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Abstract 

 
In this paper, the mean square asymptotic boundedness of a class of stochastic complex systems with 

different dynamic nodes represented by Ito stochastic differential equations is studied.  By using the 

Lyapunov function and Ito formula, the mean square asymptotic boundedness and mean square 

asymptotic stability conditions of stochastic complex systems with different dynamic nodes are obtained.  

 

 

Keywords: Stochastic complex networks; mean square asymptotic boundedness; Ito formula. 

 

1 Introduction 

 
Complex systems are composed of the complex links between the nodes and the nodes of a kind of important 

dynamic system. Watts and Strogatz’ work in the famous small world network model was established in 
1998 and described its features. And complex systems in the real world are widespread, such as the food web, 

communication network, mobile network, the world wide web, metabolic system, transmission system, etc. 

At the same time, stochastic phenomenon is a common natural phenomena in the nature, the influence of a 

lot of the real systems can’t avoid it, such as complex network signals are often in the process of transfer 

under the influence of stochastic factors in the surrounding environment and become a stochastic process by 

noise [1]. And because of the existence of random interference factors, such as space systems [7][8] nuclear 
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reactor[9], chemical reaction system, neural network[10], industrial control system[11], financial and 

economic system[12][13] and so on, many real systems are impossible to use ordinary differential equation 

to accurately depict.  

 

Stability is an important part of the dynamic characteristics in the study of stochastic complex networks, is 

also one of the main goals of engineering design. Because the concept of stability and the classification of 

stochastic system are different, therefore there are many different methods to study the stability of stochastic 

complex networks. At present, many results on the basic theory and stability theory of stochastic complex 

networks have been reported. At the same time, boundedness is also very important in the study of stochastic 

complex networks. But relatively few work was done on the boundedness of complex networks. So this 

article will discuss the mean square asymptotic boundedness of stochastic complex networks. 

 
Inspired by the literature [14], this paper will extend the results in [14] to the stochastic case. By using the 

Lyapunov function and Ito formula, the mean square asymptotic boundedness and mean square asymptotic 

stability conditions of stochastic complex systems with different dynamic nodes are obtained. Results 

indicate that when the stochastic complex network is unbounded, impulsive control can be used to make it 

bounded. 

 

2 Model Description and Preliminaries 
 

Let R n
 define the n-dimensional Euclidean space, nE  define the n-dimensional unit matrix,   define the 

Kronecker product of two matrices,  1,2,3,    and  R = 0 ， . Let   define the Euclidean norm, 

and    ,
, 1, ,

a b
a a b     where a b  , and a  and b  are integral numbers. If A  is a vector or 

matrix, its transpose is defined by 
TA .  min 

 
and  max   define the minimum and the maximum 

eigenvalues of the corresponding matrix, respectively. And  trace   defines the trace of the matrix. 

 

Consider the stochastic complex network of N nodes, and each node has an n-dimensional dynamical system 

i.e. 
 

             
1

, , , 1,2, , .
N

i i ij j i

j

dx t f t x t C t Ax t dt g t x t dw t i


 
      
 

                        (1) 

 

where         1 2, , , R
T n

i i i inx t x t x t x t    represents the state vector of the ith  node of the 

network at time t , : R Rn nf   is continuous nonlinear vector valued function,    : R Rn n

ig x t   

is the noise density function,  w t is the n -dimensional Brownian motion, and  idw t  is independent of 

 jdw t ,     ij N N
C t c t


  is the coupling configuration matrix of the networks, and Rn nA   is the 

inner connecting matrix in each node. For simplicity of further discussion, we separate the linear part from 

the nonlinear part of f  as 

 

      , , , 1,2, , ,i i if t x t F t x t x i                                                                                      (2) 

where  F t  is the corresponding time-variable matrices. Using the Kronecker product, network (1) can be 

rewritten as 
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                , , ,dX t D t X t t X C t A X t dt g t X dw t                                           (3) 

 

where         1 2, , ,
T

NX t x t x t x t  ,        , , ,

N

D t diag F t F t F t
 
 

  
  

, and

  , ,t X t       1 2, , , ,
T

Nx t x t x  . 

Let the plant   describe the evolution process   ,t X t , where   RnNX t   is the state variable of 

Error! Reference source not found. 
 

2.1 Definition  
 

If there exists a positive constant 0  , such that  
2

0limsup , ,
t

E x t t  


 , then the solution of the 

system Error! Reference source not found. is said to be mean square asymptotical bounded. 

