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Abstract

We apply the recently developed sampling algorithm, calledaranorthogonal matrix (ROM
simulation by Ledermann et al. [3], to compute VaR aharket risk portfolio. Typically, the
covariance matrix has a large influence on ROM VaR. BR,Meeing a lower quantile of the
portfolio return distribution, is also much impacted by #kewness and kurtosis of the risk
factor returns. With ROM VaR it is possible to strésst risk factors under adverse market
conditions by targeting other sample moments that aréstenswith periods of financial crisis.
In particular, the important effects of skewness or kigtimsthe tail of the portfolio returns can
be incorporated in ROM VaR. In a simulation study, we integrR®®M VaR into other methods
that take into account skewness and kurtosis, namely times@d-isher VaR approximation and
a robust approximation to the Chebyshev-Markov VaR upperdioudirlimann [7].

Keywords: MC simulation, orthogonal matrix, cornish-fishekpansion, chebyshev-markov
inequalities, skewness, kurtosis, value-at-risk.

1 Introduction

According to [1] there are three basic types of VaR rsmaamely thenormal linearVaR model,
also calledparametric VaR or variance-covariancé/aR, thehistorical VaR simulationmodel,
and theMonte CarloVaR (MC VaR) model. The Monte Carlo framework is the nilexible of
all, and may be used with a great diversity of marketfaskor return distributions. However, a
main disadvantage of the MC VaR model is the lack dfdasputation due to the large number
of simulation steps required to reach a given level cu@cy. However, with the increasing
computer power this drawback becomes less relevant. Two edpmibrtant design aspects of
MC VaR are thesampling algorithm([1], IV.4.2) and the differenstatistical models for risk
factor returnsto which the algorithm is applied ([1], I1V.4.3 and IV.4.Besides these technical
tools it is very important to control two sourcesnbdel riskin MC VaR, namely the simulation
errors through an appropriate choice of saenpling methodand the errors due to inappropriate
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behavioural models for risk factor returns. Simegiance reduction techniquesed to reduce the
simulation errors in MC methods are well-known (e.g. (f)ap. 4), we concentrate here on the
recent and important sampling algorithm calletidom orthogonal matriXROM) simulation
which is introduced in [3] (see also [4,5,6]). The authorscriles this novel Monte Carlo
algorithm as follows:

“ROM simulation eliminates sampling error in the sampl@meector, covariance matrix and the
Mardia multivariate skewness and kurtosis measures, soirtheach simulation they match
exactly their target values.”

This attractive property leads to the following advantaliémplies that within ROM simulation

it is possible to specify in advance the mean vectorthedovariance matrix of the risk factor
returns. In industry practice, these risk charactesistie often estimated using the so-called “Risk
Metrics VaR Methodology” ([1], IV.2.10.3). Typically, theowariance matrix has a large
influence on ROM VaR. But VaR, being a lower quantilehe portfolio return distribution, is
also much impacted by the skewness and kurtosis ofigkdactor returns. Like historical VaR
the new method is non-parametric. However, the limitatibhistorical VaR to past observations
implies that history will repeat itself in the sense tihat risk factor returns over the risk horizon
are identical to their distributions in the historical sanfihappropriate behavioural pattern).
With ROM VaR it is possible to simulate a very largemioer of realized risk factor returns that
are all consistent with given observed historical sample enten Moreover, we can stress test
risk factors under adverse market conditions by targetitiger sample moments that are
consistent with periods of financial crisis. In particuldre important effects of skewness and
kurtosis in the tail of the portfolio returns can be incorporatd®iOM VaR.In a simulation study,
we compare ROM VaR with other methods that take intmant skewness and kurtosis, namely
the Cornish-Fisher VaR approximation and the Chebyshekd¥aVaR upper bound and its
robust approximation introduced in [7].

