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ABSTRACT 
 

The most important relationship between chemistry and genetics is nonetheless the corpuscular 
nature of their objects, molecules (or atoms) and genes, respectively. On the other hand, one states, 
without a substantial proof, that philosophy should be one step ahead all sciences. Here is a proof 
that the reverse can also be true. Two internal enantiomeric halves of meso compounds or the two 
chiral halves of C2 symmetrical isomers constitute pairs of entities suitable to work as duality 
phenomena in science. Four types of isomers have been identified: (A) meso, (B) C2 symmetrical 
(CTS), (C) irregular chiral (irrechi) and (D) constitutional (constit.). Meso and CTS are characteristic 
to plants and microorganisms. Almost all natural micromolecular compounds from vertebrate tissues 
are asymmetric, i.e. they are constit. isomers. An exception to this rule is meso-inositol, an isomer of 
hexoses, which are themselves, as their congeners asymmetric. By comparing the real (envisaged) 
meso isomers of these compounds with the asymmetric ones of vertebrate tissues, the reason for 
nature selected the latter became quite evident: it is the omission of a suite of structural restrictions. 
Delivering of meso isomers of natural compounds discloses a huge chemical philosophical potential 
of this issue. An intrinsic property of meso combinations is their character of dimerism, hence their 
molecule is formed of two entities that are contrary in a spatial, chemical and optical sense, i.e. good 
candidates for a duality concept. Moreover, a good deal of material is indicated, i.e. CTS isomers, 
whose sides are chiral and identical, for a new type of duality in philosophy, strongly expressed in 
nature by a chemical language. 
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1. INTRODUCTION  
 

Biochemical and genetic center running today is 
formed almost exclusively of genome [1-3]. All 
products, their molar ratios, phenomena of 
molecular and isomeric diversity, as well as 
entropy buffers are produced by the genome. 
However, genetic apparatus is tested especially 
by its products. Duality phenomena are known 
especially in physics, e.g. light duality [4-7]. The 
two opposed sides of a duality phenomenon 
should be well defined, equally (comparably) 
strong concerning their meaning, and relatively 
known (consecrated). In chemistry duality 
phenomena are of less amplitude [8-10] than in 
physics, and this can be correlated with the 
relative lower oldness of this science, as based 
on firm and general principles, in comparison 
with physics. One might suppose that the birth 
certificate of physics was signed by Pythagoras 
(abt 532 BC) when he found a mathematical 
relationship between sound quality, the length, 
thickness and tension of the producing string (or 
pipe) [11]. Chemistry began probably at the 
same time, but a series of occult influences 
slowed its development. 
 

Structural analysis of numerous natural 
compounds as well as in silico integrative 
approach of isomers generated by the same 
molecular formula, applied to a large diversity of 
natural compounds and some synthetic ones, led 
to four groups (types) of compounds identified 
and defined within the same molecular formula: 
(A) meso, (B) C2 symmetrical (CTS), (C) irregular 
chiral (irrechi) and (D) constitutional (constit.) 
[12-17]. 
 

(A) Meso, are either based on a mirror plane of 
symmetry (A1), or devoid of a mirror plane of 
symmetry but specified in this way as a result of 
Cahn-Ingold-Prelog rules [18,19] (A2). One can 
assert that molecules of the latter group are 
formed of two imaginary enantiomeric halves 
separated by an imaginary mirror plane of 
symmetry. Related to meso isomers are 
compounds characterized by a center of 
symmetry (A3) or an alternating axis of symmetry 
(A4). The molecule of (A1)-(A3) is formed of two 
enantiomeric halves. Meso isomers are optically 
inactive (optinactive) due to an internal 
compensation. 
 

At the time when Fischer invented xylitol [20], an 
optinactive polyol, at least one meso isomer was 

known, i.e. meso-tartaric acid, discovered by 
Pasteur [21,22]. Meso-tartaric acid has a 
homodimeric structure (an even number chain), 
and xylitol a heterodimeric (an odd number 
chain). Mirror plane of symmetry cuts a bond of 
meso-tartaric acid, and four atoms of xylitol (C, 
H, OH). One might theorize that mirror plane of 
symmetry hides (masks) the atoms cut by it from 
polarized light, and what remains, as evidenced 
by this physical instrument, is an entity 
containing an even number of atoms, i.e. a 
homodimer. Mirror plane of symmetry has to be 
regarded as an intrinsic property of meso 
compounds, both a physical instrument and a 
natural phenomenon. 
 
