )

          ( ,  ( )) 0

e
t

e
t

e e
h

e

e e
h h

e

g d E E

Ad F Av A d









 

   




   

  (2.54) 

Using the local approximation (2.40) and noting that 
{ } { }e

e

  , { }e  being nodal degrees of freedom 
e
id  for an element ‘ e ’, we have, 

( ) { ({ })} 0hg d g           (2.55) 

That is, g  is a non-linear function of nodal degrees 
of freedom { } . 

Using, Newton’s linear method (as described earlier) 
we obtain, 

0

1

0

{ }

( )
{ } { ({ })}

( )

g
g



 



 

    
  

    (2.56) 

{ }  is the incremental change in the assumed solu-
tion 0{ } . But, 

2

2

( ) ( )

{ } 1
{ }

{ } 2

       ( ,  ) ( ,  )T T
t t

g
g I

E E E E

 


  
 


 



 
  (2.57) 

Thus        0
2 1 01

{ } [ ] { ({ })}
2

I g


        (2.58) 

For a unique { } , the coefficient matrix in (2.58) must 
be positive definite. This is possible if we approximate 

2I  by, 
2

( )
2( ,  ) 0T

t
I E E  


        (2.59) 

which yields a unique extremum principle and we have, 

0
1 0

( ) { }
{ } [( ,  ) ] { ({ })}T

t
E E g


   


     (2.60) 

An improved solution is obtained using 
0{ } { } { }                (2.61) 

Details of line search involving   remain the same 
as presented earlier. We note the coefficient matrix in 



K. S. SURANA  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                AJCM 

91

(2.60) is 

( )
( ,  ) ( ,  )T e

t t

e e

e

E E E E   
 

     (2.62) 

Recalling 

( ) ( )e e
hE A v A d  

 
        (2.63) 

and 

 ({ }) ({ }) ( ,  ) e
t

e e e e

e e

g g E E  


      (2.64) 

thus the right side of (2.60) is completely defined to de-
termine { } . 

The convergence of the Newton’s linear method is 
checked based on ig    i.e., the absolute value of 
each component of { }g  must be below a threshold 
value   representing a numerically computed zero. 

2.4. Approximation Spaces 

We consider local approximation functions ( )iN t  in an 
approximation space hV ; a subspace of , ( )k p e

tH   
space, i.e. 

, ( ) ( )k p e
i h tN t V H           (2.65) 

and since 
1

n
e e
h i i

i

d N d


   in which e
id  are constants, we 

ensure that 

e
h hd V                (2.66) 

k 　is the order of the approximation space defining 

global differentiability of ( ) ( )e
h h

e

d t d t  of order 

( 1k  ) and p  is the degree of local approximation of 

( )e
hd t . The minimum value of k for which the integrals 

in the LSP  in time are Rieman defines the minimally 
conforming space. For value k  one lower than mini-
mally conforming, the integrals become Lebesgue. These 
approximation spaces permit change in h , the element 
length in time, control over p , the degree of local ap-

proximation and k , the order of the space, hence re-
ferred to as hpk  framework [23-27,32,33]. 

2.5. Benefits and Meritorious Features of the  
Proposed LS  Finite Element Formulation  
for ODEs  in Time in hpk  Framework 

1) Due to the mathematical classification of all time 
operators into non-self adjoint and non-linear categories, 
the task of the development of the methods of approxi-
mation for ODEs  in time is reduced to these two cate-
gories that address the totality of all time operators. 

2) The investigation of the VC  of the time integral 
forms resulting from various methods of approximation 
reveals that only the time integral forms resulting from 

the LSP  in time based on the residual are variationally 
consistent for both classes of differential operators. The 
finite element processes proposed here are based on 
LSP  in time, hence they yield unconditionally stable 
computations for all choices of computational and 
physical parameters for both categories of differential 
operators in time. 

3) The method can be obviously made time marching. 
One considers only one element in time and time 
marches in sequel to compute the entire evolution. This 
results in efficiency of computations. 

4) The degree of local approximation p  permits de-
sired polynomial for local approximation over an ele-
ment in time. The local approximations can also be hier-
archical. This adds additional efficiency in the computa-
tional processes for linear operators if p -levels are in-
creased progressively. 