A brief account of the content follows. Section 2 démsiin equation (2.5) the fundamerR@M
sampling algorithnthat generates random samples with exact mean and covanatroeusing a
random permutation matrix, a random orthogonal matrix, andeaxndimistic so-called L matrix
(in honor of W. Ledermann). An introduction to the multivagidtardia skewness and kurtosis of
the L matrices is given in Section 2.1 and the required piiepeare described in Section 2.3. A
short review on the random square orthogonal matricesshwgrie- or post-multiply a given L
matrix during a ROM simulation is contained in Section 3&ction 3 considers the application of
ROM simulation to Market VaR (Section 3.1) in combinatwith two semi-parametric models
that take into account skewness and kurtosis, nanmelyCornish-Fisher VaR approximation
(Section 3.2) and two robust approximations derived fromGhebyshev-Markov VaR upper
bound (Section 3.3). Section 4 illustrates with a nurakr@ase study and provides some
comments and conclusions. Finally, the importance optksent topic for the revised Basel llI
project as well as its potential application to other soun€essk like credit risk and liquidity risk
should be emphasized.
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2 ROM Simulation

Monte Carlo simulation consists to generate a randampke X, =~ of size M on N<M
random variablesX,,...,X . Consider the multivariate normal (MVN) model, where sample
mean vector and sample covariance matrixXf, , match the mean (column) vectqw,, and

covariance matrixC, such that (without bias adjustments for ease of notation)
™ Xy =1, 40)" WX,y =1, () =C (2.1)
m,n m n m,n n n- b

setting X, = Zy, 1, M —Z7) with Z_, a MVN simulation with sample mean
Zn , yields a simulation with meant/,, . A priori, it is however not obvious that a random matrix

Xm’n satisfying (2.1) will exist whatever the choice of ttmvariance matrix. SinceC,, is a
positive semi-definite matrix, it is always possible tind a decomposition of the form
C, = B: (B, , for example the Cholesky decomposition, the spectralndeasition (e.g. [8]) or

the hyper-sphere decomposition (e.g. [9]). Then, applyiadransformation
Loa =M 20X, ~ 1, Oy ) BB, (22)

one sees that solving (2.1) is equivalent to finding aimati_m’n satisfying the following
conditions ¢rthonormal relation with hyper-plane constrgint
T — T —NnT
I‘m,n |:Lm,n - En’ 1m |:Lm,n - On | (2-3)
where E, is the identity matrix andO0,, is the null vector. Now, solving (2.3) and inverting the

transformation (2.2) enables the generatiorexdct MVN samplefor any prescribed sample
mean /4, and covariance matriC . Any rectangular orthonormal matrik , satisfying the

hyper-plane constrainfl| I 0! is called arL. matrix (in honor of W. Ledermann), which

is fundamental to ROM simulation. The set oflathatrices has been classified into deterministic,
parametric, data-specific and hybtidmatrices (see [3], Section 1). In particuldeterministic
ROM simulationincludes the so-called.edermann matrixL;m = (ﬁ m_n,...,fm_l) , Which
consists of the Ilast nD{Z,...,m—]} orthonormal columns of the matrix
Lovma = (£1,ef s defined by

et

0= @i +))dL...1-i0,...0)", i=1..m-1 (2.4)
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where in ¢, the single entry—i is preceded by a number df one entries and followed by

.
n—-1-i zero entries. In fact, adding the last colunfn, = (1/\/ﬁ,...,l/ \/ﬁ) to Lo
one obtains the orthogonal matrik = (ﬂl,...,fm)D O(m) (theorthogonal groupof order

M) that satisfies the hyper-plane constraithg I I 0;—1- This matrix corresponds to the

transpose of the “Helmert orthogonal matrix” introduced by.[B&lsides ROM simulation it has
found many other applications (e.g. [11], example (113)],[[13], p.1).

Now, given an arbitraryt matrix L a random permutation matrixP, and a random

mn ?

orthogonal matrix R, JO(N), one sees that the specification,
Xpn =1, Ul +VmP, L, [R, [B,, (2.5)

which defines theROM samplingalgorithm, generates a random sample with exact mgan

and covariance matrixC . Indeed, it is clear thatl,  [R, is anL matrix, and the fact that

P [L is also arL matrix follows from the validity of the properf.}}rrn (P, =1rTn, which

m m,n

implies that the columns of the produd?,, [ L sum to zero, i.e. the hyper-plane constraint in

m,n
(2.3) is fulfilled. If P, is not a permutation matrix, then the latter property doesewessarily

hold. This is why the. matrices appearing in (2.5) can be pre-multiplied by peatioms, but
general orthogonal matrices can only be post-multiplieé. dduation (2.5) is thioundation of
ROM simulationas a means to simulate infinitely many random sampldshiaee identical
sample mean vectors and covariance matrices.