Meso heterodimers constitute a chemical duality, 
the two opposed sides of duality are their 
heterodimeric character, on one hand, and their 
expression as homodimers, on the other. 
According to Kelvin and Prelog theory [23-25] 
“meso compounds are internally heterochiral. 
There is a fundamental difference between the 
mirror plane of symmetry in macrocosmos and at 
physical-chemical level in microcosmos. In the 
first case, the mirror plane of symmetry just 
indicates the limit of the two enantiomeric halves. 
At physical-chemical level, it can cut atoms and 
hide them, not of our seeing, but of polarized 
light. As will be evident of this paper, this 
spectacular property of mirror plane of symmetry 
plays an extremely important role in 
systematization of isomers emerging of the same 
molecular formula”. 

 
Imprecise breaking of identity of the two halves 
of meso isomers leads to two enantiomers [26] 
i.e. the internal enantiomerism is externalized. (In 
our days chemists try to overturn this feature of 
meso compounds and to predominantly (or even 
exclusively) prepare one product only [27-31]). 

 
(B) “C2 symmetrical (CTS) compounds have 
been defined in relation with an axis and a 
rotation of 180°. After this maneuver the same 
atoms should be regained as initially” [32-34]. All 
CTS compounds are chiral and optically active 
(optactive). Fischer demonstrated the existence 
of some chiral compounds with identical ends, 
that produced exclusively one derivative, by 
reactions randomly affecting their ends. E. g. D- 
and L-mannitol [35], D- and L-iditol [36], and their 
aldaric acids, as well as D- and L-threitol [37] and 
the enantiomers of tartaric acid [38]. Besides 
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these compounds whose molecule is formed 
exclusively of two identical chiral halves, there 
are CTS combinations where the two chiral 
halves are linked on a matrix. E. g. 3-keto- and 3-
deoxyxylitol, 3-keto- and 3-deoxyribitol, D- and L-
diaminopimelic acid [15], etc. The chiral units of 
the third CTS group molecules can be 
recognized especially by Cahn-Ingold-Prelog 
rules [18,19]. According to Kelvin and Prelog 
theory [23-25], “CTS formed exclusively of two 
identical chiral halves are homochiral with each 
other” and internally homochiral [34,39]. Of this 
reason, they could be named also twin molecules 
[40]. “The exceptional properties of twin (CTS) 
compounds” were also noticed by Vickery [41]. 
“Homodimeric CTS compounds constitute a 
chemical duality, the two opposed sides of 
duality are optical activity, on one hand, and their 
symmetry, on the other. There is one universal 
rule concerning CTS compounds: every member 
of this group possesses a real or imaginary, but 
plausible, meso isomer. Some more clearings 
are requisite. Compounds based on 1,2-diamino-
cyclohexane [29,33,42,43] are CTS as long as 
they are trans”. “Their cis isomer should be meso 
only by adopting a planar cycle, as for allo-
inositol. Of the six meso isomers of inositol 
[44,45], five are characterized by 1,4 mirror plane 
of symmetry, while allo-inositol is devoid of such 
a plane. Its meso nature ca be explained only by 
a planar structure, hence the mirror plane of 
symmetry cuts two opposed bonds”. (One can 
write a meso isomer of 1,2-diamino cyclohexane 
as 1,2-cyclobutane derivative). 
 
“The first CTS combinations, the two 
enantiomers of tartaric acid, have been 
separated by Pasteur (1848) by crystallization 
from a racemic mixture that had been prepared 
by Kestner (1822)” [21,22,46]. “Pasteur noticed 
two types of crystals, that were enantiomorphic 
with one another. He separated the two types of 
crystals and found out that their aqueous 
solutions were dextrorotary and levorotary, 
respectively. Dextro-tartaric acid had been 
discovered by Scheele (1770) in the sediment 
deposited in the vats during the grape juice 
fermentation” [47,48]. “Stereochemical theory of 
tetrahedral and asymmetric (chiral) carbon atom 
[49,50] led van’t Hoff to molecular models based 
on tetrahedrons which unequivocally represented 
every chiral carbon atom”. “By constructing and 
using these models, van’t Hoff expanded the 
idea of enantiomorphism from crystals to 
molecules, a process initiated by Pasteur. (Dots 
and wedges representations of today come from 
van’t Hoff’s models). However, at that time no 