5) Since ( )iN t  and hence , ( ) ( )e k p e
h h td t V H   , 

the time approximation ( ) ( )e
h h

e

d t d t  can be ensured 

to be of any desired global differentiability in time. This 
helps in maintaining the integrals in the computational 
process in the Riemann sense. Higher values of k  than 
minimally conforming permit us to incorporate higher 
order global differentiability of the theoretical solution in 
the computational process if so desired. 

6) In the LSP  in time, we note that a hd  obtained 
from 2 ( ) 0hI d   minimizes ( )hI d  due to the fact 
that 2 ( ) 0hI d  . But ( )hI d  is a convex function of 
E , hence its minimum is zero. Thus, when hd d , 
( ) 0hI d   which implies that 0 ( )T

tE t     in the 
pointwise sense if the integrals in the entire process are 
Riemann. Since the theoretical value of ( )hI d  i.e., 

( )I d  is zero, ( )hI d  is a measure of error in the solu-
tion over ( )T

t  and likewise ( )e e
hI d  are measures of 

error in each element (if one uses a mesh in time). 
7) In the approach presented here, we choose an ele-

ment in time (thereby choosing h ) and a minimally 
conforming k  and conduct a p -convergence study to 
ensure that ( )hI d  is as closeto zero as we desire it to be. 
This may also require one or more adjustments in h 
(generally reduction). Thus the proposed methodology 
has a built in mechanism for error measure and control 
without the knowledge of the theoretical solution. 

8) If we choose an element in time and ensure step vii) 
before we time march, then time accuracy of the evolu-
tion is evident. 

In summary, we note that the proposed LS  finite 
element processes in time in hpk  framework for a sin-
gle or a system of ODEs  based on the residual has all 
of the desired features that we have listed in Section 1.3 
and hence is highly meritorious of consideration as a 
general methodology for computing numerical solutions 
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of ODEs  in time. 

3. Model Problems and Numerical Studies 

In this section we consider three model problems that are 
commonly used as benchmark problems in the published 
work. For all three model problems, the evolutions com-
puted using the finite element process based on LSP  in 
time in hpk  framework are compared with the New-
mark method and Wilson’s   method. 

3.1. Model Problem 1 

Consider the following non-homogeneous linear ODE  
in time [12,18]: 

22 ( )u u u f t      (0,  )t   ; 

ICs : (0) 0u  , (0)u   

This model problem is typical in finite element proc-
esses in structural dynamics when space and time are 
decoupled (using /GM WF  in space) and when the 
decoupled ODEs  are transformed to modal basis in 
which the ODEs  in time become decoupled [24]. This 
model problem is typical of a single ODE  in modal 
basis. 

In the numerical studies we choose ( ) 0f t   and 

0.1  . If we choose 2   , then the time period 

2
1T




   and 
t

t
T


  , where t  is the time incre-

ment, i.e., the length of the element in time. The mini-
mally conforming space hV , 

, ( )k p e
h tV H    

is defined by 3k   ( 2 1p k  ) i.e., local approxima-
tion ( )e

hu t  of ( )u t  over e
t , the time domain of an 

element e  of class 2 ( )e
tC   for which the integrals in 

the entire finite element LSP  in time are Riemann. If 
we choose 2k  , then all integral measures are Lebes-
gue. In the numerical studies for this model problem we 
only consider 3k   and choose 

0.1,  0.2,  0.4,  0.8,  1.6
t

t
T


    

with p -levels of 5, 7, ,19. 
We consider a three node p -version element in time 

of length t  for the first increment of time. At 0t  , 

we have initial conditions, at 
2

t
t


  (midside node) 

and at t t   the nodal degrees of freedom (as well as 
those at 0t   remaining after improving ICs ) are un-
known and are to be computed. We compute the solution 
for the first time increment and study convergence of the 
solution and time march only upon convergence. Results 

are presented and discussed in the following. 
p -convergence study: For the first increment of time 

t  we choose 0.1,  0.2,  0.4,  0.8t   and 1.6 and 
conduct a p -convergence study for each t  by pro-
gressively increasing p -levels from 5 to 19 for 3k   
(solutions of class 2 ( )e

tC  ). Figure 1 shows plots of 
the residual functional I  versus degrees of freedom. 
The results of Figure 1 are also reported in Figure 2 as 
residual functional I versus /t T  for each p -level. In 
Figure 1 we note that for lower /t T , the solution has 
most accuracy (lowest values of I ) as expected. Even 
for / 1.6t T  , at moderate p -levels, I is of the order 
of O (10−6) or lower, confirming good accuracy of the 
evolution. Approximately same slopes of the curve indi-
cate that convergence rate of the process is relatively 
independent of the choice of /t T . From Figure 2 we 
note that when / 0.1t T   even at p -level of 5 I  is  

 

Figure 1. p -convergence study for the first time increment 

( 3)k  : model problem 1. 