What about the multivariatskewnessand kurtosis of ROM samples (2.5)? How are these
characteristics related to the choice of a gikenatrix? These questions are discussed in the next
Subsection.

2.1 Multivariate Skewness and Kurtosis

As in the univariate case, there are many differensviayneasure the skewness and kurtosis of a
multivariate sample (e.g. [14,15,16]). To fix ideas weuls on the Mardia multivariate measure of
skewness and kurtosis, which has also been used in [3].

TT

For a mXxr random sample X :(XlT,...,Xm) in row vector notation with

X = (Xil,...,xin ), i =1,...,m, the Mardia measures of skewness and kurtosis are defjribe b
formulas
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-2

s

m? 3 3{x - %) S ix, -%)"F,

=1

o -0 Etax -nF,

TM (xm,n)

{1l
-

(2.6)
-1

s

KM (Xm,n):m L

=1

where S, is the MXN sample covariance matrix ofX, , and X is the row vector of
sample means. These measures are known to be invariannoenggingular affine transformation
of the type Y, . = X, [A,, +1, [b,, where A , is any invertible matrix ando, is any

row vector, i.e. Ty (Yon) =Ty (X1 0) Ky (Yon) = &y (X 1) - The invariance property is
the cornerstone of ROM simulationindeed, besides preserving the mean vector and the
covariance matrix, the multivariate skewness and kisrteampling properties of (2.5) are
encrypted in the matrix L in the sense that

m,n

Ty (X)) =Ty (L) K (X)) =Ky (L) for all ROM simulated sampleX,, |, .

This is due to the fact that (2.5) is a non-singular affiaesformation of L and therefore, the

mn’
multivariate skewness and kurtosis measures are presardedsuch transformations.

It is therefore of great importance to study the skewma@sl kurtosis of deterministic matrices.
Without loss of generality it suffices to considermatrices of the typel Recall that

L

m,m-1-
mma denotes the rectangular matrix obtained from an orthogwwatix L, [1O(m)
satisfying the constraint 1, (L., =0; , by deleting the last column. For each
- . o . .
n=2,...m-1, let Lm,n (respectively Lm,n) be the rectangular orthonormal matrices built up

by the first (respectively lastin orthonormal columns ofL Clearly, if m=3 a number

m,m-1"
of 3(M—-1m such rectangular orthonormal matrices could be build up fqm, , . For ease

of notation, only the simplest specified cases are usedrder to describe the skewness and
kurtosis of such rectangular matrices through simple algeboainulas, it is appropriate to use

various (partial)inner productsover subspaces of the Euclidean spa&m_1 defined and
denoted by

n n m-1 m-1
XY= X2 XY, <SXY>= Y X XY, 2.7)
i=1lj= i=m-n j=m-n

for each pair of IX(M—1) row vectors X = (X,,.... X, 1) Y = (Vy1eoes Yoy JOR™™. The

1 m-1
corresponding natural (partialprmsare defined and denoted by

I, =< x x>, M) =y<xx>] (2.8)
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For the full space R™ the inner products and norms far = m—21 coincide. In this situation
the lower indices are omitted and one just writgsX,y >=< X,y > =< X,y >’

m-1
4 =4 = 4

Lemma 2.1 (Skewness and kurtosis of deterministic L matyiceSsuppose that
L

m,n

=(e

and

N
(ﬁl,...,ﬁ;) ,N=2,...m=-1, is an arbittary MXr orthonormal matrix with

il,...,ﬁ in ), i =1,...,m. Then one has the formulas

Ty (Lp) =MES<l,,0, >, KM(Lm’n)=mQ2”€i”:. (2.9)

i=1j=1

and its sample covariance matrix is

n?

Proof. The sample mean vector ot~ is 4, =0

— -1 . . -1 _ . .
C, =m [E,, withinverse C,~ = mLE, . Insert into (2.6) to get the expressions (2¢9).

