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ABSTRACT 
 

The general theory of relativity has allowed a better understanding of the structure of universe. One 
of the fundamentals problems in the general relativity is finding exact solutions of the Einstein-
Maxwell field equations. Some solutions found applications in astrophysics, cosmology and more 
recently in the developments inspired by string theory. In this paper, we presented a compact object 
model in the framework of Einstein-Gauss-Bonnet gravity (EGB) with a linear equation of state 
considering a metric potential proposed for Buchdahl (1959). The new obtained models satisfy all 
physical requirements of a physically reasonable stellar object. We analyzed the effect of the 
Gauss-Bonnet coupling constant α on the main physical characteristics of the model. We checked 
that the radial pressure, energy density and anisotropy are well defined and are regular in the 
interior of the star and are dependent of the values of the coupling constant. 
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1. INTRODUCTION  
 
The study of the ultracompacts objects and the 
gravitational collapse is of fundamental 
importance in astrophysics and has attracted 
much since the formulation of the general theory 
of relativity [1]. Mathematical modeling within the 
framework of the general relativity has been used 
to explain the behavior and structure of massive 
objects as neutron stars, quasars, black holes, 
pulsars and white dwarfs [1,2] and requires 
finding the exact solutions of the Einstein-
Maxwell system [3]. A detailed and systematic 
analysis was carried out by Delgaty and Lake [4] 
which obtained several analytical solutions that 
can describe realistic stellar configurations.  
 
It is very important to mention the pioneering 
works of Schwarzschild [5], Tolman [6], 
Oppenheimer and Volkoff [7] and Chandrasekhar 
[8] in the development of the first theoretical 
models of stellar objects. Schwarzschild [5] 
obtained interior solutions that allows describing 
a star with uniform density, Tolman [6] generated 
new solutions for static spheres of fluid, 
Oppenheimer and Volkoff [7] studied the 
gravitational equilibrium of neutron masses using 
the equation of state for a cold Fermi gas and 
general relativity and Chandrasekhar [8] 
produced new models of white dwarfs in 
presence of relativistic effects. Some of these 
results have been extended to higher dimensions 
and the dimensionality of space-time apparently 
influence the stability of these fluid spheres [9].  
 
Recently, astronomical observations of compact 
objects have allowed new findings of neutron 
stars and strange stars that adjust to the exact 
solutions of the 4-D Einstein field equations and 
the data on mass maximum, redshift and 
luminosity are some of the most relevant 
characteristics for verifying the physical 
requirements of these models [10]. A great 
number of exact models from the Einstein-
Maxwell field equations have been generated by 
Gupta and Maurya [11], Kiess [12], Mafa Takisa 
and Maharaj [13], Malaver and Kasmaei [14], 
Malaver [15,16], Ivanov [17] and Sunzu et al [18]. 
In the development of these models several 
forms of equations of state can be considered 
[19]. Komathiraj and Maharaj [20], Malaver [21], 
Bombaci [22], Thirukkanesh and Maharaj [23], 
Dey et al. [24] and Usov [25] assume linear 
equation of state for quark stars. Feroze and 
Siddiqui [26] considered a quadratic equation of 

state for the matter distribution and specified 
particular forms for the gravitational potential and 
electric field intensity. MafaTakisa and Maharaj 
[13] obtained new exact solutions to the Einstein-
Maxwell system of equations with a polytropic 
equation of state. Thirukkanesh and Ragel [27] 
have obtained particular models of anisotropic 
fluids with polytropic equation of state which are 
consistent with the reported experimental 
observations. Malaver [28] generated new exact 
solutions to the Einstein-Maxwell system 
considering Van der Waals modified equation of 
state with polytropic exponent. Tello-Ortiz et al. 
[29] found an anisotropic fluid sphere solution of 
the Einstein-Maxwell field equations with a 
modified version of the Chaplygin equation of 
state. 
 
The analysis of compact objects with anisotropic 
matter distribution is very important, because that 
the anisotropy plays a significant role in the 
studies of relativistic spheres of fluid [30-42]. 