 

2.2 Definition [15]  
 

Sequence    , ,k kt U k X t  is said to be a law of   if       ,k k kX t X t U k X t    ,

0 1 2 1, , limk k k kk t t t t t t            . 

 

2.3 Definition 
 

Let   R p q

ij p q
A a 


   and   Rm n

ij m n
B b 


  , then the following block matrix 

11 12 1

21 22 2

1 2

R ,

n

n pm qn

m m mn

a B a B a B

a B a B a B
A B

a B a B a B



   
 
   
 
 
   

 

is the Kronecker product of A  and B . 

 

At the same time, for any matrix and constant, Kronecker product has the following properties: 

 

  1 ;
T T TA B A B  

 
 

    2 ;aA B A aB  
 

 

  3 ;A B C A C B C     
 

 

       4 .A B C D AC BD   
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Our main aim is to design a law such that system Error! Reference source not found. under the law is 

mean square asymptotical bounded. We design the following law: 

    , , ,k k kU k X t B X t k                                                                                                          (2) 

 

where the matrices     1 1,
, , R R , ,nN nN n n

k k Nk ik N
B diag B B B i k         are the 

feedback gain at moment kt . Then, we can obtain the impulsive stochastic complex networks as follows: 

 

            

   

   

 

0

0 0

,

, , ,

, ,

k

k k k

dX t D t X t t X C t A X t dt

g t X dw t t t t t

X t B X t k

X t X





      
  


  






                                                        (3) 

 

where      k k kX t X t X t     ,    = lim
k

k t t
X t X t




, and any solution of (3) is left continuous at 

each kt , i.e.    k kX t X t  . Furthermore, we suppose that system (3) satisfies the following hypotheses. 

 

2.4 Assumption 
 

There exist constants 0L  , 0L


 and 0J  , 0J


 , and a locally integrable function   0h t   and 

positive definite matrices 1P , such that 

 

     1,
, , ,

T T

i i i i N
t x Px h t Lx Px J i                                                                                        (4) 

       1 1 1,
, , , .T T

i i i i N
trace g t x Pg t x h t L x Px J i

  
                                                                

(5) 

 

2.5 Remark  
 

 From Assumption 2.1, we have  

 

    , ,
T Tt X PX h t LX PX J    

     , , ,T Ttrace g t X Pg t X h t L X PX J
  

       
 

 

where , , ,

N

P diag P P P
  

  
   . 
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2.6 Assumption 
 

There exists a constant R  such that 

            
     

1 1

max max

2 .

TT
P D t P PD t P C t A P P C t A

Lh t h t L h t

 



 



     
 

  
                           

(6) 

 

2.7 Assumption 
 

There exists a constant 1 
 
such that 

 

   
1

ln 0, ,
k

k

t

k
t

h s ds k 


                                                                                                           (7) 

 

where    1

max

T

k nN k nN kP E B P E B     
 

. 

 

2.8 Lemma [16] 
 

Let Rn nY   be a positive definite matrix and R n nQ   be a symmetric matrix. Then, for any R nx  , 

the following inequality holds: 

 

   1 1

min max .T T TY Q x Yx x Qx Y Q x Yx                                                                                        (10) 

 

2.9 Lemma (Ito formula)  
 

Let    1,2, R R ,RnV t X C   , then we have Ito formula as follows: 

 

             , , , , ,xdV t X t LV t X t dt V t X t g t X t dw t                                                  (8) 

 

where  X t  is the solution of the stochastic differential equation (3) and  

 

            
1

, , , , , , .
2

T

x xxLV t X V t X f t X trace g t X V t X g t X                                        (9) 

 

3 Boundedness Analysis  

 
3.1 Theorem  

 
Assume that Assumptions 2.1–2.3 hold. If 0  , then the impulsive stochastic complex networks in (3) is 

global mean square asymptotically bounded, and the solution  X t  will eventually converge to the 

compact set defined by  
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        
2

minR 1 1 1 1 2nNS X E X t P J J     




  
        

  
, 

 

where infk k   . 

 
Proof. Let the Lyapunov function be in the form of 

 

  .TV X X PX                                                                                                                                         (10) 

 
And 

 

                

    

, ,

.