 

Figure 2. Least squares functional versus /t T  for pro-
gressively increasing p -levels ( 3)k  : model problem 1. 



K. S. SURANA  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                AJCM 

93

 

    
(a)                                             (b) 

 

    
(c)                                                  (d) 

 

 
(e) 

 

Figure 3. Evolutions for model problem 1: 3k  , ,  ,  ,  / 0.1 0.2 0.4 0.8t T   and 1.6 for varying p -levels. (a) Evolution: 

/ 0.1t T  ; (b) Evolution: / 0.2t T  ; (c) Evolution: / 0.4t T  ; (d) Evolution: / 0.8t T  ; (e) Evolution: 
/t T   . 

of the order of O (10−6). These studies are instrumental 
in deciding the choice of p -level for time marching (we 
only time march when the solution for the current incre-
ment has good accuracy). 

Computations of the evolution: Evolutions are com- 
puted using time marching for / 0.1,  0.2,  0.4,t T   
0.8  and 7.6 for p -levels of 5 to 19 using local ap-

proximations of class 2 ( )e
tC  . Results are shown in 

Figure 3(a)-(e). For /t T  up to 0.8, p -level of 5 
produces results with sufficient accuracy. Evolutions 
shown in Figures 3(a)-(d) for 6p   to 19 are almost 
indistinguishable from those for 5p  . For / 1.6t T  , 
p -levels between 9 to 19 are almost indistinguishable 

from each other. Very low values of the residual func-        
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(a) 

 

    
(b)                                                 (c) 

 

Figure 4. Comparison with the Newmark and Wilson’s   methods: model problem 1, = 3k . (a) The Newmark and Wil-
son’s   methods: / 0.1t T  ; (b) The Newmark method; (c) Wilson’s   method. 

tional (of the order of O (10−5) and much lower at higher 
p -levels) confirm time accuracy of the evolution. 

Comparison with the Newmark and Wilson’s   
methods: Comparison with the Newmark method and 
Wilson’s   method are shown in Figure 4. For the first 
study we choose / 0.1t T   in the Newmark and Wil-
son’s   method (lowest value of /t T  used all of the 
studies conducted using present formulation). Figure 4(a) 
shows evolutions computed using the Newmark method, 
Wilson’s   method presents formulation ( / 1.6t T  , 

9p   to 19) and theoretical solution. Evolutions from 
the Newmark method and Wilson’s   method deviate 
from the true solution but the deviations are not so sig-
nificant. Both, the Newmark and Wilson’s   methods 
are comparable, however, Wilson’s   method has more 
pronounced phase shift. Figure 4(b) and (c) present 
evolutions obtained using the Newmark method and 
Wilson’s   method for /t T  ranging from 0.01 to 

0.4 and a comparison with present solution (for 
/ 1.6t T   for 9p   to 19). When /t T  is greater 

than 0.1, evolution for both methods are in significant 
error. Quantitative assessment of amplitude decay, base 
elongation and phase shift is not conclusive from these 
graphs due to the highly diffusive mature of the theoreti-
cal solution (addressed in model problem 2). A remark-
able thing to note here is that in the proposed formulation, 
extremely high accuracy of the evolution is achievable 
even for 1.6t   whereas the Newmark and Wilson’s 
  methods yield evolution with significant errors be-
yond 0.1t  . 

3.2. Model Problem 2 

In this model problem we consider ([10,11,13,19]) 

( )mu cu ku f t    (0,  )t   ;  
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ICs : (0) 0u  , 0(0)u u    

This is obviously a 1-D spring, mass, damper system. 
In the numerical studies we choose 

1m  , 0c  , 2k  , ( ) 0f t   

Hence, the ODE  reduces to 
2 0u u   (0,  )t    

ICs: (0) 0u  , (0)u  . A theoretical solution is 
given by ( ) sin( )u t t . 