Anisotropy is defined as 
t rp p   where 

rp  is 

the radial pressure and 
tp  is the tangential 

pressure. The existence of solid core, presence 
of type 3A superfluid [43], magnetic field, phase 
transitions, a pion condensation and electric field 
[25] are most important reasonable facts that 
explain the presence of tangential pressures 
within a star. Many astrophysical objects as X-
ray pulsar, Her X-1, 4U1820-30 and 
SAXJ1804.4-3658 have anisotropic pressures. 
Bowers and Liang [42] include in the equation of 
hydrostatic equilibrium the case of local 
anisotropy. Bhar et al. [44] have studied the 
behavior of relativistic objects with locally 
anisotropic matter distribution considering the 
Tolman VII form for the gravitational potential 
with a linear relation between the energy density 
and the radial pressure. Malaver [45-46], Feroze 
and Siddiqui [26,47] and Sunzu et al.[18] 
obtained solutions of the Einstein-Maxwell field 
equations for charged spherically symmetric 
space-time by assuming anisotropic pressure. 
 
The behavior and dynamics of the gravitational 
field can be extended to higher dimensions [48]. 
The history of higher dimensions goes back to 
the work done by Kaluza [49] and Klein [50] who 
introduced the concept of extra dimensions in 
addition to the usual four dimensions (4-D) to 
unify gravitational and electromagnetic 
interactions. In general theory of relativity, the 
results obtained in four dimensions can be 
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generalized in higher dimensional context and 
study the effects due to incorporation of extra 
space-time dimensions [51]. Within this 
framework, a very useful and fruitful 
generalization is the Einstein-Gauss-Bonnet 
gravity, which has generated a lot of interest 
among researchers and has been influenced by 
many scientists working in this field [52]. The 
modeling of compact objects in EGB gravity has 
shown that some physical variables are modified 
when they are compared to their 4-D 
counterparts, but the condition of the 
Schwarzschild constant density sphere has been 
demonstrated in EGB gravity [10]. Recently, Bhar 
et al. [53] performed a comparative study of 
compact objects in five dimensions (5-D) 
between EGB gravity and classical general 
relativity theory and found that many features as 
stability, causality and energy conditions remain 
unaffected in the stellar interior. Akbarieh et al. 
[54] studied the propagation of gravitational 
perturbation in the Friedman- Lemaître-
Robertson-Walker (FLRW) cosmology in the 
Gauss-Bonnet quasi-dilaton massive gravity. 
Oikonomou [55] has proposed a theoretical 
inflationary model in Einstein-Gauss-Bonnet 
gravity which is compatible with the GW170817 
observational constraints on the gravitational 
wave speed. Per publications with quantum 
astrophysical sciences [56-59] understanding of 
a unified knowledge of physics characterizing 
universe mechanisms with quantum astrophysics 
have provided key to quantum as well as 
astrophysical studies of interior of stellar 
galaxies.  
 
In this work, we have used the metric potential 
proposed for Buchdahl [60] to generate some 
stellar models with anisotropic matter distribution 
in EGB gravity. The system of field equations has 
been solved to obtain analytic solutions which 
are physically acceptable. The paper is 
organized as follows: In Section. 2, we presented 
the framework of EGB gravity. The modified 
Einstein-Maxwell field equations with the Gauss-
Bonnet coupling constant are presented in 

Section.3. With the Buchdahl ansatz, we 
generated some models of an anisotropic star 
with a linear equation of state within EGB gravity 
in Section.4. In Section. 5, physical requirements 
for the new models are described. In Section.6, a 
physical analysis of the new solutions is 
performed. In final Section, we concluded.  

 
2. EINSTEIN-GAUSS-BONNET GRAVITY 
 
The Gauss-Bonnet action in n (n≥5)-dimensional 
spacetime can be written as 

 

 2

1

2

n

GB matter

n

S = g d x R L S
k


 

   
 

  

(1)  

 
where α is the Gauss-Bonnet coupling constant. 
The strength of the action LGB lies in the fact that 
despite the Lagrangian being quadratic in the 
Ricci tensor, Ricci scalar and the Riemann 
tensor, the equations of motion turn out to be 
second order quasi-linear which are compatible 
with Einstein’s theory of gravity [53,56].  