For the Helmert-Ledermann matrix (2.4) the Mardia skewnedartosis are respectively given
by (Proposition 2.1 in [3]):

Ty (Lpn) =NHM=3) +(m=-n)"], &, (Ly,) =nl(m=2)+(m-n)"]. (2.10)

Unfortunately, these  statistical measures are linked Dbihe relationship
Ky (Lmn) =Ty (Lmn) =N, and it is therefore not possible to target both skewaed kurtosis

using (2.5) in ROM simulation (cf. [3], Section 2.1). To lgna whether it is possible to get rid of
this disadvantage by allowing a broader range of variaborskewness and kurtosis, the author
[17] considers a larger set of determiniggieneralized Helmert-Ledermar(iGHL) orthogonal

.
matrices L, JO(m) that have fixed last columif , = (1/ Jm,...1/ \/ﬁ) and satisfy the

hyper-plane constraini [L =0 ,.

m,m-1

More generally, to study the maximum range of variatioskefvness and kurtosis over the space
of all deterministicL matrices, we are interested in the constrained optiniz on the Stiefel
manifold (introduced in [18]) of the objective functions (2.8)bject to the constraints

L;’n .. =E,. 1; M,.= OI . To tackle these problems several algorithms are ablail

Besides manifold versions of the Newton and the conjugatiegtamethod (e.g. [19], Sections
3.2 and 3.4, [20], Sections 6 and 8), there exist (curve)lirezacls algorithms (e.g. [20], Section
4). Within the last class of algorithms [21] have devetbpefeasible (constraints preserving)
retraction method. We hope that these complex topi¢deilackled in the future.
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2.2 Random Orthogonal Matrices and Sample Charactéstics in ROM
Simulation

The focus is now on the random square orthogonal matriced) yiae or post-multiply a giveh
matrix during a ROM simulation in (2.5). They fall intr¢e categories: permutations, reflections
and rotations. There exist many different ways to geeetatdom orthogonal matrices. They
include technigues based on Givens rotations matrices, skemetric matrices and Cayley
transforms, or the matrix exponential function (e.g. Bdction 2.2, and [4]). According to [22]

(see also [23,24]) it is well-known that every orthogamatrix R, JO(Nn) can be written as a

product of $n(n—1) rotation matrices and reflections:
R, =(G,,G;5..G,,) [(Cys.. Gy, ) [...1(G, ) [ Dy, (2.11)

where the matrixD, = diag(&,,....£,), & =+*1i =1...,n, represents reflections, and

E 0 0 0 0
0 cosg; O sing O
G, =0 0 E 0 0 (2.12)
0 -sing, 0 cosg O
0 0 0 0 E

are Givens rotation matrices with angles of rotatirﬁi] D[—’—;’;’] The generation of such

random orthogonal matrices is described in [22] using Befimawitiom variables forD, and a

set of %n(n—l) mutually independent beta random variables. We note thenaitive
algorithms for this have been developed in [24]. Forpicity, and like [3], we restrict the
attention to randonupper Hessenberg orthogonal matriced 0O(N), which can be written

as a product ofn —1 Givens rotation matrices of the form (e.qg. [25], [26])
H,=G,(6)[G,(6,)!...1G,(6,.,). (2.13)

where G, (Hi) is an NXr identity matrix except for the 2x2 principal subtrmawith entries

(2.14)

Gn(a)[i,i+xi,i+1]:[cos'9‘ Sinaj,

-sing, cosb,

where @ is chosen at random in the intervEﬂ),Zn), i=1..n-1.

1803



British Journal of Mathematics & Computer Scien€&3}, 1797-1814, 2014

An investigation of how random permutations, reflectiang other random orthogonal matrices
alter the sample characteristics of multivariate tiseeies ROM simulations is found in [3],
Section 2.2. A detailed study of these effects for differetattional matrices is found in [4].

2.3 Properties of Multivariate Moments under SampleConcatenation

First of all, one observes that the value Bf< M, which achieves a desired skewness or kurtosis
level along the line of Section 2.1, will be much sméthan the number of observations required
for a standard simulation. To overcome this disadvantageobweusly repeats simulations of
size M until enough observations have been generated, a technitpgeseahple concatenation
Once the desired mean, covariance matrix and multivariee/ness or kurtosis have been
matched for a given smalh <m, what about the first four multivariate moments of the
concatenated sample ? The result is summarized in PropdxitioRor the skewness this depends
upon the notion of co-skewness.

. . — [T T\
Definiton 2.1  Given two different samples X —(Xl,. X ) and

my ,n =1 my

T
Ym(’n = (XlT,...,X;{) on the same N random variables, the multivariat®-skewnesss
defined by

Te (X Yo o) = (M +m,) 2 3 {2(x - %) S, +S,)  dy, -0}, @19

i=1j=1

where X,y and S,,S, are the means and covariance matrices A o Yo, n

respectively.