If we choose 2  , then time period 
2

1T



   

and 
t

t
T


   where t  is the time increment i.e., the 

length of the element in time. The minimally conforming 
space hV , 

, ( )k p e
h tV H    

 

Figure 5. p -convergence study for the first time increment 

( = 3k ): model problem 2. 

 

Figure 6. Least squares functional versus /t T  for pro-
gressively increasing p -levels ( = 3k ): model problem 2. 

is defined by 3k   ( 2 1p k  ) i.e. local approxima- 
tions ( )e

hu t  of ( )u t  over e
t , the time domain of an 

element e of class 2 ( )e
tC   for which the integrals in 

the entire finite element LSP  in time are Riemann. If 
we choose 2k  , then all integral measures are Lebes-
gue. In the numerical studies we consider 3k   as well 
as 2k   and choose, 

0.1,  0.2,  0.4,  0.8,  1.6
t

t
T


     

with p -levels of 3, 5, ,19 for 2k   and p -levels 
of 5, 7, ,19 for 3k  . 

We consider a three node p -version element in time 

of length t  for the first increment of time. At 0t   

we have initial conditions. At 
2

t
t


  (mid-side node) 

and at t t   the nodal degrees of freedom (as well as  

 

Figure 7. p -convergence study for the first time increment 

( = 2k ): model problem 2. 

 

Figure 8. Least squares functional versus /t T  for pro-
gressively increasing p -levels ( = 2k ): model problem 2. 
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(a)                                            (b) 

 

    
(c)                                             (d) 

 

 
(e) 

 

Figure 9. Evolutions for model problem 2: = 3k  and = 2k , ,  ,  ,  / 0.1 0.2 0.4 0.8t T   and 1.6 for varying p -levels. (a) 

Evolution: / 0.1t T  ; (b) Evolution: / 0.2t T  ; (c) Evolution: / 0.4t T  ; (d) Evolution: / 0.8t T  ; (e) Evolution: 
/t T   . 

those at 0t   remaining after imposing ICs ) are un- 
known and are to be computed. We compute solutions 
for the first time increment and study convergence of the 
solution and time march only upon convergence. Results 
are presented and discussed in the following. 

p -convergence study: For the first increment of time 

t , we choose 0.1,  0.2,  0.4,  0.8t   and 1.6 and 
conduct a p -convergence study for each t  for pro-

gressively increasing p -levels from 3 to 19 for 3k   

(solutions of class 2 ( )e
tC  ) and 2k   (solutions of 

class 1( )e
tC  ). Figure 5 shows plots of the residual 

functional I  versus degrees of freedom for 3k  . The 
results of Figure 5 are also reported in Figure 6 as the 

residual functional I  versus 
t

T


 for each p -level. 

Similar results for 2k   (local approximation of class 
1( )e

tC  ) are shown in Figures 7 and 8. From Figures 5 
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and 7, we note that lower values of 
t

T


 yield lower 

values of I and hence best accuracy, as expected. Even 

for 1.6
t

T


 , at moderate p -levels I  is of the order 

of O (10−6) or lower, confirming good accuracy of the 
solution. Approximately the same slopes of the curves in 
Figure 5 and also those in Figure 7 indicate that the 
convergence rate of the process is relatively independent 

of the choice of 
t

T


. From Figures 6 and 8, we note that 

when 0.1
t

T


  even at p -level 5 I  is of the order of 

O (10−6). These studies indicate that local approxima-

tions of classes 1( )e
tC   and 2 ( )e

tC   are equally ef-

fective. This of course, is due to the fact that the theo-
retical solution for this model problem is quite smooth. 