 
The EGB field equations may be written as  

 

ab ab abG H T                                       (2) 

 

where 
abG  represents the Einstein tensor, 

abT  

is the total energy-momentum tensor and the 

Lanczos tensor 
abH is given by  

 
 

1
2( 2 2 )

2

c cd cde

ab ab ac b acbd a bcde ab GBH RR R R R R R R g L    

 (3)  
 
where the Lovelock term has the form 
 

2 4abcd cd

GB abcd cdL R R R R R                (4) 

 

3. FIELD EQUATIONS  
 
The 5-dimensional line element for a static spherically symmetric space-time takes the form  
 

2 2λ 2 2 2 2 2 2 2sin sin sin2 (r) 2 (r) 2ds = e dt +e dr +r (dθ + θd d )                                  (5) 

 

where the metric functions e and e  are the gravitational potentials. By considering the commoving 

fluid velocity as 0

a au e   , the EGB field equations (2) reduce to  
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 2 4 2 2 2

4 3

3
4 4re re r e e

e r

   


          

 (6) 
 

  4 2 2

4 3

3
4 4rp re r r e

e r

 


             (7)  

 

  

  

  

24

4 2

22 2

2 2

22

2 2

1
4 12 4

1
1 2 2

1
4 4 4

tp e
e r

r r r r
e r

r
e r









    

    

     

        

        

      

 

(8) 
 

Here primes means a derivation with respect to 
the radial coordinates r and ρ is the energy 

density, 
rp  is the radial pressure and 

tp  is the 

tangential pressure. With the transformations 
2x= cr ,

2λZ(x)= e  and
2 2νy (x)= e  suggested 

by Durgapal and Bannerji [61]. 

 
 and with c>0 as arbitrary constant, the field 
equations (6)-(8) can be written as follows  

 

  3 1 1 4
3

Z Z
Z

c x

  
                 (9) 

 

   3 1 6 16r
Z Z Zyp Zy

c x y xy

 
    (10) 

 

  
 

 
2 1 1

4 1 2 6 2 2t
Z Zp y y Z

Z Z x x Z Z ZZ Z
c y x y x


  

   
               

  
           (11) 

 

where 4 c   contains the Gauss-Bonnet coupling constant α and dots denote differentiation with 

respect to x .  

 
In this paper, we assume the following equation of state 
 

rp = m                                                                                                                               (12)  

 
where m is an arbitrary constant.  
 

4. THE NEW MODELS 
 
In this research, we take the form of the metric potential Z(x) proposed for Buchdahl [60].  
 

( )
(1 )

K x
Z x

K x





                                                                                                                                    (13) 

 
where K is a parameter related to the geometry of the star. This potential is regular at the stellar 
center and well behaved in the interior of the sphere. Using Z(x) in equation (9), we obtain 
 

2 2

2 3

3 ( 1)( 1) 3 ( 1)( 1) 12 ( 1)

( 1)

K K x K K x K
= c

K x




        


                                                     (14) 

 
Substituting the equation (14) in the expression of the linear equation of state for the radial pressure 
(12), we have  
 

2 2

2 3

3 ( 1)( 1) 3 ( 1)( 1) 12 ( 1)

( 1)
r

K K x K K x K
p = mc

K x

        


                                                   

(15) 
 
With Z(x) and (15) in equation (10), we can written  
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 

2 23 ( 1)( 1) 3 ( 1)( 1) 12 ( 1)3 ( 1)(1 )

6 ( )(1 ) 6 ( 1)( ) (1 ) 6 ( )(1 ) 6 ( 1)( )

K K x K K x Ky K K x
m

y K K x x K K x x K K x x K K x



 

           
          

   (16) 

 
Integrating equation (16) we obtain 
 

     1( ) 1
A B C

y x c Kx K K K x x                                                                              (17) 

 

where 
1c is the constant of integration. The constants A, B and C are given by  

  

( 3 )

2( )

K m K Km m
A

K

   



   
 


                                                                                      (18) 

 
2 2 2 4

2( )

K m K Km m K
B

K





   



                                                                                                          (19) 

 

2C = m                                                                                                                                  (20) 
 

For the metric functions 
2e 

 and 
2e 

 , we have  
 

2 (1 )K x
e =

K x

 


                                                                                                                      (21) 

 

     
2 2 22 2

1 1
A B C

e c Kx K K K x x                                                                   (22) 

 

and the anisotropy can be written as 
 

  

 

 
    

       

 

  

 

  

 

  

 

2 2 2

2

2

2 22

2

2

2 2 32 2

2

4 2 2

1 11

1

4 1 2 1 2 1

1 1 1

1

t r

A A K AKB

K Kx K K xK Kx K

xc K x x Kx K AKC B B BC
p p

K Kx K x K x xK x K x

C C

x

AK B

K K x K x K K x K Kx K K x

CK x K x K x

  