scientist could rationally associate structural 
models with the two enantiomers” [51]. “In fact, 
the discovery of Pasteur increased the dilemma 
of representation, i. e., the relationship between 
a sample of an optactive compound and the 
unique, characteristic, structural model possibly 
assigned to it. This dilemma was solved by X-ray 
diffraction, i. e., of zirconium Kα rays, by sodium 
rubidium tartrate of the dextrorotary species, and 
the obtained model was assigned to (+)-tartaric 
acid” [52]. “Configuration of chiral centers of (–)-
tartaric acid became also known, by the virtue of 
the law of enantiomorphism. By an impressive 
coincidence, this configuration of (+)-tartaric acid 
had been hypothetically attributed by E. Fischer” 
[38]. “Configuration of the two enantiomers has 
been connected with other chiral compounds, 
beginning with (‒)- and (+)-glyceraldehyde” 
[53,54]. “A chemical relationship has been found 
between E. Fischer and his son, H. O. L. Fischer” 
[55,56],” due to a derivative of D- and L-mannitol 
prepared by the latter, i.e. 1,2-5,6-di-O-
isopropylidene mannitol (CTS). By integration of 
finding of H. O. L. Fischer in the strategy of E. 
Fischer, a remarkable shortcut to structure 
elucidation of linear aldohexoses is obtained” 
[57]. 
 
The theory of van’t Hoff and Le Bel was 
confirmed by three independent arguments. (a) 
Synthesis by E. Fischer of the major part of 
monosaccharides indicated by this theory [58]. 
(b) In a model of diamond based on crystal 
structure determined by X rays diffraction, C 
atoms appeared on the apices of an endless 
lattice of regular tetrahedrons [59]. (c) Pauling 
[60,61] explained “this model in mathematical-
physical terms by using a concept, hybridization, 
taken from biology. Pauling demonstrated that by 
mixing three p orbitals, each having two lobes 
and being perpendicular to one another, with a 
spherical s orbital, four hybrid sp

3
 orbitals are 

obtained, that are identical and oriented along 
the axes of a regular tetrahedron”. 
 
A remarkable and unique feature of CTS 
compounds is that chemical modification of one 
of the two component chiral halves produces the 
same result. 
 
(C) Irrechi. “The third subgroup of isomers of 
meso compounds are also chiral and they are 
characterized by a molecular skeleton identical to 
meso and CTS, i.e. a phenomenon of 
isoskeletomeric relationship” [62]. Still, chiral 
carbons are irregularly distributed in their 
molecule [14,15] (irregular chiral, irrechi). Meso 
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isomers are characterized by a 1:1 ratio of 
numbers of R and S carbons while in CTS ones 
this ratio is n:0, 0:n or 1:1. In irrechi combinations 
the ratio R/S has other values. 
 
(D) “Constitutional (positional) (constit.) isomers 
form the fourth group. They are isomer with the 
preceding ones but their skeleton is different. 
They are either optactive or optinactive” [14]. 
With relatively few exceptions, compounds 
currently met in living things, especially in 
vertebrate tissues, are constit. isomers. They are 
probably the most abundant in these living 
things.  
 
The term diastereomer has been destined to 
include all isomers that are not enantiomers [63-
68]. Hence, it included all types of isomers 
mentioned above. However, since they have 
developed as independent groups, we 
considered that the term diastereomer became 
obsolete and have replaced it with the four 
redefined terms. 
 

A direct application of our systematization to 
monosaccharides discovered/invented by 
Fischer would clearly indicate our strategy. 
Galactitol, iditol, xylitol, ribitol, erythritol, are 
meso, mannitol and iditol are CTS, altritol, 
glucitol, gulitol, talitol, arabinitol, lyxitol are irrechi, 
hamamelitol and apitol are constit. What has 
been affirmed for polyols is also valid for their 
aldaric acids. 
 

“Concerning limits and possibilities of reciprocal 
changing of types mentioned above, both CTS 
and irrechi can be transformed into meso. Some 
interesting facts should be mentioned: the 
molecule of iditols and idaric acids possesses an 
equal number of R and S carbons, similarly with 
galactitol, allitol, galactaric and allaric acids. 
However they are not meso but optactive” [44]. 
The difference can be explained probably by the 
fact that the molecule of the former is formed of 
two identical chiral halves and the latter of two 
chiral enantiomeric halves. 
 