Computations of the evolution: Evolutions are com-

puted using time marching for 0.1,  0.2,  0.4,  0.8
t

T


  

and 1.6 for p -levels of 5 to 19 for solutions of class 
2 ( )e

tC   and p -levels of 3 to 19 for solutions of class 
1( )e

tC  . Results are shown in Figures 9(a)-(e). First, the 

solutions of both classes produce almost identical results 

for 5p   to 19. For 0.1,  0.2
t

T


  and 0.4 p -level of 

5 is sufficient for good accuracy (as evident from Fig-

ures 6 and 8). For 0.8
t

T


 , the evolution for 5p   is 

in significant error but for 7p   to 19, the evolutions 

are indistinguishable from each other. For 1.6
t

T


 , 

9p   to 19 produce almost identical results. The con-

verged solutions are in excellent agreement with the 
theoretical solution. 

Accuracy of the evolution: Since in this case the 
theoretical solution is periodic, this model problem 
serves as a good test to measure the accuracy of the pro-
posed method. Amplitude decay, base elongation and 
phase shift are good measures of numerical dispersion in 
the computational process. For this study we choose 

1.6
t

T


  and 13p  . We note that for this choice of 

t , a single time increment contains evolution that is 1.6 
times the period of the wave. The evolution is computed  
for 100 time steps. Figure 10 shows evolution for the 
last six time steps ( 150.4t   to 160t  ). The periodic 
nature of the solution is preserved without any measur-
able amplitude decay, base elongation and phase shift 
confirming time accuracy of the evolution. 

Comparison with the Newmark and Wilson’s   
methods: Comparisons with the Newmark and Wilson’s 
  methods are shown in Figure 11. For the first study 
we choose / 0.1t T   (smallest value used in all of the 
studies conducted using present formulation) in the 
Newmark and Wilson’s   methods. Figure 11(a) 
shows evolutions computed using the Newmark method, 
Wilson’s   method and a comparison with the present 
solution for / 1.6t T   at 9p   to 19 and the theo-
retical solution. The Newmark method has only phase 
shift. Amplitude decay and base elongation are not pro-
nounced for this small value of / 0.1t T  . Wilson’s 
  method has amplitude decay as well as phase shift, 
larger than in the Newmark method. Accuracy of both 
methods is poor. Figure 11(b) and (c) show evolutions 
obtained using the Newmark method and Wilson’s   
method for  ∆t/T varying from 0.05 to 0.4 and a com-
parison with present solution (∆t/T  = 1.6, p = 9 to 19) 
and the theoretical solution.  The Newmark method has 
no amplitude decay but significant phase shift and some 
base elongation for /t T  of 0.1 and beyond. The lar-
ger the /t T  these are more pronounced. In the case of 
Wilson’s   method we observe progressively increas-
ing amplitude decay and phase shift for /t T  of 0.1 
and beyond. 

3.3. Model Problem 3 

Consider the following non-linear ODE  in time [21]: 

3
1 2 ( ) (0,  );

     :  (0) 0,  (0)

u s u s u f t t

ICs u u




    
 




  

We choose 1 2s   and 2 1s   [21]. A manufactured 
theoretical solution ( ) sin( )u t t  corresponds to ( )f t  

2 3
1 2sin sin (sin )t s t s t       . We consider this in  

 

Figure 10. Evolution for /t T   , p =  , 95th to 

100th time steps ( = 3k  and = 2k ): model problem 2. 
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(a) 

 

    
(b)                                                            (c) 

 

Figure 11. Comparison with the Newmark and Wilson’s   method: model problem 2, = 3k . (a) The Newmark and Wil-
son’s   methods: / 0.1t T  ; (b) The Newmark method; (c) Wilson’s   method. 

the numerical studies. If we choose 2   , then the 

time period 
2

1T



   and 
t

t
T


   where t  is the 

time increment, i.e. the length of the element in time. 
The minimally conforming space hV , 

, ( )k p e
h tV H   

is defined by 3k   ( 2 1p k  ) i.e. local approxima-

tion ( )e
hu t  of ( )u t  over e

t , the time domain of an 

element e  of class 2 ( )e
tC   for which the integrals in 

the entire finite element LSP  in time are Riemann. If 
we choose 2k  , then all integral measures are Lebes-
gue. In the numerical studies we consider 3k   as well 
as 2k   and choose, 

0.1,  0.2,  0.4,  0.8,  1.6
t

t
T


    

with p -levels of 3,5, ,19 for 2k   and p -levels of 
5,7, ,19 for 3k  . 