 

 

    

 
 

      
 

           
       
 
 
 

  


          

   
     

 

 

 
 2

2 1 2 1

11

x

c K c K

K xK x

 
 
 
 
  

 
 



                   (23) 

 

5. PHYSICAL ACCEPTABILITY IN EGB 
GRAVITY 

 

For a model to be physically acceptable in EGB 
gravity, the following conditions should be 
satisfied [27,53]:  
 

i. The metric potentials 
2e 

and 
2e 

assume 

finite values throughout the stellar interior 
and are singularity-free at the center                  
r=0.  

ii. The energy density ρ and the radial 

pressure rp  should be positive inside the 

star.  
iii. The anisotropy is zero at the center r=0, 

i.e. Δ(r=0) =0.  
iv. The energy density and radial pressure are 

decreasing functions with the radial 

parameter, i.e. 0rdp

dr
  and 0

d

dr


  both in 

EGB gravity. 
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v. Any physically acceptable model must 
satisfy the causality condition, that is, for 

the radial sound speed 2 r
sr

dp
v

d
  ,we should 

have 20 1srv   .  

vi. The boundary of the star defined by r=R 
should be matched with the Einstein –
Gauss-Bonnet- Schwarzschild exterior 
solution given by  

 

 

2
2 2 2 2 2 2 2( ) sin sin sin

( )

2 2 dr
ds = F r dt + +r (dθ + θd d )

F r
                                      (24)  

 
where R is the radius of the star and  
 

2

4

8
( ) 1 1 1

4

r M
F r

r





 
     

 

                                                                                                             (25) 

 
In Equation (25) M is associated with the gravitational mass of the hypersphere 
 

6. PHYSICAL FEATURES OF THE NEW MODELS  
 
In order to obtain the parameters A, B, C, K that describe the model and ensure the matching 
conditions is used the first fundamental form that consist in the continuity of the metric functions and 
their derivatives across the boundary r=R as follows  
 

 2 2

2 4

1 8
1 1 1

4

K cR R M

K cR R





  
       

                                                                                        (26)  

 

     
2

2 2 2

1 4

8
1 1 1 1

4

A B C R M
c KcR K K K cR cR

R


 



 
          

 

                             (27)  

 

     2 2 2

1 2 2 2

4

4

2 1
1

8
1 1

1

2 8
1

A B C AKc Bc Cc
c KcR K K K cR cR

KcR K K K cR cR

M

R

M

R

 
 



 

 
       

     

 
  

  



      (28)  

 
 and from the second fundamental form, we obtain  
 

 4 2

2 2

4 13 2
0

K
R R

c c Kc

 
                                                                                                              (29)  

 

The metric potentials 
2e 

and 
2e 

have finite values and remain positive throughout the stellar 

interior. At the center 
 2 0

1e


  ,    
22 0 2 2

1

A Be c K K K


    .We show that in r=0 , 

   2 ( ) 2 ( )

0 0
0r r

r r
e e 

 

 
   and it is verified that the gravitational potentials are regular at the 

center.  
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The energy density and radial pressure are positive and well behaved in the stellar interior. The 

obtained central density are 
 

2

2

6 ( 1) 12 1
( 0)

c K K K
r =

K




   
  and

 
2

2

6 ( 1) 12 1
( 0)r

K K K
p r = mc

K

   
   , 

both positive if m,K, β > 0.  
 

In the surface of the fluid sphere r=R ,we have   0rp r R   and is obtained for the radius of the 

star 
 

 2 22 3 16 16

2

Kc K K K K
R

cK

     
                                                                        (30)  

 
Differentiating Eq. (14) and Eq. (15), the expressions for density and radial pressure gradient are 
given by  
 

2 2 2 2 2 2 2

2 2 3 2 2 4

6 ( 1) 12 ( 1)(1 ) 6 3 ( 1)(1 ) 3 ( 1)(1 ) 12 ( 1)

(1 ) (1 )

c r K K K K cr c r K K cr K K cr Kd

dr K cr K cr

                  
 

 

(31) 
 

2 2 2 2 2 2 2

2 2 3 2 2 4

6 ( 1) 12 ( 1)(1 ) 6 3 ( 1)(1 ) 3 ( 1)(1 ) 12 ( 1)

(1 ) (1 )

r
c r K K K K cr c r K K cr K K cr Kdp

m m
dr K cr K cr

                 
 

 (32)  
 
For the physically acceptability of the model of 
star, it should satisfy the causality condition, i.e. 