The two hydrogen atoms of central methylene of 
a meso derivative, i.e. 3-deoxyxylitol, 3-
deoxyribitol, meso-diaminopimelic acid, etc., are 
not equivalent. If they are alternatively replaced 
by a hydroxyl function, the products are different. 
The two central hydrogen atoms of CTS 
compounds, i.e. 3-deoxyarabinitol, 3-deoxylyxitol, 
L,L- and D,D-diaminopimelic acid, etc., are 
equivalent: if they are alternatively replaced by a 
hydroxyl function, exclusively one product is 
obtained. 

“The isomeric diversity is connected with the 
following factors: (i) Structures as diamond [59], 
graphite and fullerenes [69,70] illustrate the best 
the ability of C atoms to bind with each other”. 
However, “the three forms present a very limited 
structural variety. (ii) What really confer 
molecular diversity to C combinations is the 
association of this element with hydrogen and 
this is evidenced by the remarkable molecular 
variety of aliphatic hydrocarbons” [45,71,72]. 
“Isomeric diversity is a physical-chemical 
magnitude concerning the ability of a compound 
to present a large number of isomers. (iii) 
Chemical functional groups, in relative low 
proportion, also favor molecular diversity. (iv) 
Aromatic hydrocarbons present the lowest 
isomeric diversity of all organic combinations. 
They contain an exceeding number of chemical 
functions, and they are in a state of advanced 
oxidation. In fact, they fill an intermediate place 
between elementary carbon and aliphatic 
hydrocarbons. Another remarkable feature of 
aromatic hydrocarbons is the fact that they do 
not present meso form as atropisomers. (v) 
Isomeric diversity increases exponentially with 
molecular weight” [63,72,73]. (vi) “Carbon 
dioxide is a terminal facet of metabolism and 
combustion of organic compounds. It is 
characterized by a high chemical inertia. Carbon 
dioxide has to be attached to a preexisting 
structure, as a piece of metal in a lathe, and 
stepwise reduced, the energy of sun playing an 
essential role in this process called 
photosynthesis” [74]. 
 
About eight classes of natural compounds 
contain meso isomers.  
 
Monosaccharides: meso-tartaric acid 
[22,49,75,76], erythritol [77], butanediol [78], 
galactitol [26,79], allitol [80], xylitol [81], ribitol 
[82,83], allaric acid [84], xylaric acid [85], ribaric 
acid [86], galactaric acid [26], D-galactitol-3R,4S-
cinnamicacetal [87], galaoctitol [88-90].  
 
Amino acids and their derivatives: meso-
cystine [91,92], meso-diaminopimelic acid 
[74,92-96], meso-lanthionine [96-98], L,D-
homolanthionine [99], meso-DKP of pipecolic 
acid [100], dragmacidin B [101], fellutanines A 
and C [102], dimethyl fellutanine A [103], 
fellutanine D [104,105], trans-dragmacidin C 
[101], chimonanthine [106,107], petrobactin 
[108,109], phenazostatin D [110,111].  
 
Carotenoids and carotenes: zeaxanthin 
[(3R,3’S)-β,β-carotene-3,3’-diol] [112-115], 
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(2R,2’S)-2,2’-dihydroxy-β-carotene [(2R,2’S)-β,β-
carotene-2,2’-diol] [116], tunaxanthin D 
[(3R,6S,3’S,6’R)-ε,ε-carotene-3,3’-diol] [117-122], 
tunaxanthin E [(3R,6R,3’S,6’S)-ε,ε-carotene-3,3’-
diol] [117,120], meso-astaxanthin [(3R,3’S)-3,3’-
dihydroxy-β,β-carotene-4,4’-dione] [123,124], 
(6R,6’S)-3,3’-diketo-ε-carotene [(6R,6’S)-ε,ε-
carotene-3,3’-dione] [119,122], ε-carotene 
[(6R,6’S)-ε,ε-carotene] [125], γ,γ-carotene 
[(6R,6’S)-γ,γ-carotene] [119], glabrescol [126], 
squalane [127], lycopane [128], carotane [128-
130], isorenieratane [131], renierapurpurane 
[131], 1,10-bis[2',2',6'-trimethylcyclohexyl]-3,8-
dimethyldodecane [132,133]. 
 
Lignans: nordihydroguaiaretic acid [134], meso-
dihydroguaiaretic acid [134], machilin A [135], 
dimethyl meso-dihydroguaiaretic acid [136], 
saururin A [137], pre-gomisin [138,139], 7,7’-
dioxodihydroguaiaretic acid [140], 3,3’-
didemethoxynectandrin B [134], nectandrin B 
[135,141,142], galgravin [143,144], zuonin B 
[145], 4-O-Me-saurucinol J [146], isonectandrin B 
(tetrahydrofuroguaiacin B) [142], di-O-Me 
tetrahydrofuroguaiacin B [146], meso-
secoisolariciresinol [147,148].  
 