The co-skewness is invariant under non-singular affemesformations of the form
vz — T v — T
me'n = me'an +1mx (b, , an ‘er,an +1mx b, , (2.16)

with any invertible matrix B, and column vector b, . That is, under (2.16), one has

Te (X no Y, ) =T (X o0 Yo, ) (s€€ [3], Appendix A.2).
Proposition 2.1 Consider I random samplesX, ,..., X, ,, each with sample meat/,

r u
and sample covariance matriC,. Set m=3 m _ and define X =(X;hyn,...,Xr;Yn) .
k=1

Then

m* 0y, X, =4y, m IX] X.,=C, (2.17)

,N n
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TM (Xm,n) = m—2 ErnlfTM (Xm,n) + 2m_2 |I:(rnk + m/)zrc(xm,n!Ym,,n)!
K= k! (2.18)

KM (xm,n) = m_l |%{::lr‘nkKM (Xm(,n)'

Proof. See [3], Appendix A.3.

The equations (2.17) state that sample means and covariatrigemare preserved under sample
concatenation of smaller samples with identical sampan® and covariance. In particular, a

large exact moment simulation, which targets a givenrémwee matrix C_, can be constructed
by concatenating many smaller exact moment simulationf, wilk the same target covariance
matrix C, .

However, the equations (2.18) show that skewness and isuwtdsbe preserved under sample
concatenation only under much more restrictive conditionstlysitee kurtosis will be preserved
by concatenating smaller samples with equal size andédéktirtosis. This implies that the same
L matrix must be used for each smaller simulation, so that

Xomn =Ly Gy +mMA(L,,, RY) oo (Ly,,, RY)T)T B, (2.19)

The behaviour of skewness is more complex due to the co-skeweems in (2.18). Since
Te (X Xon) =Ty (X)) /4 one sees thar, (X, ,) =T, (L,,) provided

m,n? rm,n

Xmn =L Gy +3/m L L )T R, OB (2.20)
3 Application to Market Value-at-risk (Market VaR)

ROM simulation may be potentially applied to any probteat can be resolved with Monte Carlo
simulation. In general, these kinds of problems require thecést of future multivariate
distributions using historical or scenario sample data.dhown how ROM simulation applies to
VaR estimation, which is a main industry benchmark tosasteancial risk, and how to get some
useful semi-parametric analytical sample approximations ta VaR

3.1 ROM VaR Methodology

Suppose a portfolio withn risk factors is given. Its target mean vector ofimes is £/, and its
covariance matrix i€<C . A sample matrix X =~ with m>n is generated using a ROM

simulation of the form (2.5). It representd observations for the returnX,,...,X, on the

portfolio’'s N risk factors and generatedl observations of the overall portfolio return
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i,j’i =1....,m. ROM VaR considers the mean, variance,

S:ixj through S :iX
=1

j=1
skewness and kurtosis sample characteristi(:,sAls,(Afé,}A/S,}A/ZS) of the portfolio return
calculated as

N 1m a2 1 m ~ N2
=—3S, 0s= S - ,
Hs mé | s m—1i§i(  — )
A~ /%35 ~ m o 3
= >, Kpe = S -
Vs ag 3s (m-1)(m-2 §K| ﬂs)
~ Kis - m(m+1) o NRY! 1 (m ~ 2)2
=—=, K,s= S - 33— S - .
Vas & 45 = (m-1)(m-2)(m-23) le( is) (m-2)(m-23) |Z::1( is)
(3.1)
Under the usual MVN assumption the portfolio’'s ROM VaRakglated as
VaR([S|=-j +6,(z,, 3.2)

with z,_ = CD'l(l— £) the & -percentile of the standard normal ad the probability of loss.

Typically, the covariance matrixC, has a big impact on (3.2) becausxi‘é :J; [cC,a,.

Since VaR is a lower quantile of the return distributionsitalso much dependent upon the
variation of skewness and kurtosis. To take this effégotaccount it is possible to specify either
parametric analytical distributions of return (see [7LtBa 2.1, for some useful choices) or adopt
a semi-parametric approach that does not assume disphsiribution but accounts for non-
trivial higher moments. Since parametric models sufi@mfmodel riskwe consider only a semi-
parametric approach based on the skewness and kurtogsiglynthe Cornish-Fisher VaR
approximation (Section 3.2) and an approximation based on theystre-Markov VaR upper
bound (Section 3.3).