20 1srv   and the following energy conditions 

must be satisfied: NEC ( Null energy conditions, 
WEK (Weak energy conditions), SEC (Strong 
energy conditions) [53,56] expressed through the 
inequalities  
 

: 0NEC                                              (33) 
 

: 0rWEC p                                      (34) 

 

 : 2 0r tSEC p p                              (35) 

 

In the Table 1 shows the values of the 
parameters K, m and the stellar radius R when 
the coupling constant α not vary.  
 

Table 1. Parameters K, m and R with α 
constant 

 

α  K m R (Km)  

20 0.2 1/3 5.85  
20 0.3  1/3 5.08  
20 0.4 1/3 4.52 
20 0.5 1/3 4.05  

 

The Figs. 1, 2, 3, 4, 5, 6 and 7 present the 

dependence of   , rp , d

dr

 , rdp

dr

, Δ, WEC and 

SEC with the radial coordinate for the 
parameters given in the Table 1.  

 
In the Fig. 1 is shown that the energy                      
density remains positive, continuous and is 
monotonically decreasing function throughout 
the stellar interior for all values of K.                          
The radial pressure showed the same                   
behavior by the energy density, that is, it is 
growing within the star and vanishes at a greater 
radial distance, but takes the lower values when 
K is increased as shown in Fig. 2. In Fig. 3 it is 
noted that for the radial variation of energy 

density gradient d

dr

 < 0 in the four cases 

studied. Again, according to Fig. 4, the profile of 

rdp

dr

 shows that radial pressure gradient is 

negative inside the star. The anisotropy is plotted 
in Fig. 5 and it shows that vanishes at the centre 
of the star, i.e. Δ(r=0) =0 [41,48]. We can also 
note that Δ admits higher values when K 
increases. The profiles of energy conditions 
WEC and SEC are graphically shown in Figs. 6 
and 7. These profiles indicate that the solution 
presented in this work is physically viable. In the 
Table 2 shows of the values of the parameters K, 
m and the stellar radius R when the constant K 
not vary.  
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Fig. 1. Energy density against radial coordinate for the parameters given in Table 1. It has been 

considered that K=0.2 (solid line); K=0.3 (long-dash line); K=0.4 (dashdot line); K=0.5 
(spacedot line) 

  

 
 

Fig. 2. Radial pressure against radial coordinate for the parameters given in Table 1. It has 
been considered that K=0.2 (solid line); K=0.3 (long-dash line); K=0.4 (dashdot line); K=0.5 

(spacedot line) 
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Fig. 3. Density gradient against radial coordinate for the parameters given in Table 1. It has 
been considered that K=0.2 (solid line); K=0.3 (long-dash line); K=0.4 (dashdot line); K=0.5 

(spacedot line) 
 

 
 
Fig. 4. Radial pressure gradient against radial coordinate for the parameters given in Table 1. It 
has been considered that K=0.2 (solid line); K=0.3 (long-dash line); K=0.4 (dashdot line); K=0.5 

(spacedot line) 
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Fig. 5. Anisotropy against radial coordinate for the parameters given in Table 1. It has been 
considered that K=0.2 (solid line) ;K=0.3 (long-dash line); K=0.4 (dashdot line); K=0.5 

(spacedot line) 
 

 
 

Fig. 6. WEC against radial coordinate for the parameters given in Table 1. It has been 
considered that K=0.2 (solid line) ;K=0.3 (long-dash line); K=0.4 (dashdot line); K=0.5 

(spacedot line) 
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Fig. 7. SEC against radial coordinate for the parameters given in Table 1. It has been 
considered that K=0.2 (solid line) ;K=0.3 (long-dash line); K=0.4 (dashdot line); K=0.5 

(spacedot line) 
 

Table 2. Parameters m, α and R with K constant 
 

 α   K  m  R (Km)  

 10 0.5  1/3  3.34  
 20 0.5   1/3  4.05  
 30 0.5  1/3  4.52 
 40 0.5  1/3  4.88  

 