Neolignans: asarolignan A [149].  
 
Cyclobutane derivatives: endiandrin B 
[150,151], cinbalansan [152], heterotropan [152], 
α-diplicatin B [153], piplartine dimer A [154], α-
truxillic acid, γ-truxillic acid, epi-truxillic acid, ε-
truxillic acid, peri-truxillic acid, β-truxillic acid, ω-
truxillic acid [155], caracasandiamide [156].  
 
Phenols: (3R,5S)-hannokinol [157], (3S,5R)-
octahydrocurcumin [158], (2S,3R)-diolmycin B1 
[159], (2S,3R,4S,5R)-hybocarpone [160-162], 
(2S,3S,4R,5R)-hybocarpone [160-162], 
eurorubrin [163], isochamaejasmine [164].  
 
Terpenoides: daibudilactone C and 
daibudilactone D [165]. All this suite of meso 
compounds, the majority of them natural 
combinations, is meant to indicate that this type 
of symmetry, i.e. antinomy, is a natural 
phenomenon, although relatively limited. They 
are found almost exclusively in microorganisms, 
plants and/or lower animals [12-14]. 
 

2. THE LIMIT OF SYMMETRY OF THE 
MAJOR METABOLITES 

 
Real and envisaged meso isomers: There are 
few, if any, symmetric compounds produced by 
vertebrates. Of the common metabolites, only 

monosaccharides (aldoses and ketoses) possess 
meso isomers as natural compounds. However, 
the potential of natural metabolites to produce 
imaginary but plausible meso isomers is really 
huge. The major metabolites containing a 
significant alkane moiety possess at least one 
real or envisaged meso isomer. A guiding line of 
this paper is to find out at least one meso isomer 
for every molecular formula. A serious obstructor 
to this is an advanced degree of unsaturation. It 
is impossible to find out a meso isomer for e.g. 
C4H4O4 (fumaric/maleic acids). However, 
C6H10O4 (succinic acid, etc.) or C6H8O4 (2,3-
dimethyl derivative, etc) have a meso form    
(Fig. 1). Similarly, every tentative to construct a 
meso isomer of benzene, fails. However, the 
thing is possible for xylenes, ethylbenzene, 
propylbenzene, etc. Also, reduction product of 
benzene, cyclohexane, presents meso and CTS 
isomers. Naphthalene, similarly to benzene, fails 
to give meso isomers, decalines instead presents 
all four types of isomers (Fig. 1). Compounds 
unable to produce symmetric isomers have         
been called by us archaic. Chemical 
transformations only intermediate between the 
two groups. For numerous archaic compounds a 
molecule of H suffices to convert them to 
symmetric entities. 
 
At least two dozens of isomers with molecular 
formula C3H7NO2 can be written, just by using 
the consecrated valence of every component 
element. However, of the envisaged isomers only 
some present elements of symmetry: two are 
meso (cis-1,2-dihydroxy-3-amino cyclopropane 
and cis-2,4-dihydroxy-azetidine), and two are 
CTS (trans-2,4-dihydroxy-azetidine, two 
enantiomers), and all the others, including (R)- 
and (S)-alanine, are constit. 
 
Polygonal representations of meso isomers: 
Meso representations in this paper, of 
compounds with at least a minimum degree of 
unsaturation, are polygonal ‒ triungular, square, 
pentangular, hexangular. An exception to this are 
saturated compounds (alkanes, alcohols, etc). 
For a triangular representation (Fig. 2), a 
mathematical equation (1) have been imagined 
to illustrate meso isomers. 

 
n‒3=2x+2y+z+w                                         (1) 

 
In equation (1), n is the number of atoms in 
molecular skeleton, x, y, z, w, are suitably 
selected numbers. In triangular representation 
there is a connection between x, y, z, w, and R1, 
R2, R3, R4, respectively. 
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Fig. 1. Meso isomers of unsaturated (fumaric/maleic acid), aromatic, and the latter’s saturated 

derivatives 
 

 
 

Fig. 2. Lactobacillic acid as model for meso isomer. The sense of mathematical equation 
  