We consider a three node p-version element in time of 
length t  for the first increment of time. At 0t  , we 

have initial conditions, at 
2

t
t


  (mid-side node) and 

t t   the nodal degrees of freedom (as well as those at 
0t   remaining after imposing ICs ) are unknown and 

are to be computed. We compute the solution for the first 
time increment and study convergence of the solution 
and time march only upon convergence. Results are pre-
sented and discussed in the following. 

p -convergence study: For the first increment of time 

we choose 0.1,  0.2,  0.4,  0.8t   and 1.6 and conduct 
a p -convergence study for each t  for progressively 

increasing p -levels from 5 to 19 for 3k   (solutions 

of class 2 ( )e
tC  ) and from 3 to 19 for 2k   (solutions 
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of class 1( )e
tC  ). Figures 12 and 13 show I  versus 

degrees of freedom for various values of 
t

T


 and I  

versus 
t

T


 for various values of p -levels for solutions 

of class 2 ( )e
tC  . Similar results for solutions of class 

1( )e
tC   are shown in Figures 14 and 15. Findings and 

observations are identical to those reported for model 
problems 1 and 2 and hence are not repeated. 

Accuracy of the evolution: Since in this case the 
theoretical solution is periodic, this model problem also 
serves as a good test to measure the accuracy of the pro-
posed method. Amplitude decay, base elongation and 
phase shift are good measures of numerical dispersion in 
the computational process. For this study we choose 

1.6
t

T


  and 13p  . We note that for this choice of 

t , a single time increment contains evolution that is 1.6  

 

Figure 12. p -convergence study for the first time 
increment ( = 3k ): model problem 3. 

 

Figure 13. Least squares functional versus /t T  for pro-
gressively increasing p -levels ( = 3k ): model problem 3. 

times the period of the wave. The evolution is computed 
for 100 time steps. Figure 17 shows evolution for the 
last six time steps ( 150.4t   to 160t  ). The periodic 
nature of the solution is preserved with virtually no am-
plitude decay, base elongation and phase shift confirm-
ing the time accuracy of the evolution. 

4. Summary and Conclusions 

In this paper we have considered methods of approxima-
tion for numerical solutions of ODEs  in time resulting 
from decoupling of space and time. All time differential 
operators in ODEs  are mathematically classified as: In 
this paper we have considered methods of approximation 
for numerical solutions of ODEs  in time resulting from 
decoupling of space and time. All time differential op-
erators in ODEs  are mathematically classified as: 
non-self adjoint or non-linear. For these two categories  

 

Figure 14. p -convergence study for the first time incre-

ment ( = 2k ): model problem 3. 

 

Figure 15. Least squares functional versus /t T  for pro-
gressively increasing p -levels ( = 2k ): model problem 3. 
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(a)                                                  (b) 

 

    
(c)                                                         (d)  

 

 
(e) 

 

Figure 16. Evolutions for model problem 2: = 3k  and = 2k , ,  ,  ,  / 0.1 0.2 0.4 0.8t T   and 1.6 for varying p -levels. (a) 

Evolution: / 0.1t T  ; (b) Evolution: / 0.2t T  ; (c) Evolution: / 0.4t T  ; (d) Evolution: / 0.8t T  ; (e) Evolution: 
/t T   . 

of time differential operators, the methods of approxima- tion based on time integral forms are considered: those 
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based on (1) fundamental lemma such as GM , PGM , 
WRM  and /GM WF  in time and (2) minimization of 
a functional using the residual such as the least squares 
method in time. A correspondence is established between 
the time integral forms resulting from these two classes 
of approximation methods for the two categories of time 
differential operators and the elements of the calculus of 
variations. This results in the definitions of VC  and 
VIC  integral forms in time. VC  integral forms in time 
yield unconditionally stable computations during the 
entire evolution whereas unconditional stability of com-
putations is not always ensured in the case of VIC  in-
tegral forms in time. The time integral forms resulting 
from GM , PGM , WRM  and /GM WF  are all 
VIC  for both classes of time differential operators and 
hence are not meritorious in the development of a gen-
eral computational infrastructure for ODEs  in time. On 
the other hand, the integral forms resulting from the least 
squares process in time based on the residual is VC  
when the time differential operator is non-self adjoint 
and can be made VC  in the case of non-linear time dif-
ferential operators: by using 1) Newton’s linear method 
for solving the non-linear algebraic equations and 2) ap-
proximating second variation of the residual functional 
by neglecting second variation of the residual function. 