T

xV X P D t X t t X C t A X t D t X t t X

C t A X t PX

       

  

                     (11) 

 
Obviously, we have 

 

     
2 2

min max .P E X EV X P E X                                                                                     (12) 

 

According to the Ito formula, the  V X  along the solution of (3) for  1,k kt t t , k , and using 

Assumptions 2.1 and 2.2 and Lemmas 2.1 and 2.2, we obtain

            
1

, , , , , ,
2

T

x xxLV t X V t X f t X trace g t X V t X g t X 
 

 

                

    

                

                

   

                 
           

, ,

,

,

, ,

, , , ,

T

T
T

T T T

TT T T T

T

TT T T

T T T

X P D t X t t X C t A X t D t X t t X

C t A X t PX traceg Pg

X t PD t X t X t P t X X t P C t A X t

X t D t PX t t X PX t X t C t A PX t

traceg t X Pg t X

X t PD t D t P X t X t P C t A C t A P

X t X t P t X t X PX t traceg t X Pg t

       

  

    

   



     

      

             
               

             

           

             

1 1

max max

1 1

max max

1

2 2

2 2

, 2 , 2 , ,

TT

T T

TT

T

k k

X

P D t P PD t P C t A P P C t A

Lh t X t PX t Jh t h t L X t PX t J h t

P D t P PD t P C t A P P C t A

Lh t h t L X t PX t Jh t J h t

h t V t X Jh t J h t h t V t X J J t t t

 

 

 

 

 

 

 

 



     


   

     



   



 
      

  

                                         (13) 
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             1, 2 , 2 , , .k kh t V t X Jh t J h t h t V t X J J t t t 
 



 
        

                         (17) 

 

By the variation of the parameter formula, we have 

 

     
 

 
 

 

0

1
0 0

1

, , 2 ,

, , .

t t

t s

k

h s ds t h d

t

k k

EV t X t EV t X t e J J h s e ds

t t t k

   







      
 

 

                                   (14) 

 

On the other hand, using the discrete part of (3), we have 

 

          
T T

k k nN k nN k kV X t X t E B P E B X t    
   

 

       

  

1

max

, .

T T

nN k nN k k k

k k

P E B P E B X t PX t

V X t k





   
 

 
                                                                  (15) 

 

Taking 1k   in the inequality (14), for  0 1,t t t , we get 

     
 

 
 

0

0
0 0, , 2 .

t t

t s

h s ds t h d

t
EV t X t EV t X t e J J h s e ds

         
 

                                    (16) 

 

By (15) and(16), we get 

 

     
 

 
 

1 1
1

0

0
1 1 0 0 1, , 2 .

t t

t s

h s ds t h d

t
EV t X t EV t X t e J J h s e ds

   

 


       
 

                        (17) 

 

Then, for  1 2,t t t , we get 

     
 

 
 

 

 
 

0

1

1
1

0
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1

, ,

2

2 .

t

t
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t

s

h s ds

h s ds t h d

t

t h d

t

EV t X t EV t X t e

e J J h s e ds

J J h s e ds



   

  











     
 

    
 





                                                                                         (18) 

 

By induction, for  1, ,k kt t t k  , we get 
 

     
 

 
 

 
   

1

0

1

1

, ,

2

2 .

t s

jt tj j

j

tt
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k

kk h s ds h dt

i
t

j i j

k h s dst h d

i
t

i

EV t X t EV t X t

J J e h s e ds

J J h s e ds e

   

  









 







  
  

 

    
 

 


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  
 

   

 

  
   

     

0

1

1

11

1

1

0 0

1

1

,

2

2 2

,

2
1

t

t

t t

t tj j

t

tk

t ti

t ti k

tt t ji

tt t ji k

k h s ds

i

i

kk h s ds h s ds

i

j i j

h s ds

k h s ds h s ds

i

i

kk h s dsh s ds h s ds

i

j i j

EV t X t e

J J
e e

J J J J
e

EV t X t e e

J J
e e e



 



 

 






 
















 

 






 




  
  

 
 

 
 

 


  
  












 2 2
.

t

tk

h s dsJ J J J
e


 

 






 
 

                                                                 (19) 

 

On the other hand, it follows from (7) that 

 

   
1 1

1 1
, , .

t tk k

t tk k

h s ds h s ds

k

k

e ore k
 


  

 
 

                                                                                      (24) 

 

For  1, ,k kt t t k  , by 0  , (19), andError! Reference source not found., we have 

 

     0 0

1

1 1
k

k

EV t, X t EV t , X t
  

 
  

    

 

 

  

1

1 1 1

0 0

1 1 2 2 1
1 1

1 1 1 2
1

1

k j
k

j

j k k

k

J J J J

J J
EV t ,X t .