We note that the (non-parametric) historical VaR could alsadeel because it obviously takes
into account the historical skewness and kurtosis Howeasralready mentioned in the
introduction, the limitation to historical observations ireplithat history will repeat itself. With
ROM VaR it is possible to simulate a very large nundfenealized risk factor returns that are all
consistent with the observed historical sample mom#fseover, we can stress test risk factors
under adverse market conditions by targeting other sampleenisnthat are consistent with
periods of financial crisis.

For the above reasons we choose a ROM VaR simulation, uierdeterministidc matrix is
chosen to reflect the risk manager’s point of view on Malkdirtosis while still preserving its
historical observed value as well as other propertieeeohistorical data. As seen in Section 2.2,
equation (2.19), to control the Mardia kurtosis with a deieistic L matrix, say the Helmert-
Ledermann matrix (2.4), we choose a concatenated ROM saifrie form

Xpn =Ly Qup ++/p (L, RO)T ... (L, [RV)) [B,, (3.3)
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where R,fl) ,...,R,(f) are different random orthogonal matrices. For thiskm@wv by (2.10) that
Ky (Xipn) =Ky (L*p,n) =nl{p—-2) . Therefore, to target a kurtosis of

@+ L) Inl(n+2), =0, where f=0 corresponds to the Mardia kurtosis of a MVN
model (e.g. [3], Proposition 2.3)), the parametpr is set equal to the nearest integer matching
the equation

p=2+@1+L)[(n+2). (3.9
3.2 Cornish-fisher VaR Approximation

This semi-parametric approach makes use of the Corisshd¥ [27] expansion. For a random
variable S with mean/g, varianceaé, skewness )5 and kurtosis y, 5, which represents

here a profit, one has the followiri@prnish-FischeVaR approximation(CF VaR) (e.g. [28] or
[1], IV.5.3.3, for the context of delta-gamma-normal appr@tion):

VaRe"[s]=-p + 0, 2,

CF 1

Zs = ZE +E(Z£2 _1)D/S +%(Z‘§ _3Z£)D/Z,S _%(223 _525)[1/;’ (3.5)

with  z, = cb‘l(l—g) the & -percentile of the standard normal distribution. The Chrnis
Fisher approximation consists to transform the quanfila normal law into the realization of a
random variable S with non-vanishing skewness and kurtosis such tha(S) = ®(z,) . To
be well-defined such a transformation must be one-to-ongectssary and sufficient condition
for this is the non-vanishing of the derivativdS/dz,, which holds provided the following
inequality is satisfied:

Vos _ |y = Yos 4 5% |- &
sty -5 )5 20 @6
In practice yg and y, are small andy, 5 is positive, hence the condition is often fulfilled.

3.3 Chebyshev-Markov VaR Upper Bound and Robust Apmximation

Since Chebyshev and Markov it is possible to construct umiveesni-parametric bounds for the
evaluation of VaR (and expected shortfall) based on the fisshfements of higher order. Rather
simple and practical analytical bounds, which are based on tha, mariance, skewness and
kurtosis of the portfolio loss distribution, have been derived2d], Theorems 4.1, 4.2 and
Corollary 4.1 (see also [30,31], Section 2.4). In genera has the following implicitly defined

Chebyshev-MarkoVaR (CM VaR) upper bound
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VaRM (S| = —ug + o M, p(zCM):s, e<il1-_Ys

) VA+ Vs 3.7)

AS 2 2
= =1+ - =2+ -y,
p(u) C](U)z +AS(1+U2) , qu)=1 ysu-us, Ag=2 Yos — Vs

Since this upper bound takes into account the extreme etffiattskewness and kurtosis may have
on VaR, it is clearly only a crude upper bound. In the lirgitase of a normal distribution with

1
Ys =V,s =0 one gets as special cag" = (2‘—535)4 , which considerably overestimates the

true normal VaR coefficientz, = (D_l(l— £) . Itis possible to transform this upper bound into a

more robust formula. Roughly speaking a modebmistwhen a small change in the assumptions
does not produce big changes in the results. A simple devadjust the upper bound (in order to
get a robust version of it in the normal case) is through &piication factor, chosen here as the
ratio of these two coefficients. We get ttudust Chebyshev-MarkdvaR approximation(robust
CM VaR):