 
  

Fig. 8. Energy density against radial coordinate for the parameters given in Table 2. It has been 
considered that α=10 (solid line); α=20 (long-dash line); α=30 (dashdot line); α=40 (spacedot 

line) 
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Fig. 9. Radial pressure against radial coordinate for the parameters given in Table 2. It has 
been considered that α=10 (solid line); α=20 (long-dash line); α=30 (dashdot line); α=40 

(spacedot line)  
 

 
 

Fig. 10. Density gradient against radial coordinate for the parameters given in Table 2. It has 
been considered that α=10 (solid line); α=20 (long-dash line); α=30 (dashdot line); α=40 

(spacedot line) 
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Fig. 11. Radial pressure gradient against radial coordinate for the parameters given in Table 2. 
It has been considered that α=10 (solid line); α=20 (long-dash line); α=30 (dashdot line); α=40 

(spacedot line) 
 

 
 

Fig. 12. Anisotropy against radial coordinate for the parameters given in Table 2. It has been 
considered that α=10 (solid line); α=20 (long-dash line); α=30 (dashdot line); α=40 (spacedot 

line) 
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Fig. 13. WEC against radial coordinate for the parameters given in Table 2. It has been 
considered that α=10 (solid line); α=20 (long-dash line); α=30 (dashdot line); α=40 (spacedot 

line) 
 

 
  

Fig. 14. SEC against radial coordinate for the parameters given in Table 2. It has been 
considered that α=10 (solid line); α=20 (long-dash line); α=30 (dashdot line); α=40 (spacedot 

line) 
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The Figs. 8, 9, 10, 11, 12, 13 and 14 present the 

dependence of   , 
rp , d

dr

 , rdp

dr

, Δ, WEC and 

SEC with the radial coordinate for the 
parameters given in the Table 2.  
 
As in the case with α= constant, in the Fig. 8 the 
energy density is continuous and is 
monotonically decreasing inside the star and 
increases for higher values of α. With 
K=constant, the radial pressure always is 
positive throughout the stellar interior and 
vanishes at a finite radial distance and its results 
are shown in Fig. 9. Again, the radial pressure 
increases when α takes higher values. The radial 
variation of energy density gradient has been 
shown in Fig. 10, in which it is note that d

dr

 < 0. 

In the Fig. 11, it is also verified that the gradient 

rdp

dr

 is negative inside the star. In the Fig. 12, the 

anisotropy Δ is zero at the center r=0 and its 
value decreases when α takes higher values. 
Figs. 13 and 14 again show that the energy 
conditions given by the inequalities (45) and (46) 
guarantee the physical viability of this model.  
 

7. CONCLUSION  
 
In this paper, we have generated new models of 
compact stars within the framework of Einstein-
Gauss-Bonnet gravity so it is feasible to obtain 
models that describe real compact objects such 
as white dwarfs and neutron stars. With the use 
of Buchdahl ansatz for the gravitational potentials 
and with a linear equation of state, we are able to 
produce a new class of exact solution of the EGB 
field equations. We show that the developed 
configuration obeys the rigorous conditions 
required for the physical viability of the stellar 
model. A graphical analysis shows that the radial 
pressure, energy density and anisotropy are 
regular at the origin and well behaved in the 
interior. It is to be noted in EGB gravity that the 
coupling constant α has non-negligible effects on 
the physical quantities such as energy density 
and radial pressure of the star which increases 
with an increase in α when K remain constant. 
The new solutions match smoothly with the 
exterior of the Einstein –Gauss-Bonnet- 
Schwarzschild at the boundary r=R, because 
matter variables and the gravitational potentials 
of this work are consistent with the physical 
analysis of these stars. As expected, the 
matching conditions require that the radial 
pressure vanishes at some finite radius of the 

stellar object and this defines the boundary of the 
star. 
 
It is important to note that the analysis of the 
behavior of energy conditions with respect to the 
radial coordinate in the stellar interior shows that 
the obtained model is well satisfied in the context 
of EGB gravity for various values of α.  
 
With earlier publications, these are consistent 
with quantum astrophysical sciences that will 
help to link micro macro aspects of intricate 
details of the workings of the cosmos compact 
stellar interior with quantum level atomistics that 
are prevalent in immediate vicinity of our 
environmental surroundings all the way to the 
astro-universe. 
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