The finite element process in time, using least squares 
in time based on the residual when considered in hpk  
framework, provides control over the integration time 
step (i.e. or h  or t ), degree of local approximation 
( p ) over an element, and the global differentiability of 
the evolution through k , the order of the approximation 
space yielding global differentiability of order ( 1k  ) so 
that with the proper choices of h , p  and k , quite 
complex evolutions can be accommodated in a single  

 

Figure 17. Evolution for /t T   , p =  , 95th to 100th 

time steps ( = 3k ): model problem 3. 

time step (as in the case of 1.6
t

T


 ) with desired accu-

racy. In addition, the residual functional(s) I  (or eI ) 
are a measure of the solution error without the knowl-
edge of the theoretical solution. As 0I  , the ap-
proximation approaches the true solution. This feature is 
only possible in hpk  framework and is a natural out-

come of the least squares process in time. This method-
ology provides a computational infrastructure that ad-
dresses all ODEs in time in a consistent and rigorous 
manner and the resulting computational processes are 
unconditionally stable regardless of the nature of the 
time differential operator. 
Numerical studies are presented for three model prob-
lems. In all three problems we intentionally choose 

2    so that the time period 1T   and, hence 
t

t
T


  . Numerical studies consider 0.1,  0.2,

t

T


  

0.4,  0.8  and 1.6. We note that when 1.6
t

T


 , a single 

element in time (i.e. the integration interval t ) con-
tains an evolution that is 1.6 times the time period. Find-
ings in all three model problems are similar. For smaller 

t

T


, lower p -levels suffice. As 

t

T


 is increased, 

higher p -levels are needed (but never beyond 7 or 9) 

for good accuracy. In all cases, I  of the order of 
O (10–6) or lower is achieved for p -levels of 7 or 

higher when 3k   (minimally conforming space, solu-

tions of class 2 ( )e
tC  ) or 2k   (integrals in Lebesgue 

sense, solutions of class 1( )e
tC  ). Solutions of class 

1( )e
tC   produce results that are almost as good as those 

using local approximation of class 2 ( )e
tC  . This is due 

to the fact that the theoretical solutions are smooth. 
When comparing I  versus degrees of freedom for so-

lutions of class 2C  and 1C  one finds that for a given 
number of degrees of freedom, lower values of I  are 

obtained in the case of solutions of class 2C , confirming 
better accuracy of the evolution. Convergence rates of 
I  versus degrees of freedom are almost the same for 

3k   and 2k  . When 3k   (minimally conforming) 
all integral measures are Riemann and hence are true 
measures. When 2k  , all integral measures are in the 
Lebesgue sense and hence are approximate, but as the 
approximation approaches the theoretical solution, 
Lebesgue measures approach Riemann measures. Com-
parisons with Newmark and Wilson’s   methods 
clearly show that for 0.1t  , the computed evolution 
from these two methods has significant error. In these 
methods there is no mechanism to accommodate a more 
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complex evolution in a time step than that corresponding 
to linear acceleration. Hence, for better accuracy there is 
no other alternative but to reduce the integration time 
step. In the present approach, the minimally conforming 
choice of k  with progressively increasing p -levels 

permits accurate computation of more and more complex 
evolutions for a fixed increment of time. Numerical 
studies presented for model problems 2 and 3 for 100 

time steps with 1.6
t

T


  at 13p  , confirm that the 

evolution remains free of amplitude decay, base elonga-
tion and phase shift. Similar computations using New-
mark method or Wilson’s   method with reasonable 
accuracy (but worse than the present approach) would 

require 0.05
t

T


 , i.e. 3200 time steps. 

In conclusion, the methodology presented here ad-
dresses all ODEs  in time in a uniform and rigorous 
manner without any special and application dependent 
adjustments, yields unconditionally stable computations 
during the entire evolution, has a built in mechanism of 
error measure without the knowledge of theoretical solu-
tion, permits large time steps while maintaining desired 
accuracy of the evolution, and is free of amplitude decay, 

base elongation and phase shift for large 
t

T


 (with roper 

choices of k  and p ) and, hence is highly meritorious. 
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