 

 
      



      

  

  



    
     

   

   
    

   


                                                        (25) 

 

By (12) and Error! Reference source not found., for  1, ,k kt t t k  , we get 

 

 
 

 
 

2 max

0

min

1 1
,

k
P

E X t E X t M
P 



   

 
  

 
                                                                         (20) 

 

where       min1 1 1 1 2M P J J     
  

     
  

. Using (20), and noting 1   and 
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limk kt   , we get         
2

minlim 1 1 1 1 2t E X t P J J     




  
     

  
. 

The proof is completed. 

 

3.2 Theorem 
 

Assume that Assumptions 2.1–2.3 hold. If 0  , then the impulsive stochastic complex networks in (3) is 

global mean square asymptotically bounded, and the solution  X t  will eventually converge to the 

compact set defined be   
2

RnNS X E X t M   ,where 

 

       min1 1 1 1Hs HsM e e      2J J 
  

    
  

,  
1

sup
k

k

t

k
t

Hs h s ds


   . 

 

Proof. It follows from (19), Error! Reference source not found., and 0   that 

 

     
 
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k
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i
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




 

  
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 
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h s ds h s ds
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k
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j

k
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J J J J
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J J J J
EV t X t e e
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EV t X t e e
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 

 

 

 

   

  



 


  











     
            

     
       

    

   
      

    

 

                           (27) 

 

By (12) and Error! Reference source not found., for  1, ,k kt t t k  , we get 

 

 

 
 

2 max

0

min

1
.

k
P

E X E X t M
P



 

 
  

 
                                                                                          (21) 

 

Using (21), and noting 1   and limk kt    ,we get  
2

limt E X t M   The proof is 

completed. 

 

3.3 Theorem  
 

Assume that Assumptions 2.1–2.3 hold.  If 0  , then the impulsive stochastic complex networks in (3) is 

global mean square asymptotically bounded, and the solution  X t  will eventually converge to the 
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compact set defined be       
2

minR 1 1 2nNS X E X t P J J Hs  
  

      
  

, where 

 
1

sup
k

k

t

k
t

Hs h s


  ds   . 

 

Proof. By (19) and 0  , we have 
 

     
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, ,
k

i

i

EV t X t EV t X t 


    

 

 

 

 
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1

2
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j

j

k
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i
t
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t

t
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J J h s ds

J J h s ds

t t t k






 





 
  

 

 
  
 

 

 

                                                                                                            (22) 

 

On the other hand, from (7) with 0  , we have 

 

1k  .                                                                                                                                                   (23) 

 

From (22) and(23), it follows that for  1, ,k kt t t k  , we get 
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1
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1

k

EV t X t J J Hs


 

    
      

     
                                                                                    (24) 

 

By (12) and(24), for  1, ,k kt t t k  , we get 

 

 
 

 
 

 

2 max

0

min min

1 1
2 .

1

k
P

E X t E X t J J Hs
P P

 

   

    
      

     
                                   (25) 

 

Using(25), and noting 1  and limk kt   ,we get       
2

minlim 1 1t E X t P    

2J J Hs
 

  
 

. The proof is completed. 

 
The following corollaries follow directly from Theorems 3.1–3.3. Here, we omit their proofs to avoid 

repetition. 
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3.4 Corollary 
 

If Assumptions 2.1–2.3 with 0J   hold, then the impulsive stochastic complex networks in (3) is global 

mean square asymptotically stable. 

 

3.5 Corollary  
 

If Assumptions 2.1–2.3 with   1h t   and nNP E  hold, then the impulsive stochastic complex networks 

in (3) is global mean square asymptotically bounded, and the solution  X t  will eventually converge to the 

compact set defined by   
2

RnNS X E X t M   , where 
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1 2
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   
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     
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  
   

  


                                                                            (26) 

 

where     1

maxinf
T

k nN k nN kP E B P E B  

 
   
 

, and  1supk k kHs t t     . 

 

3.6 Remark  
 

It should be noted that stochastic effects are not considered in [16]. So the present result is 

applied more widely in complex networks compare to the one in [16]. 

 

4 Conclusion  

 
The mean square asymptotic boundedness of a class of stochastic complex systems with different dynamic 

nodes has been investigated in this paper.  Using the Lyapunov function and Ito formula, the mean square 

asymptotic boundedness and mean square asymptotic stability conditions of stochastic complex systems with 
different dynamic nodes have been obtained. How to extend the current results to the delay case is still a 

challenging problem and need further study in the future work. 
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