VaRM[s] =~y + 0, B2 M. (3.8)

(=)

In the special case of a symmetric distribution withishing skewnessyg =0, one has the
explicit symmetric Chebyshev-Markd@aR upper boundsym CM VaR) ([29], Example 4.1):

1
2 41- 4 2
VaRSCM[S] =—UstOg QgSCM’ ngcm :%Eﬁ\/yzzs +¥[6V2,5 +3)_; _Vz,s} :

(3.9)

Similarly to the preceding situation, one gets tbbust symmetric Chebyshev-MarkdaR
approximation(robust sym CM VaR):

VaRS™Ms| = - + 0 1 % ysoM, (3.10)

(&)% ¢
4 A Numerical Case Study

The present Section illustrates the ROM VaR simulatiothatk Given the mean vector and the
covariance matrix of the risk factor returns, the Marklirtosis of portfolio returns is targeted as
explained in Section 3.1. Based on the simulated meanjlitplatkewness and kurtosis of the
portfolio return, VaR is estimated using the Cornish-FidfeR approximation, the Chebyshev-
Markov VaR upper bound and its two robust approximations.
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For a number of risk factordl D{ 3,4,5,6,10} we generatdN = [ p =10000 concatenated
ROM samples of the type (3.3) witpl]{8;|.0,16,20}, p >n, and random upper Hessenberg
orthogonal matrices (1),...,Rl£r) as specified in (2.13)-(2.14). For simplicity, we assume a

zero-mean vector of returng, =0, . This assumption is made in the Risk Metrics VaR
methodology (e.g. [1], 1V.2.10.3)), which should be comgai®e practice with the present
approach. For illustration only, we use the following falftk column-homogeneous angles

parameterization of the correlation matrj@, = (,Oi,(n)) by [32]:

1- : .n—1
P = /{1—ai2il—af)ﬂ+(aiaj)"_l, o, 0(-11), 1<ij<n. @

1-a,a;

In this situation, the spectral decompositigsy, = b] b, with b, = (b{") reads

- ) j<d}

n _[1_ - -1

bji ‘(1 ai) 2 oap . (4.2)
Further, we assume a constant vectdf, = (O.ZL...,O.l)T of standard deviations of returns, so
that  the spectral decomposition of  the associated covarianoeatrix

C,=o0!(p o, =B [B,, B, = (Bfi“)) , is given by Bfi“) = bfi”)Ui . The vector

a™ = (aj,...,a,) of constants in (4.1)-(4.2) is taken from the followapgcification:
a® =(a,,....a,) = (- 050050~ 050050-050). (4.3

Once a ROM simulated sample of retun)"smn has been generated, the overall sample portfolio

n .
returns§ =) X, ., 1 =1...,m, as well as the sample characteristics (3.1), areulesdd.
j=1

i
Table 4.1 summarizes the results and displays correspondiRgayproximations for the small
probability of loss £ = 0.005 (Basel Il and Solvency Il compatible).

The following observations can be made. While the normahli VaR (3.2) remains for fixed
(up to MC errors) rather stable across choicedéf N, the CF VaR (3.5) and the CM VaR
(3.7)-(3.8) vary much with P . Since the kurtosis is increasing wit one expects that VaR is
also increasing with D in agreement with increased risk by increased kurtdsis. is true for
the CM VaR approximations but not for the CF VaR approximata counterexample is the pair
(6, 8)-(6, 10)). Since for small kurtosis the CF VaR carbbélw the normal VaR, one also
observes that the CF VaR might discriminate too much witiectgo normal VaR. Since the CM
VaR approximations are above or at least close to the n&afalfor the robust CM VaR, these
approximations do not share this disadvantage. On the otherthar@W VaR upper bound (3.7)
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might be too conservative to be useful in practice. The rdbMs¥aR lies often on the safe side
with respect to the CF VaR and appears to be a rellgonampromise. Whether the above
observations remain true in more general settings is opeurfbef investigation.