The rings of three or four atoms, as cycles or 
heterocycles, synthetic [30,166-168] or found in 
natural materials, are well known. “Cis- and 
trans-1,2-dimethyl cyclopropane are 
indistinguishable of thermodynamic point of view” 
[169]. “1,2,3-Trihydroxycyclopropane is known as 
an unstable combination” [170,171], however “no 
attempt was made to stabilize it. 1,2-
Dihydroxycyclopropane has been prepared by a 
reduction reaction of a diketone derivative” [172]. 
“Cis-1,2-dihydroxycyclopropane has been 
discovered in natural material as a glycoside of 
α-D-galactopyranose [173] as well as in the 
constition of mycolic acids” [174] and lactobacillic 
acid [74] (Fig. 2). Oxirane ring has been 
identified as (3S)-2,3-oxidosqualene in sterols 
biosynthesis. Two syntheses of cis-1,2,3,4-
tetrahydroxy cyclobutane have been reported 
[175]. Numerous real or envisaged meso isomers 
have been presented in the following (Figs. 3-
10). 
 

3. NATURAL COMPOUNDS WITH 
BIOCHEMICAL IMPLICATIONS  

 

3.1 The fundamental Amino Acids 
 
“Compounds with a ubiquitous distribution in 
living matter, the twenty fundamental amino 

acids are characterized by an unequaled 
structural variety. These amino acids are met 
especially integrated in proteins and in this state 
they manifest themselves by their tails” [74]. An 
interesting picture presents the real and 
envisaged symmetric isomers of the twenty 
fundamental amino acids: without any exception, 
they present meso isomers (Fig. 3), hence no 
one is archaic. Besides constit. isomers, Gly, Ala, 
Val, Pro, Thr, Asp, Arg, present meso and CTS 
isomers. Leu, Ile, Glu, Asn, Lys, present all four 
types. Trp, Phe, Tyr, His, Ser, Gln, Cys, Met, 
possess, beside constit., meso and irrechi 
isomers. It is evident that all these compounds 
present symmetric isomers and implicitly dimeric 
character. The twenty fundamental amino               
acids, with different molecular formula, are 
related with each other by their common 
functional groups and by their biochemical role. 
The association by this criteria of amino acids is 
consecrated and supported by numerous 
arguments. On the other hand, their relationship 
within the same molecular formula, although 
quite obvious, is more discrete. L-Ala is 
associated with e. g. cis-2,4-dihydroxy azetidine 
due to the same molecular formula, i.e. a 
chemical and a philosophical relationship. 
Although discrete, the relationship via molecular 
formula is undeniable. 
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Fig. 3. Meso isomers of the twenty fundamental amino acids (see also text) 
 

 
 

Fig. 4. Meso isomers of nucleotides, deoxynucleotides, adenosyl-homocysteine and PAPS 
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3.2 Nucleotides and deoxy-nucleotides 
 
Nucleosides and nucleotides, as the constituents 
of all types of RNA, and their deoxy counterparts, 
as constituents of DNA, are represented by              
their meso isomers (Fig. 4); adenosin is               
cis-3,4-dihydroxy-cis-2,5-dihydroxy-1-adenin 
cyclopentane. We have also added meso 
isomers of adenosyl homocysteine, a compound 
involved in methylation reactions, and 3’-
phosphoadenosyl-5’phosphosulfate (PAPS), the 
major sulfate donor. 
 

3.3 Hydrosoluble Vitamins and Their 
Coenzymes 

 
Hydrosoluble vitamins represented by thiamine 
(vitamin B1), isoaloxazine, pyridoxol (vitamin B6), 
biopterin, pantoic acid, vitamin biotin, 
nicotinamide have a variety of meso isomers. 
The planar structure of benzenoid compounds 
has been succesfully used in meso isomers of 
hydrosoluble vitamins (Fig. 5): cis-2,4-dihydroxy-
3-methyl-3-adenin oxetane (biopterin), cis-2,4-
dihydroxy-3-propyl-3-(3,4-diamino-thiophene-
2)oxetane (biotin), 2,4-diphosphonate-3-hydroxy-
amino-pyrimidine-3-thiazol (thiamine; vitamin 
B1), 1-hydroxy cis-2,6-diphosphate-cis-3,5-
ethyleneglycol-3-dihydroxyisoalloxazine-3-
adenin-cyclohexane (vitamin B2) (as FADH2 and 
FMNH2), and even pyridoxol (vitamin B6), 
coenzyme A and NADH. In order to write meso 
isomer of FMNH2 we extracted an O atom from a 
keto bond, however leaving redox system intact. 
An excellent alternative to this is to link the 
isoalloxazine system and a phosphonic residue 
on C-3 of ribitol. A component of coenzyme A, 
pantoic acid, has tetrahydroxy cyclohexane as a 
meso pair. 
 