Example 4.1 VaR approximations using sample concatenated ROM siiolat = 0.005

sample characteristics of portfolio return VaR sample approximations
~ ~ ~ Iy Normal CF VaR CM VaR robust CM
(n,p) Hs y2~s appr. (3.2) |appr.(3.5) |appr.(3.7) [VaR (3.8)
(3,8) -0.00090 0.27943 -0.72004 1.10760 0.72067 0.56673 1.23146 0.71101

(3,10) -0.00197 0.28019 -0.92752  2.50553 0.72369 0.61086 1.31745 0.76108
(3,16) -0.00068 0.28020 -1.41438 6.87933 0.72243 0.77055 1.47935 0.85396
(3,20) -0.00075 0.27377 -1.81896 10.15159 0.70594 0.78652 1.49431 0.86262

(4,8) 0.00249 0.37493 -0.71406 1.14419 0.96327 0.76608 1.65659 0.95489
(4,10) -0.00043 0.37501 -0.95445 2.60568 0.96638 0.80929 1.76262 1.01731
(4,16) 0.00293 0.37249 -1.42248 7.10152 0.95655 1.04491 1.97560 1.13879
(4,20) -0.00040 0.37571 -1.75623 10.05203 0.96818 1.13616 2.06661 1.19272

(5,8) 0.00222 0.46503 -0.50198 0.79422 1.19561 1.05113 2.08150 1.20021
(5,10) 0.00169 0.46496 -0.80554 2.32418 1.19598 1.08728 2.21010 1.27464
(5,16) 0.00119 0.47206 -1.23465 6.60437 1.21475 1.45785 2.54250 1.46667
(5,20) -0.00216 0.46816 -1.53516 9.49184 1.20806 1.61382 2.62973 1.51842

(6,8) 0.00060 0.56451 -0.34874 0.63112 1.45349 1.36697 2.56020 1.47713
(6,10) 0.00012 0.55771 -0.73850 2.19073 1.43644 1.34630 2.66379 1.53711
(6,16) 0.00037 0.55892 -1.27634 6.66214 1.43931 1.68324 2.99690 1.72923
(6,20) 0.00217 0.55993 -1.54007 9.81751 1.44011 1.98895 3.16545 1.82573

(10,16) | 0.00194 0.94655 -1.11161 5.85605 2.43622 2.91843 5.06326 2.92097
(10,20) [ 0.00942 0.92664 -1.45863 9.54017 2.37744 3.39026 5.25837 3.03040

As an important remark, one can state that the comsldesmbined ROM/aR semi-parametric
approachclearly demonstrates the important variability of VaR daukigher than normal kurtosis
in portfolio returns. Unlike parametric models like Studennhdrmal mixture and Student t
mixture models, this approach does not suffer from model risk ian@n appropriate
complementary substitute of the normal linear VaR modhich is not able to capture non-
normality effects. Moreover, the simplicity and reasoeatrformance of concatenated ROM
simulation competes well with a general MC VaR methat thcludes non-linear (via delta-
gamma approach) and non-normality effects.

In practice, one should compare the above proposals witRifkeMetrics VaR methodology (as
already stated above) and other methods like the Gram-@hagproximation and the delta-
gamma approach. An example for the latter is found JnIM.5.3.3, who comments also on
comparing it with the Cornish-Fisher VaR. In particutame should take care of highly leptokurtic
data by using appropriate parametric statistical distions that enable the use of skewness and
kurtosis. A very tractable possibility is Johnson’s distriut{e.g. [1], Example 1V.5.2, [33],
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[34]). Similarly popular are the normal inverse Gaussian badktew Student t that are applied in
[7] among many other papers. Further valuable alternativedade the variance-gamma, the
normal variance-gamma, the truncated Lévy flight and threnal tempered stable distribution
(see [35,36,37]). The approximation by Silitto [38] hasntbeEommended by [39]. Unfortunately,
detailed and comprehensive calculations are not witldrstiope of the present paper. One cannot
conclude without mentioning the relevance of the present combi@dd YRaR semi-parametric
approach to other risk management topics like credit rigdiguidity risk.

5 Conclusion

In the present paper, the relatively recent and fund&ah&®OM sampling algorithm has been
integrated into two semi-parametric methods that tatkeancount skewness and kurtosis in order
to compute VAR, namely the Cornish-Fisher VaR (CF VaRproximation and a robust
approximation to the Chebyshev-Markov VaR upper bound (roblstV@R). The important
variability of VaR due to higher than normal kurtosis in falit returns is demonstrated by the
combined ROM VaR semi-parametric approach at a numeasal study. In this study, the robust
CM VaR variant is often on the safe side with respecthto CF VaR and appears to be a
reasonable compromise.
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