3.4 Sterols  
 
Sterols are represented by a diversity of 
structures, however all of them present meso 
isomers (Fig. 6). “Sterols have been exemplified 
by cholesterol, stigmasterol, sitosterol, 
campesterol, ergosterol and digitoxygenin. 
Digitoxygenin also presents the four types of 
isomers. A similar solution has been found for 
estrone, C19 (5α-androstanolone), C21 
(prednisolone, 11β-hydroxy-progesterone, 
pregnenolone, progesterone, corticosterone, 
cortisol, aldosterone), C24 (biliary acids: cholic, 
chenodeoxycholic, deoxycholic, lithocholic). 
Squalene presents at least one meso compound” 
[17]. 
 

3.5 Lipophilic Vitamins 
 
All lipophilic vitamins ‒ A, D, E, K ‒ present  
meso isomers (Fig. 7). Vitamin E is represented 
by α-tocopherol and α-tocotrienol, but all 
members of this vitamin have meso isomers,  
and the same are vitamins K1 and K2. Both 
meso isomers of vitamin K1 and K2 are 
indicated.  
 

3.6 Fatty Acids, Sphingosines, 
Prostaglandins 

 
“Saturated, mono- and polyenoic fatty acids are 
represented by the isomers of stearic acid, oleic 
and eicosapentaenoic acid (the famous omega-
3) (Fig. 8). As is obvious, an isomer of C18H36O2 
(cis-1,3-dihydroxy-cis-4,6-diheptyl-cyclohexane) 
present all four type of isomers: meso (cis-1,3-
dihydroxy-cis-4,6-diheptyl-cyclohexane), CTS (as 
pairs of enantiomers) (trans-1,3-dihydroxy-trans-
4,6-diheptyl- cyclohexane, etc.), irrechi (cis-1,3-
dihydroxy-trans-4,6-diheptyl-cyclohexane, etc.) 
constit., (stearic acid, etc.). A general formula 
has been elaborated for mono- and 
polyunsaturated fatty acids” [17]. For long chain 
bases (LCB) (sphingosines), LCB d18:1 and LCB 
d18:0 have been selected. Meso isomers have 
been also found for LCB t16:0, LCB d16:0, LCB 
d16:1, LCB t18:0, LCB t18:1, LCB t20:0, LCB 
t20:1. Meso isomers of saturated LCB should 
use meso isomer of nonanol as a model. All 
prostaglandins have matching meso isomers, as 
indicated by PGE1, PGF2α, PGE2, PGF3α    
(Fig. 8). 
 

3.7 Aliphatic Hydrocarbons: Alkanes, 
Alkenes (Cycloalkanes), Alkynes 
(Alkadienes) 

 
A tentative to evaluate molecular diversity of 
C8H18 indicated 18 [73] or 19 [72] isomers. If one 
takes into account optical activity [67], the total 
number of isomers for C8H18 is 24. Of these 24, 
one is meso, two are CTS [176] (Fig. 9) and the 
others are constit. An unequivocal conclusion 
can be drawn: all alkanes beginning with C8H18 
present at least one meso isomer, and all 
alkanes below this limit are archaic. The first 
term of CnH2n, alkenes or cycloalkanes, 
according to our reasoning, is the meso isomer 
cis-1,2-dimethyl cyclopropane (C5H10) [177].            
For CnH2n-2 (alkynes and alkadienes) the first 
term is C7, cis-1,2-dimethyl-3-vinyl cyclopropane 
or cis-1,3-dimethyl-2-methylene cyclobutane; 
compounds below C7 are archaic. 
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Fig. 5. Hydrosoluble vitamins and their natural reagents (FADH2, FMN, NADH, coenzyme A) 
 

 
 

Fig. 6. Meso isomers of some natural sterols 
 

3.8 Serial Compounds with Functional 
Groups 

 
For monohydroxylic alcohols the first term is          
C9 (3,5-dimethyl-4-hydroxy heptane) (Fig. 10). 
For aldehydes and ketones the first term is          
C5 (cis-1,2-dimethyl-3-hydroxy-cyclopropane), 
and similar combinations below C5 are archaic. 
The first term of organic acid is C3 (cis-1,2-

dihydroxy-cyclopropane). C3 yet, as well as C4 
and C5 have three types of isomers only (meso, 
CTS, constit.), while C6 and higher terms 
possess four; saturated organic acids below               
C3 are archaic. The first term of monoenoic  
acids is C5 (cis-1,2-dihydroxy-3-allyl 
cyclopropane), and the first term of dienoic             
acids is C7 (cis-1,2-dihydroxy-3-(1-butadienyl) 
cyclopropane). 
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Fig. 7. Meso isomers of lipophilic vitamins 
 

 
 
Fig. 8. Meso isomers of fatty acids, prostaglandinds and sphingosines (long chain bases, LCB) 
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dihydroxy-4,6-dimethyl-cyclohexane, or others. 
As can be seen from their structure, the latter 
three isomers present also CTS and irrechi 
forms. And the C8H16O2 isomers mentioned 
earlier, valproic acid inclusively, are all constit. 
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Fig. 9. Meso isomers of saturated and unsaturated hydrocarbons 
 

 
 

Fig. 10. Meso isomers of some serial compounds with functional groups 
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freedom degrees, in comparison with the other 
types. Somehow, this phenomenon is a chemical 
expression of freedom, inscribed in genome. 
 

In different classes of compounds which 
constitute series, a limit has been noticed, and 
above this limit at least meso isomers are 
possible, or even all four types. Compounds 
under this limit have to be considered as archaic. 
They can reach to the group of combinations 
able of producing meso isomers only by chemical 
transformations. E. g. propane belongs to archaic 
group, however, by oxidation it becomes 
propanoic acid, an advanced form able to 
present meso form; however, propenoic acid is 
again archaic. Fischer [58,179,180] illustrated 
this by preparing a variety of C6 
monosaccharides from formaldehyde or C3 
derivatives. 
 

Natural micromolecular organic combinations 
can be also classified in a different manner, 
partially superposing with the afore mentioned 
classification: (i) symmetric (meso and CTS); (ii) 
potential symmetry generators (irrechi, constit.); 
(iii) archaic. There is yet a vast group of natural 
compounds, i.e. products of desymmetrization 
reactions. Nonetheless, they can be integrated in 
one of the preceding groups (types). 
 

5. C2 SYMMETRICAL COMPOUNDS OR 
TWIN DIMERIC CHIRALITY – A NEW 
TYPE OF CHEMICAL DUALITY  

 

Compounds as trans-3,4-divinyl-1-cyclobutene, 
trans-1,2-dimethyl-cyclobutane, 1α,2α,4β,5β-
1,2,4,5-tetramethyl cyclohexane (Fig. 1), trans-
2,3-dihydroxy aziridine, trans-2,4-dihydroxy 
azetidine, trans-2,4-dihydroxy-3,3-dimethyl 
azetidine, 2β,3β,4α,5α-2,5-dihydroxy-3,4-
dimethyl pyrollidine (Fig. 3), and many other 
types of compounds – steroids (Fig. 6), lipophilic 
vitamins (Fig. 7), saturated and polyunsaturated 
fatty acids, etc., are possibly C2 symmetrical. 
Beside, an impressive number of natural C2 
symmetrical compounds is known [39,181-184]. 
It seems that the number of C2 symmetrical 
compounds is about ten times higher than their 
meso isomers. Hence, there are much 
unexploited material for chemical philosophy, 
and some improvement is needed for the present 
concepts of the so called the science of 
sciences.  
 

6. CONCLUSIONS 
 
1. At most four types (groups) of isomers have 

been found, in natural things or as envisaged 

structures: meso, C2 symmetrical, irrechi, 
constitutional. 

2. Practically all fundamental natural 
combinations, found as constitutional 
isomers in vertebrates, are able to form 
symmetric isomers. Hence, they keep 
symmetry as a potentiality and not as a 
reality. 

3. An exercise of comparative chemistry is 
presented between the real constitutional 
isomers and the envisaged meso ones. 

4. At chemical level symmetry phenomenon is 
much better represented in plants and 
microorganisms than in vertebrates. 

5. The mirror plane of symmetry has been 
defined as an area capable to hide (mask) 
atoms or planar structures of polarized light, 
and to transform a heterodimer in a 
homodimer. 

6. Two duality phenomena have been identified 
in chemistry of natural compounds. For one 
of them the two component sides are 
opposed chemically, spatially and optically, 
and they lead to two different (enantiomeric) 
compounds when distinctively affected. 

7. The duality formed of chiral dimers (CTS), 
uniformly linked with each other or on a more 
or less complex matrix, constitutes a novelty 
for chemical philosophy. 
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